Supplementary Information

Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes

Q. Song et al

Table of Contents

1. Supplementary Methods	3
1.1 General information	3
2. Supplementary Disscussion	4
2.1 Optimization of the reaction condition for racemic gem-diborylalkanes	4
2.2 Optimization of the reaction conditions for asymmetric gem-diborylalkanes	6
2.3 General Process for the Synthesis gem-Diborylalkanes	11
3. Supplementary Notes	13
3.1 Mechanism Studies	13
3.2. ³¹ P NMR Studies	16
3.3 Crystal Data of 4 , 59 and 89	18
3.4 Characterization Data	21
3.5 DFT Data	57
4. Supplementary Figures	58
4.1. NMR Spectroscopic Data	58
4.2. Chiral HPLC charts	195
5. Supplementary References	222

1. Supplementary Methods

1.1 General information

All reagents and solvents were purchased from Adamas Reagent, Energy Chemical Company, Bide Pharmatech Ltd., and Tansoole, and were used without further purification. Unless otherwise stated, all reactions were accomplished in Schlenk tubes under N₂ atmosphere. The reactions were monitored by thin layer chromatography (TLC) or gas chromatography-mass spectrometry (GC-MS). Flash column chromatography was performed over silica gel (200-300 mesh). ¹H NMR spectra were recorded on a Bruker Avance III 500 MHz (or 400 MHz) NMR spectrometer, and the chemical shifts (in ppm) were referred to CDCl₃ (δ = 7.26 ppm) as an internal standard. ¹³C NMR spectra were obtained by using the same NMR spectrometer and were calibrated with $CDCl_3$ ($\delta = 77.0$ ppm). ¹¹B NMR spectra were acquired with accessories on the same NMR spectrometer using CDCl₃. ¹⁹F NMR spectra were acquired with accessories on the same NMR spectrometer using CDCl₃, too. The following abbreviations were used to illuminate the diversities: δ = chemical shifts, J = coupling constant, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS; (ESI)) were acquired with quadrupole and time-of-flight (TOF) mass spectrometers. All reagents and solvents were obtained from commercial suppliers and used without further purification. Reactions were monitored by thin-layer chromatography (TLC). The products were purified by column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent. Analytical chiral HPLC was performed on an Agilent 1600 Infinity instrument with Daicel Chiralcel OD-H column, or Daicel Chiralpak AD-H, IA-3, IC-3 columns. Optical rotations were measured on an Aton Paar MCP 150 polarimeter.

2. Supplementary Discussion

2.1 Optimization of the racemic gem-diborylalkanes reaction condition

Supplementary Table 1 Catalysis Screening. Changing the catalysis with other parameters as the same.

	+ HBdan	[M] (4 mol%) + HBpin <u>Xantphos (4 mol%),NEt₃ (1.0 equ</u> hentane(0.2 mL), rt, 24 h	<u>liv)</u> Bpin Bdan
1	2	3	4
	1.2 equiv	1.5 equiv	
Entry		[M] (4.0 mol%))	Yield
1		Co(acac) ₂	68
2		Co(acac) ₃	63
3		Cu(acac) ₂	60
4		Co ₂ (CO) ₈	N.D.
5		Cobalt bis(2-ethylhexanoate)	N.D.
6		CoC	N.D.
7		Co(TMHD) ₃	N.D.
8		Co ₂ CO ₃	N.D.
9		Co(acacF ₆) ₂	50
10		Dicarbonylcyclopentadienylcobalt	N.D.

Supplementary Table 2 Ligand evaluations. Changing ligands with other parameters as the same.

	+ HBdan	+ HBpin -	Co(acac) ₂ (4 mol%) Ligand (4 mol%),NEt ₃ (1.0 equiv) heptane(0.2 mL), rt, 24 h		→ ^{Bpin} Bdan
1	2	3		4	
	1.2 equiv	1.5 equiv			
Entry			Ligand	Yield (%)	
1		2	2,2'-Bipyridine	N.D.	
2			1,10-Phen	N.D.	
3			PPh ₃	12	
4			PPh ₃ O	trace	
5			P(OMe) ₃	N.D.	
6			P ^t Bu ₃	15	
7			PPh ₂ O	trace	
8			Xantphos	68	

	+ HBpin +	Co(acac) ₂ (4 mol%) HBdan Xantphos (4 mol%), Additive (heptane(0.2 mL), rt, 24 h	1.0 equiv) Bdan
1a	1.5 equiv	1.2 equiv	
Entry		Additive (1.0 equiv)	Yield (%)
1		Morpholine	16
2		Quinoline	<10
3		Pyridine	43
4		HNEt ₂	67
5		NEt ₃	68
6		N,N-Diethylaniline	65
7		Cyclohexylamine	52
8		N ^t Bu ₃	67
9		N ⁱ Pr ₃	35
10		2,6-Lutidine	66
11		NEt ₃ (3.0)	70
12		NEt ₃ (5.0)	35
13		NEt ₃ (0.5)	57

Supplementary Table 3 Additive examinations. Changing additives with other parameters as the same.

Supplementary Table 4 Solvent screening. Changing solvents with other parameters as the same.

	+ HBdan	+ HBpin	Co(acac) ₂ (4 mol%) <u>Xantphos (4 mol%), NEt₃ (3.0 equiv)</u> Solvent (0.2 mL), rt, 24 h	Bpin Bdan
1	2	3		4
	1.2 equiv	1.5 equiv		
Entry		Sol	vent (0.2 mL)	Yield (%)
1			THF	17
2			Toluene	trace
3			Et ₂ O	16
4		1	,4-dioxane	30
5			n-hexane	42
6			n-octane	62
7			heptane	70
8			pentane	59
9		C	Cyclopentane	52
10		C	yclohexane	76
11		C	ycloheptane	65
12			Cyclooctane	67
10		Cyclo	hexane (1.0 mL)	70

Supplementary Table 5 Adding time of HBpin. Testing the reactions with different adding time of HBpin.

	+ HBdan	+ HBpin –	Co(acac) ₂ (4 mol%) Xantphos (4 mol%), NEt ₃ (3.0 equiv) Cyclohexane (0.2 mL), rt, 24 h		Bpin │ Bdan
1	2 1.2 equiv	3 1.5 equiv		4	
Entry		variation	from standard conditions	Yield (%)	
1	HBpin added together with 1 and HBdan			65	
2	HBpin added after 8min		70		
3	HBpin added after 15 min		76		
4		HBpi	n added after 20 min	73	

2.2 Optimization of the reaction conditions for chiral gem-diborylalkanes

Supplementary Table 6 Chiral ligand evaluations. Changing chiral ligands with other parameters as the

same.

	+ HBdan	+ HBpin	Co(acac)2 (4 mol%) Ligand (4 mol%)	Bpin
			Heptane (0.2 mL), 40 ^o C, 12 h	
1	2	3		59
	1.2 equiv	1.5 eqiv		
Entry		Ligand	Yield (%)	er (%)
1		(R)-binap	13	53:47
2		(R)-Tol-binap	o <5	40:60
3		(R)-Xyl-binap	o 48	45:55
4		(S)-Segphos	8	55:45
5		(S)-DM-Segph	os 8	40:60
6	(S)-DTBM-Segphos		phos 24	40.5:59.5
7	(R,S)-josiphos		s <5	
8	(R)-(R)-Walphos		os 43	23:77
9		(S)-Sunphos	s 26	44.5:55.5
10	(R)-Difluorphos(TM) trace	

			[M] (4 mol%) Walphos (4 mol%)	Bpin	
	+ HBdan + HBpin —	+ пвріп —	THF (0.2 mL), rt, 24 h	Bdan	
1	2 1.2 equiv	3 1.5 equiv		59	
Entry	[M]] (4.0 mol%)	Yield (%)	er (%)	
1	Co(acac) ₂		33	39:61	
6	Co(acac) ₃		28	35:65	
7		Cu(acac) ₂	20	76:24	

Supplementary Table 7 Catalysis examinations. Changing the catalysis with other parameters as the same.

Supplementary Table 8 Chiral ligand evaluations. Changing chiral ligands with other parameters as the

same.

	UPdan + UPnin		Cu(acac) ₂ (4 mol%) Walphos (4 mol%)	Bpin
	+ HBuan	+ пвріп ——	THF (0.2 mL), rt, 24 h	Bdan
1	2	3		59
	1.2 equiv	1.5 equiv		
Entry		Ligand	Yield	l (%) er
1		(R)-tol-binap	1	5 45:55
2		(R)-xyl-binap	1	2 42:58
3		(R)-DM-Segphos	1	3 48:52
4		(R)-Segphos	1	4 47:53
5		(S,S)-Ph-BPE	8	3 56:44
6		(R,R)-BDDP	2	0 64:36
7		(R,R)-quinoxP*	1	6 34:66
8		(S)-Sunphos	4	3 74:26
9		(R)-Difluorduphos	9	9 61:39
10		(R.R)-Me-ferrocelar	ne –	
11	(R)-DTBM-MeOBiphep		ep	3 37:63
12		(R,R)-Me-duphos	·	
13		(R,S)-josiphos	2	5 32:68
14		(R)-(R)-Walphos	2	0 76:24

	+ HBdan + HBnin	Co(acac) ₂ (4 mol%) Xantphos (4 mol%)	Bpin	
		Solvent(0.2 mL), rt, 24 h	Bdan	
1	2 3		59	
	1.2 equiv 1.5 equiv			
Entry	Solvent (0.2 mL)	Yield (%)	er	
1	THF	20	76:24	
2	Toluene	28	82:18	
3	Et ₂ O	30	78:22	
4	1,4-dioxane	32	83:17	
5	Pentane	25	82.5:17.5	
6	Hexane	30	80:20	
7	n-octane	27	82:18	
8	Heptane	32	83:17	
9	cyclohexane	33	87:13	
10	cyclohexane (1.0 mL)	30	88:12	

Supplementary Table 9 Solvent screening. Changing solvents with other parameters as the same.

Supplementary Table 10 Additive examinations. Changing additives with other parameters as the same.

	+ HBdan	+ HBpin –	Cu(acac) ₂ (4 Walphos (4 Cyclohexane (1.0	+ mol%) mol%) mL), rt, 24 h		Bdan
1	2	3			59	
	1.2 equiv	1.5 equiv				
Entry		Additive (1.0 equiv)	Yield (%)		er
1		_		33		88:12
2		MeOH (1.0) +	· NaO ^t Bu (2.0)	n.d.		
3		(EtO) ₂	SiMeH	70		89:11
4		(MeO)	₂ SiMeH	67		89:11
5		2,6-L	utidine	43		86:14
6		N ⁿ	Bu ₃	13		49:51
7		N	Et ₃	18		79:21
8		PMHS	S (1.0)	76		91:9
9		PMHS	S (3.0)	72		91:9

Supplementary Table 11 The amount of PMHS. Changing the amount of PMHS with other parameters as

the same.

			Cu(acac) ₂ (4 mol%) Walphos (4 mol%)		Bpin	
	+ HDuall	т пврш -	Cyclohexane (1	.0 mL), rt, 60 h	Bdan	
1	2	3			59	
	1.2 equiv	1.5 equiv				
Entry	PMHS (e	equiv)	Yield (%) ^a	Yield (%) ^b	er (%)	
1			40	33	88:12	
2	0.2		51	46	89:11	
3	0.5		60	50	91:9	
4	1.0		80	76	91:9	
5	2.0		83	73	91:9	
6	3.0		85	72	91:9	

^a the yield of product **59** was determined with gas chromatography (GC) analysis with Dodecane as internal standard; ^b isolated yield; ^c The enantioselectivity was determined by Chiral HPLC.

Supplementary Table 12 The additive of PMHS and base. Changing the additive and base with other

parameters as the same.

		Xai	Cu(acac) ₂ (4 mol%) ntphos (4 mol%), Additive (x equiv)	Bpin
	+ HBdan	т пвріп—	Cyclooctane (1.0 mL), rt, 24 h	Bdan
Ť	2	3		59
1a	1.2 equiv	1.5 equiv		
Entry	A	dditive (equiv)	Yield (%)	er
1		PMHS (1.0)	76	91:9
2	PMHS	(1.0) + LiO ^t Bu (2	2.0) 32	88:12
3	PMHS ((1.0) + NaO ^t Bu (2.0) 10	54:46
4	PMHS	(1.0) + KO ^t Bu (2	2.0) 12	66:34
5	PMHS	(1.0) +LiOMe (2	2.0) 17	81:19

Isolated yield.

Supplementary Table 13 The amount of catalysis and ligand. Changing the amount of catalysis and ligand

with other parameters as the same.

	+ HBdan	+ HBpin	Cu(acac) ₂ (4 mol%) Walphos (4 mol%)		Bpin
			Cyclohexane (1.0 mL), rt, 24 h		Bdan
1	2	3			5
	1.2 equiv	1.5 equiv			9
Entry	Cu(acac) ₂	(mol%)	Walphos (mol%)	yield (%)	er
1	4		4	76	91:9
2	6		6	78	92:8
3	8		8	65	86:14
4	4		6	52	77:23

Supplementary Table 14 Adding sequence and spans examinations. Changing the adding sequence and

spans with other parameters as the same.

	+ HBdan +	+ HBnin	Cu(acac) ₂ (4 mol%) Walphos (4 mol%), PMHS (1.0 eq	uiv)	Bpin
		і поріп	Cyclohexane (1.0 mL), rt, 24 h		Bdan
1	2	3			59
	1.2 equiv	1.5 equiv			
Entry	V	ariation from s	standard conditions	yield (%)	er
1	1 and HBpin added after 10 min			76	91:9
2	1 and HBpin added after 15 min			73	89:11
3	1 and HBpin added after 20 min			78	88:12
4	1 and HBpin added after 37 min			80	85:15
5	1 and HBpin added after 15 min (dry Cyclooctane)			74	85:15
6		or	ne pot	53	88:12
7		HBpin add	ed after 10 min	66	89:11

Supplementary Table 15 Time screening. Changing the reaction time with other parameters as the same.

	+ HBdan +		Cu(acac) ₂ (6 mol%) Walphos (6 mol%), PMHS(1.0)	Bpin
		+ нвріп —	Cyclooctane (1.0 mL), rt, x h	Bdan
1	2 1.2 equiv	3 1.5 equiv		59
Entry		time (h)	yield (%)	er
1		24	78	92:8
2		36	77	92:8
3		48	76	92:8
4		60	78	94:6
5		72	78	92:8

2.3. General Process for the Synthesis gem-Diborylalkanes

General Procedure A:

Supplementary Figure 1. Synthetic methods for gem-diborylalkanes

A tube was charged with $Co(acac)_2$ (4 mol%) and Xantphos (4 mol%) under N₂ atmosphere, then cyclohexane (0.2 mL), HBdan (0.24 mmol) and NEt₃ (0.6 mmol) were added subsequently. The reaction mixture was stirred at room temperature for 15 mins. Then HBpin (0.3 mmol) and **1** (0.2 mmol) were added subsequently at room temperature, then the resulting mixture was stirred at room temperature for 12 h. The residue was purified by column chromatography to afford the corresponding *gem*-diborylalkanes **4**.

General Procedure B:

Supplementary Figure 2. Synthetic methods for gem-diborylalkanes

A tube was charged with Co(acac)₂ (4 mol%) and Xantphos (4 mol%) under N₂ atmosphere, then cyclohexane (0.2 mL), HBdan (0.24 mmol) and NEt₃ (0.6 mmol) were added subsequently. The reaction mixture was stirred at room temperature for 15 mins. Then HBpin (0.3 mmol) and Phenylacetylene containing halogen (0.2 mmol) were added subsequently at room temperature, then the resulting mixture was stirred at 50 °C for 24 h. The residue was purified by column chromatography to afford the corresponding product *gem*-diborylalkanes.

General Procedure C:

Supplementary Figure 3. Synthetic methods for chiral gem-diborylalkanes

A tube was charged with $Cu(acac)_2$ (6 mol%) and Walphos (6 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBdan (0.24 mmol) and PMHS (0.2 mmol) were added subsequently. The reaction mixture was stirred at room temperature for 10 mins. Then HBpin (0.3 mmol) and **1** (0.2 mmol) were added subsequently at room temperature, then the resulting mixture was stirred at ambient temperature for 60 h. The residue was purified by column chromatography to afford the corresponding product **(R)-59**.

General Procedure D:

Supplementary Figure 4. Synthetic methods for chiral gem-Diborylalkanes

A tube was charged with $Cu(acac)_2$ (6 mol%) and Josiphos (6 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBdan (0.24 mmol) and PMHS (0.2 mmol) were added subsequently. The reaction mixture was stirred at room temperature for 10 mins. Then HBpin (0.3 mmol) and Phenylacetylene (0.2 mmol) were added subsequently at room temperature, then the resulting mixture was stirred at ambient temperature for 60 h. The residue was purified by column chromatography to afford the corresponding product **(S)-88**.

General Procedure E to Complex Alkynes:

Supplementary Figure 5. Synthetic methods for Complex Alkynes

A tube was charged with 4-Pentyn-1-ol (3.6 mmol), acid (3.6 mmol), DCC (735 mg, 3.6 mmol) and DMAP (2 mg) in dry DCM (3 mL) and the solution was stirred for 6 h at room temperature under N_2 atmosphere. The reaction mixture was diluted with DCM (20 mL) and filtered. The residue was purified by column chromatography to afford the corresponding product.

3. Supplementary Notes

3.1 Control experiments:

1)

Supplementary Figure 6. Control experiments. 1 was exposed to HBdan in the absence of HBpin, under the standard reaction conditions.

A tube was charged with $Cu(acac)_2$ (6 mol%) and Walphos (6 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBdan (0.24 mmol), PMHS (1.0 equiv) and **1** (0.2 mmol) were added subsequently at room temperature, then the resulting mixture was stirred at ambient temperature for 60 h. The yields of products were determined with gas chromatography (GC) analysis with dodecane as internal standard.

2)

Supplementary Figure 7. Control experiments. 1 was exposed to HBpin in the absence of HBdan, under the standard reaction conditions.

A tube was charged with Cu(acac)₂ (6 mol%) and Walphos (4 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBpin (0.3 mmol), PMHS (1.0 equiv) and **1a** (0.2 mmol) were added subsequently at room temperature, then the resulting mixture was stirred at ambient temperature for 60 h. The yields of products were determined with gas chromatog- raphy (GC) analysis with Dodecane as internal standard. The yields of products were determined with gas chromatography (GC) analysis with dodecane as internal standard.

3)

Supplementary Figure 8. Control experiments. One-pot reaction to the target product 59.

A tube was charged with $Cu(acac)_2$ (6 mol%) and Walphos (6 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBdan (0.24 mmol), HBpin (0.3 mmol), PMHS (1.0 equiv) and 1 (0.2 mmol) were added subsequently at room temperature in one pot, then the resulting mixture was stirred at ambient temperature for 60 h. The residue was purified by column chromatography to afford the corresponding product.

4)

Supplementary Figure 9. Control experiments. alkenyl-Bdan 93 and HBpin was exposed under the standard asymmetric reaction conditions.

A tube was charged with $Cu(acac)_2$ (6 mol%) and Walphos (4 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBpin (0.3 mmol), PMHS (1.0 equiv) and **94** (0.2 mmol) were added subsequently at room temperature in one pot, then the resulting mixture was stirred at ambient temperature for 60 h. The residue was purified by column chromatography to afford the corresponding product **59**.

Supplementary Figure 10. Control experiments. alkenyl-Bdan 93 and HBpin was exposed under the standard racemic reaction conditions.

A tube was charged with $Cu(acac)_2$ (6 mol%) and Walphos (4 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBpin (0.3 mmol), PMHS (1.0 equiv) and **94** (0.2 mmol) were added subsequently at room temperature in one pot, then the resulting mixture was stirred at ambient temperature for 24 h. The residue was purified by column chromatography to afford the corresponding product **4**.

A tube was charged with $Cu(acac)_2$ (6 mol%) and Walphos (6 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBdan (0.24 mmol), PMHS (1.0 equiv) and **97** (0.2 mmol) were added subsequently at room temperature in one pot, then the resulting mixture was stirred at ambient temperature for 60 h. The residue was purified by column chromatography to afford the corresponding product.

Supplementary Figure 12. Control experiments. alkenyl-Bpin 96 and HBdan was exposed under the standard racemic reaction conditions.

A tube was charged with $Co(acac)_2$ (6 mol%) and Xantphos (6 mol%) under N₂ atmosphere, then cyclohexane (1.0 mL), HBdan (0.24 mmol), NEt₃ (3.0 equiv) and **97** (0.2 mmol) were added subsequently at room temperature in one pot, then the resulting mixture was stirred at ambient temperature for 24 h. The crude mixture was detected by GC-MS.

6)

Supplementary Figure 13. Control experiments. deuterium experiment.

To a 25 mL Schlenk tube, was added gem-diborylalkanes **59** (0.2 mmol, 1.0 equiv) followed by 0.4 mmol of Cs_2CO_3 (2 equiv) under air. Then CD_3OD (0.5 mL) was added at rt and the reaction mixture was stirred at 70 °C for 4 h. When over, the reaction mixture was extracted with EA/H₂O. Subsequently, the organic layers

were dried with Na_2SO_4 , and concentrated to dryness. The combined filtrates were concentrated and crude product was purified by flash column chromatography using PE/EtOAc = 100/1 as the eluent to give the corresponding product **97** as a colorless oil¹.

3.2. ³¹P NMR Studies

Supplementary Figure 14. ³¹P NMR Studies. ³¹P NMR spectra along with different reaction times. We monitored the changes in yields over time, and we found that the yield of **4** gradually increased as the time went on during the reaction; on the other hand, the yields of alkenyl-Bdan **94** increased at the first 2 h and decreased gradually after that. These results validated the intermediacy of alkenyl-Bdan species and the first hydroboration should precede with HBdan and the second hydroboration should be with HBpin in this catalytic process. This is further supported by ³¹P NMR analysis of the hydroboration cycle: When we use chiral standard conditions, free Walphos still exited after 5 mins, as time went by, the typical peaks of the free Walphos disappeared while new peaks at $\delta = -7.46$ ppm and $\delta = -31.9$ ppm showed up, which suggested that the ligand started to function with copper salt to form a new complex in the solution. In order to understand the type of complex, we further carried out several control experiments by stepwise addition of copper salt as well as PMHS and HBdan into the solution of Walphos, we found that the ligand started to function with copper salt to form a new complex in the solution.

3.3 Crystal Data of 4, 59 and 89^b

Crystallographic data for compound **4** (CCDC-2039502) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk).

Supplementary Figure 15. Crystal structure of compound 4

Bond precision:	= 0.0000 A	Wavelength=1.54178		
Cell: Temperature:	a=10.0572(15) alpha=90 100 K	b=10.3891(16) c=12.520(2) beta=105.820(17) gamma=90		
Volume Space group Hall group	Calculated 1258.6(4) P 21/m -P 2yb	Reported 1258.6(4) P 1 21/m 1 -P 2yb		
Moiety formula	C26 H32 B2 N2 O2	C24.39 H30.66 B2 N2 O2, 0 27(C6 H5)		
Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	C26 H32 B2 N2 O2 426.16 1.125 2 0.540 456.0 457.22 11,12,14 2344 0.801,0.841 0.801	C26 H32 B2 N2 O2 426.15 1.124 2 0.540 456.0 11,12,14 2338 0.703,0.753		
Correction metho AbsCorr = MULTI-	od= # Reported T I -SCAN	imits: Tmin=0.703 Tmax=0.753		
Data completenes	ss= 0.997	Theta(max) = 66.412		
R(reflections)=	0.0695(2059)	wR2(reflections)= 0.1801(2338)		
S = 1.055	Npar=	298		

Crystallographic data for compound **59** (CCDC-2107254) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk).

Supplementary Figure 16. Crystal structure of compound 59

Bond precision:	C-C = 0.0086 A	Wavelength=1.54178		
Cell:	a=9.9834(5) alpha=90	b=10.1836(5) beta=105.559(2)	c=12.3364(6) gamma=90	
Temperature:	100 K			
	Calculated	Report	ed	
Volume	1208.24(10)	1208.2	24(10)	
Space group	P 21	P 1 23	L 1	
Hall group	P 2yb	P 2yb		
Moiety formula	C26 H32 B2 N2 O2	C26 H	32 B2 N2 O2	
Sum formula	C26 H32 B2 N2 O2	C26 H	32 B2 N2 O2	
Mr	426.16	426.15	5	
Dx,g cm-3	1.171	1.171		
Z	2	2		
Mu (mm-1)	0.562	0.562		
F000	456.0	456.0		
F000'	457.22			
h,k,lmax	12,12,14	12,12,	.14	
Nref	4454[2362]	4404		
Tmin,Tmax	0.856,0.889	0.673	0.753	
Tmin'	0.840			
Correction metho	d= # Reported T	Limits: Tmin=0.67	3 Tmax=0.753	
mbbeoll - nobil	born			
Data completenes	s= 1.86/0.99	Theta(max) = 68	.526	
R(reflections)=	0.0902(4314)		wR2(reflections) 0.2909(4404)	
S = 1.488	Npar=	306		

Crystallographic data for compound **89**^b (CCDC- 2118336) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: <u>deposit@ccdc.cam.ac.uk</u>).

Supplementary Figure 17. Crystal structure of compound 89

Bond precision:	C-C = 0.0031 A	Wavelength=	=1.54178
Cell:	a=6.4367(3) alpha=90	b=11.4196(5) c: beta=90 g	=30.5689(15) amma=90
Temperature:	100 K		
	Calculated	Reported	
Volume	2246.95(18)	2246.95(18	3)
Space group	P 21 21 21	P 21 21 21	L
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C25 H30 B2 N2 O2	C25 H30 B2	2 N2 O2
Sum formula	C25 H30 B2 N2 O2	C25 H30 B2	2 N2 O2
Mr	412.13	412.13	
Dx,g cm-3	1.218	1.218	
Z	4	4	
Mu (mm-1)	0.588	0.588	
F000	880.0	880.0	
F000'	882.38		
h,k,lmax	7,13,36	7,13,36	
Nref	4125[2400]	4120	
Tmin,Tmax	0.881,0.910	0.872,1.00	00
Tmin'	0.863		
Correction metho AbsCorr = MULTI-	od= # Reported T Li SCAN	mits: Tmin=0.872 Tma	ax=1.000
Data completenes	s= 1.72/1.00	Theta(max) = 68.383	3
R(reflections)=	0.0360(3970)		wR2(reflections) = 0.0890(4120)
S = 1.083	Npar= 28	35	

3.4 Characterization Data

2-(4-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8de][1,3,2]diazaborinine (4)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (64.7 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.21 – 7.18 (m, 3H), 7.11 – 7.07 (m, 2H), 6.99 (d, J = 8.3 Hz, 2H), 6.27 (d, J = 7.3 Hz, 2H), 5.76 (s, 2H), 2.65 (t, J = 6.9 Hz, 2H), 1.71 – 1.66 (m, 2H), 1.62 – 1.56 (m, 2H), 1.25 (d, J = 6.0 Hz, 12H), 0.78 (dd, J = 8.2, 6.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 142.6, 141.3, 136.3, 128.4, 128.3, 127.56, 125.7 119.5, 117.3, 105.5, 83.2, 36.0, 34.0, 26.0, 25.1, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.18, 33.79. HRMS (ESI, m/z) calcd for C₂₆H₃₃B₂N₂O₃ [M+H] ⁺: 427.2723; found: 427.2726.

2-(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (5)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (51.9 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.21 (dd, J = 13.2, 7.0 Hz, 3H), 7.10 (t, J = 7.8 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.3 Hz, 2H), 5.80 (s, 2H), 2.78 – 2.70 (m, 1H), 2.64 – 2.60 (m, 1H), 2.03 – 1.94 (m, 1H), 1.88 – 1.83 (m, 1H), 1.28 (s, 6H), 1.27 (s, 6H), 0.84 (dd, J = 9.8, 5.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 142.6, 141.3, 136.3, 128.5, 128.33 (s), 127.6, 125.8, 119.5, 117.3, 105.5, 83.3, 38.5, 28.6, 25.1, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.23, 34.02. HRMS (ESI, m/z) calcd for C₂₅H₃₁B₂N₂O₂ [M+H] ⁺: 413.2566; found: 413.2561.

2-(2-cyclopropyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (6)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (33.3 mg, 46%). ¹H NMR (500 MHz, CDCl₃) δ 7.08 (t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.80 (s, 2H), 1.57 – 1.52 (m, 1H), 1.47 – 1.43 (m, 1H), 1.25 (d, *J* = 4.6 Hz, 12H), 0.90 (dd, *J* = 9.5, 6.1 Hz, 1H), 0.76 (dt, *J* = 12.3, 5.1 Hz, 1H), 0.41 (d, *J* = 7.9 Hz, 2H), 0.13 (dd, *J* = 8.8, 3.9 Hz, 1H), 0.07 – 0.04 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3,

136.3, 127.5, 119.5, 117.2, 105.4, 83.2, 31.6, 25.0, 24.8, 24.6, 13.4, 5.1, 4.8. ¹¹**B NMR** (160 MHz, CDCl₃) δ 34.58, 34.03. **HRMS** (ESI, m/z) calcd for C₂₁H₂₉B₂N₂O₂ [M+H] ⁺: 363.2410; found: 363.2401.

2-(3-cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (7)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (51.0 mg, 51%). ¹H NMR (500 MHz, CDCl₃) δ 7.12 – 7.07 (m, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.2 Hz, 2H), 5.80 (s, 2H), 1.75 – 1.63 (m, 8H), 1.56 (d, *J* = 4.3 Hz, 2H), 1.24 (s, 12H), 1.18 (dd, *J* = 18.8, 6.8 Hz, 3H), 0.89 (d, *J* = 11.3 Hz, 2H), 0.73 – 0.69 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 40.3, 37.8, 33.5, 33.4, 33.3, 26.8, 26.4, 25.1, 24.9, 24.5, 24.5, 23.7. ¹¹B NMR (160 MHz, CDCl₃) δ 35.43, 34.63. HRMS (ESI, m/z) calcd for C₂₅H₃₇B₂N₂O₂ [M+H] ⁺: 419.3036; found: 419.3032.

2-(2-cyclopentyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8de][1,3,2]diazaborinine (8)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (45.3 mg, 58%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.09 (t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.3 Hz, 2H), 5.78 (s, 2H), 1.79 – 1.69 (m, 4H), 1.61 – 1.56 (m, 3H), 1.52 – 1.48 (m, 2H), 1.24 (d, *J* = 5.7 Hz, 12H), 1.09 (dt, *J* = 10.7, 3.3 Hz, 2H), 0.83 (dd, *J* = 9.1, 6.2 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.2, 82.9, 42.4, 32.8, 32.6, 32.52, 32.50, 25.21, 25.18, 25.0, 24.8, 24.60, 24.57. ¹¹**B NMR** (160 MHz, CDCl₃) δ 34.38, 33.90. **HRMS** (ESI, m/z) calcd for C₂₃H₃₂B₂N₂NaO₂ [M+Na] ⁺: 413.2542; found: 413.2534.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (9)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (52.5 mg, 72%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (t, J = 7.8 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.3 Hz, 2H), 5.80 (s, 2H), 1.67 – 1.59 (m, 1H), 1.54

(dd, J = 13.9, 7.4 Hz, 1H), 1.37 - 1.31 (m, 4H), 1.25 (d, J = 6.1 Hz, 12H), 0.91 (t, J = 6.9 Hz, 3H), 0.75 (dd, J = 9.3, 6.3 Hz, 1H). ¹³C **NMR** (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 34.9, 34.6, 26.1, 25.0, 24.9, 24.5, 24.5, 22.8, 14.1. ¹¹B **NMR** (160 MHz, CDCl₃) δ 34.66, 34.34. **HRMS** (ESI, m/z) calcd for C₂₁H₃₁B₂N₂O₂ [M+H] ⁺: 365.2566; found: 365.2571.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (10)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (61.2 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.07 (m, 2H), 6.98 (d, *J* = 7.3 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.78 (s, 2H), 1.54 (d, *J* = 7.3 Hz, 2H), 1.24 (s, 8H), 1.23 (s, 6H), 1.22 (s, 6H), 0.87 (d, *J* = 3.2 Hz, 3H), 0.74 – 0.72 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 82.9, 32.6, 32.4, 31.8, 29.4, 29.3, 26.4, 25.7, 25.0, 24.9, 24.53, 24.50, 22.7, 22.6, 14.1. ¹¹B NMR (160 MHz, CDCl₃) δ 34.88, 34.11. HRMS (ESI, m/z) calcd for C₂₃H₃₅B₂N₂O₂ [M+H] ⁺: 393.2879; found: 393.2874.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (11)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (61.8 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.06 (m, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.28 (d, J = 7.3 Hz, 2H), 5.79 (s, 2H), 1.57 – 1.41 (m, 2H), 1.27 (dd, J = 7.6, 2.5 Hz, 10H), 1.25 (s, 6H), 1.24 (s, 6H), 0.88 (t, J = 6.8 Hz, 3H), 0.75 – 0.72 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 32.4, 31.9, 29.7, 29.2, 26.4, 25.0, 24.9, 24.5, 22.7, 14.1. ¹¹B NMR (160 MHz, CDCl₃) δ 34.23, 33.23. HRMS (ESI, m/z) calcd for C₂₄H₃₆B₂N₂NaO₂ [M+Na] ⁺: 429.2855; found: 429.2859.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (12)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (57.2 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 (t, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.30 (d, *J* = 7.3 Hz, 2H), 5.81 (s, 2H), 1.67 – 1.61 (m, 1H), 1.55

- 1.50 (m, 1H), 1.34 - 1.27 (m, 12H), 1.26 (d, J = 6.2 Hz, 12H), 0.90 (t, J = 6.8 Hz, 3H), 0.76 (dd, J = 9.4, 6.0 Hz, 1H). ¹³C **NMR** (126 MHz, CDCl₃) δ 141.4, 136.3, 127.6, 119.5, 117.2, 105.4, 83.2, 32.4, 31.9, 29.7, 29.5, 29.3, 26.4, 25.0, 24.5, 22.7, 14.1. ¹¹B **NMR** (160 MHz, CDCl₃) δ 34.45, 34.19. **HRMS** (ESI, m/z) calcd for C₂₅H₃₉B₂N₂O₂ [M+H] +: 421.3192; found: 421.3195.

2-(5-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (13)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (48.6 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.2 Hz, 2H), 5.80 (s, 2H), 1.64 – 1.60 (m, 1H), 1.53 (td, *J* = 8.1, 7.4, 4.5 Hz, 2H), 1.37 (qd, *J* = 8.3, 5.5 Hz, 4H), 1.26 (s, 3H), 1.25 (s, 5H), 1.24 (s, 4H), 1.23 (s, 3H), 0.88 (d, *J* = 6.6 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.76 (dt, *J* = 10.1, 5.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 39.1, 30.1, 27.8, 26.6, 25.0, 24.9, 24.5, 24.5, 22.7, 22.6. ¹¹B NMR (160 MHz, CDCl₃) δ 34.33, 33.33. HRMS (ESI, m/z) calcd for C₂₃H₃₄B₂N₂NaO₂ [M+H] +: 415.2699; found: 415.2699.

2-(3,3-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (14)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (42.4 mg, 56%). ¹H NMR (500 MHz, CDCl₃) δ 7.11 – 7.06 (m, 2H), 7.00 (dd, J = 8.3, 1.8 Hz, 2H), 6.26 (d, J = 7.2 Hz, 2H), 5.60 (d, J = 18.6 Hz, 2H), 1.35 – 1.27 (m, 12H), 1.26 (s, 2H), 1.24 – 1.17 (m, 9H), 0.91 – 0.86 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 127.5, 117.2, 105.4, 83.2, 82.9, 40.3, 39.23 31.8, 31.6, 29.3, 29.2, 24.9, 24.8, 24.7, 24.6. ¹¹B NMR (160 MHz, CDCl₃) δ 34.35, 34.06. HRMS (ESI, m/z) calcd for C₂₂H₃₃B₂N₂O₂ [M+H] ⁺: 379.2723; found: 379.2723.

2-(6-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (15)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (64.1 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 7.08 (t, *J* = 7.8 Hz, 2H), 6.98 (d, *J* = 8.2 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.79 (s, 2H), 3.59 (d, *J* = 6.6 Hz, 2H),

1.55 – 1.48 (m, 4H), 1.35 (dd, J = 12.2, 6.6 Hz, 4H), 1.25 (s, 6H), 1.23 (s, 6H), 0.89 (s, 9H), 0.75 – 0.71 (m, 1H), 0.04 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 136.3, 127.5, 119.5, 117.2, 105.4, 83.2, 63.3, 32.8, 32.2, 26.4, 26.0, 25.9, 25.0, 24.9, 24.5, 24.52, 24.50, 18.4, -5.2. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 33.51. HRMS (ESI, m/z) calcd for C₂₈H₄₇B₂N₂O₃Si [M+H] +: 509.3537; found: 509.3530.

2-(4-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (16)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (50.0 mg, 52%) ¹H NMR (500 MHz, CDCl₃) δ 7.11 (dd, J = 8.2, 7.3 Hz, 2H), 7.01 (dd, J = 8.3, 1.0 Hz, 2H), 6.30 (dd, J = 7.4, 1.0 Hz, 2H), 5.86 (s, 2H), 3.68 – 3.64 (m, 2H), 1.66 (dd, J = 13.6, 5.3 Hz, 2H), 1.63 – 1.56 (m, 2H), 1.26 (d, J = 5.3 Hz, 12H), 0.94 (s, 9H), 0.78 (dd, J = 8.7, 5.6 Hz, 1H), 0.09 (d, J = 1.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 136.3, 127.5, 119.5, 117.2, 105.4, 83.2, 82.9, 63.2, 35.4, 25.1, 24.9, 24.54, 24.52, 22.4, 18.4, -5.2. ¹¹B NMR (160 MHz, CDCl₃) δ 34.08, 33.91. HRMS (ESI, m/z) calcd for C₂₆H₄₃B₂N₂O₃Si [M+H] ⁺: 481.3224; found: 481.3221.

tert-butyl 4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-2-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)ethyl)piperidine-1-carboxylate (17)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (58.6 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 7.13 – 7.07 (m, 2H), 7.04 – 6.96 (m, 2H), 6.33 – 6.27 (m, 2H), 5.76 (s, 2H), 4.08 (s, 4H), 2.65 (s, 4H), 1.45 (d, *J* = 3.5 Hz, 9H), 1.24 (s, 12H), 1.06 (d, *J* = 12.2 Hz, 2H), 0.85 (s, 1H), 0.81 – 0.71 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 141.2, 136.3, 117.4, 105.5, 83.3, 79.3, 38.0, 33.0, 28.5, 25.0, 24.8, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 33.33. HRMS (ESI, m/z) calcd for C₂₁H₃₁B₂N₂O₂ [M+H] +: 365.2566; found: 365.2571.

2-(2-(cyclohex-1-en-1-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (18)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (51.5 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.08 (m, 2H), 6.98 (d, *J* = 4.8 Hz, 2H), 6.31 (d, *J* = 8.2 Hz, 2H), 6.05 (s, 2H), 6.00 (s, 1H), 2.26 (s, 1H), 2.19 (s, 1H), 1.67 (t, *J* = 6.1 Hz, 2H), 1.62 – 1.60 (m, 2H), 1.36 (s, 12H), 1.24 (d, *J* = 4.6 Hz, 4H), 0.90 – 0.80 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 136.4, 134.3, 127.6, 117.2, 105.6, 83.8, 26.5, 26.2, 25.0, 24.8, 24.60, 22.4, 22.1. ¹¹B NMR (160 MHz, CDCl₃) δ 32.80, 31.92. HRMS (ESI, m/z) calcd for C₂₄H₃₃B₂N₂O₂ [M+H] ⁺: 403.2723; found: 403.2725.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl propionate (19)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (53.2 mg, 61%). ¹H NMR (500 MHz, CDCl₃) δ 7.11 – 7.06 (m, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.3 Hz, 2H), 5.79 (s, 2H), 4.06 (dt, J = 9.5, 5.2 Hz, 2H), 2.33 – 2.31 (m, 1H), 2.31 – 2.28 (m, 1H), 1.61 – 1.51 (m, 2H), 1.48 – 1.37 (m, 2H), 1.36 – 1.26 (m, 2H), 1.25 (s, 6H), 1.23 (s, 6H), 1.12 (t, J = 7.6 Hz, 3H), 0.75 (dd, J = 9.3, 6.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 141.3, 136.3, 127.5, 119.5, 117.3, 105.5, 83.2, 64.5, 64.3, 28.6, 28.55, 27.6, 26.0, 25.0, 24.9, 24.5, 9.2. ¹¹B NMR (160 MHz, CDCl₃) δ 34.34, 34.09. HRMS (ESI, m/z) calcd for C₂₄H₃₅B₂N₂O₄ [M+H] ⁺: 437.2777; found: 437.2774.

2-(4-((tetrahydro-2H-pyran-2-yl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (20)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (54.0 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (t, J = 7.8 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.29 (dd, J = 7.3, 1.0 Hz, 2H), 5.87 (d, J = 3.9 Hz, 2H), 4.59 (td, J = 4.5, 2.9 Hz, 1H), 3.91 – 3.86 (m, 1H), 3.81 – 3.75 (m, 1H), 3.53 – 3.49 (m, 1H), 3.43 (dd, J = 9.7, 4.8 Hz, 1H), 1.88 – 1.83 (m, 1H), 1.77 – 1.59 (m, 7H), 1.54 (d, J = 6.3 Hz, 2H), 1.25 (d, J = 5.0 Hz, 12H), 0.80 – 0.76 (m, 1H). ¹³C NMR (126 MHz, CDCl3) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 99.0, 83.2, 67.57, 67.55, 62.49, 62.47, 32.2, 32.1, 30.8, 25.5, 25.0, 24.9, 24.5, 22.9, 22.8, 19.81, 19.78. ¹¹B NMR (160 MHz, CDCl₃) δ 33.89, 33.50. HRMS (ESI, m/z) calcd for C₂₅H₃₇B₂N₂O₄ [M+H] +: 451.2934; found: 451.2937.

2-(3,3-diethoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (21)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (44.1 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.06 (m, 2H), 6.98 (d, *J* = 8.3 Hz, 2H), 6.29 – 6.25 (m, 2H), 5.92 (d, *J* = 31.5 Hz, 2H), 3.57 – 3.36 (m, 2H), 1.97 – 1.87 (m, 0H), 1.82 (ddt, *J* = 13.4, 9.3, 6.6 Hz, 0H), 1.25 (d, *J* = 4.0 Hz, 6H), 1.21 (dt, *J* = 7.0, 3.6 Hz, 3H), 0.89 – 0.84 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.37, 141.35, 136.3, 127.5, 117.2, 105.4, 104.2, 61.6, 61.4, 30.2, 26.4, 25.07, 25.03, 24.54, 24.52, 15.40, 15.37. ¹¹B NMR (160 MHz, CDCl₃) δ 33.51, 32.45. HRMS (ESI, m/z) calcd for C₂₃H₃₄B₂N₂NaO₄ [M+Na] ⁺: 447.2597; found: 447.2593.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pentyl (2E,4E)-hexa-2,4-dienoate (22)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (45.5 mg, 48%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.08 (dd, *J* = 8.3, 7.3 Hz, 2H), 6.99 (dd, *J* = 8.3, 1.0 Hz, 2H), 6.29 (dd, *J* = 7.3, 1.0 Hz, 2H), 5.79 (s, 2H), 5.60 – 5.27 (m, 4H), 4.07 (dt, *J* = 6.6, 3.4 Hz, 2H), 2.35 – 2.32 (m, 2H), 2.30 – 2.27 (m, 2H), 1.63 (d, *J* = 1.2 Hz, 3H), 1.45 – 1.36 (m, 2H), 1.26 (s, 3H), 1.25 (s, 6H), 1.23 (s, 3H), 0.74 (dd, *J* = 9.3, 6.2 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 173.4, 141.3, 136.3, 129.2, 127.6, 126.1, 117.3, 105.5, 83.2, 64.3, 34.4, 28.8, 28.6, 27.9, 26.0, 25.0, 24.8, 24.5, 17.9. ¹¹**B NMR** (160 MHz, CDCl₃) δ 34.45, 33.68. **HRMS** (ESI, m/z) calcd for C₂₇H₃₇B₂N₂O₄ [M+H] ⁺: 475.2934; found: 475.2929.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pentyl 2-propylpentanoate (23)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (64.8 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 7.08 (t, *J* = 7.8 Hz, 2H), 6.98 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.3 Hz, 2H), 5.79 (s, 2H), 4.07 – 4.03 (m, 2H), 2.35 – 2.32 (m, 1H), 1.66 (d, *J* = 7.1 Hz, 2H), 1.57 (dd, *J* = 10.5, 4.9 Hz, 4H), 1.41 – 1.36 (m, 4H), 1.27 (d, *J* = 7.7 Hz, 4H), 1.24 (s, 3H), 1.23 (d, *J* = 2.4 Hz, 6H), 1.22 (s, 3H), 0.88 (d, *J* = 5.4 Hz, 6H), 0.75 – 0.72 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 141.3, 136.3, 127.5, 119.5, 117.3, 105.5, 83.2, 83.0, 64.0, 45.4,

34.7, 28.9, 28.8, 28.6, 26.1, 25.0, 24.9, 24.5, 20.6, 14.0. ¹¹**B** NMR (160 MHz, CDCl₃) δ 34.80, 34.45. **HRMS** (ESI, m/z) calcd for C₂₉H₄₅B₂N₂O₄ [M+H] +: 507.3560; found: 507.3559.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 1-phenylcyclopentane-1-carboxylate (24)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (46.4 mg, 42%).¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 7.8 Hz, 3H), 7.25 (s, 1H), 7.17 (d, *J* = 7.4 Hz, 1H), 7.07 (t, *J* = 7.8 Hz, 2H), 6.97 (d, *J* = 8.3 Hz, 2H), 6.27 (d, *J* = 7.3 Hz, 2H), 5.74 (s, 2H), 3.98 (d, *J* = 5.3 Hz, 2H), 2.62 (dd, *J* = 12.6, 6.2 Hz, 2H), 1.85 (d, *J* = 11.0 Hz, 2H), 1.70 – 1.65 (m, 4H), 1.57 – 1.49 (m, 4H), 1.25 (s, 2H), 1.21 (d, *J* = 7.6 Hz, 12H), 0.65 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 143.5, 141.3, 136.3, 128.2, 127.5, 126.9, 126.6, 117.3, 105.5, 83.2, 64.8, 59.2, 36.1, 28.7, 28.5, 26.0, 24.99, 24.52, 23.6. ¹¹B NMR (160 MHz, CDCl₃) δ 35.15, 34.45. HRMS (ESI, m/z) calcd for C₃₃H₄₃B₂N₂O₄ [M+H] ⁺: 553.3403; found: 553.3398.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2R)-2-phenylpropanoate (25)

The reaction was performed following the Condition A. The residue was purified by flash column chromatograph (PE:EA=30:1) to give the product as a yellow oil liquid (60.4 mg, 59%). ¹H NMR (500 MHz, CDCl₃) δ 7.34 − 7.30 (m, 3H), 7.24 (ddt, J = 8.4, 5.9, 3.4 Hz, 2H), 7.10 (t, J = 7.8 Hz, 2H), 7.00 (d, J = 8.3 Hz, 2H), 6.30 (d, J = 7.2 Hz, 2H), 5.79 (s, 2H), 4.08 (t, J = 7.0 Hz, 2H), 3.70 (d, J = 7.2 Hz, 1H), 1.61 (d, J = 7.3 Hz, 2H), 1.49 (d, J = 7.2 Hz, 3H), 1.36 − 1.27 (m, 4H), 1.25 (s, 6H), 1.23 (s, 6H), 0.71 (dd, J = 9.5, 6.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 141.3, 140.7, 136.3, 128.6, 127.6, 127.5, 127.1, 119.5, 117.3, 105.5, 83.2, 83.0, 64.7, 45.6, 28.7, 28.5, 26.0, 25.98, 25.0, 24.9, 24.54, 24.52, 18.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.44, 33.92. HRMS (ESI, m/z) calcd for C₃₀H₃₉B₂N₂O₄ [M+H] ⁺: 513.3090; found: 513.3094. HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 90/10, 0.5 mL/min, $\lambda = 280$ nm, t_R (major) = 14.5 min, t_R (minor) = 16.2 min, dr ≈ 1:1.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl benzoate (26)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (63.9 mg, 66%). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 1.4 Hz, 1H), 8.05 (d, *J* = 1.7 Hz, 1H), 7.55 – 7.52 (m, 1H), 7.41 (t, *J* = 7.8 Hz, 2H), 7.10 (t, *J* = 7.8 Hz, 2H), 7.01 (d, *J* = 8.3 Hz, 2H), 6.30 (d, *J* = 7.3 Hz, 2H), 5.84 (s, 2H), 4.35 (t, *J* = 6.6 Hz, 2H), 1.82 (t, *J* = 7.0 Hz, 2H), 1.67 – 1.47 (m, 4H), 1.25 (s, 6H), 1.23 (s, 6H), 0.80 (dd, *J* = 9.4, 5.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 141.3, 136.3, 132.8, 130.5, 129.6, 128.3, 127.6, 119.6, 117.3, 105.5, 83.2, 64.9, 28.9, 28.7, 26.1, 25.0, 24.87, 24.54, 24.51. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 32.98. HRMS (ESI, m/z) calcd for C₂₈H₃₅B₂N₂O₄ [M+H] ⁺:485.2777; found: 485.2773.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2S)-2-(4-isobutylphenyl)propanoate (27)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (67.1 mg, 59%). ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 8.0 Hz, 2H), 7.08 (dd, *J* = 9.3, 1.8 Hz, 4H), 7.00 (d, *J* = 7.7 Hz, 2H), 6.30 (d, *J* = 7.3 Hz, 2H), 5.78 (s, 2H), 4.06 (dd, *J* = 11.4, 4.7 Hz, 2H), 3.67 (d, *J* = 7.1 Hz, 1H), 2.43 (d, *J* = 7.2 Hz, 2H), 1.83 (dd, *J* = 11.1, 4.4 Hz, 1H), 1.63 – 1.54 (m, 4H), 1.48 – 1.46 (m, 3H), 1.36 – 1.31 (m, 2H), 1.24 (d, *J* = 7.3 Hz, 12H), 0.90 (d, *J* = 1.0 Hz, 6H), 0.71 (dd, *J* = 8.0, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 141.3, 140.4, 137.8, 136.3, 129.3, 127.5, 127.1, 119.5, 117.3, 105.5, 83.2, 83.0, 64.6, 45.2, 45.0, 30.2, 28.7, 28.5, 26.0, 25.0, 24.9, 24.5, 24.5 22.4, 18.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.62, 34.09. HRMS (ESI, m/z) calcd for C₃₄H₄₇B₂N₂O₄ [M+H] ⁺: 569.3716; found: 569.3713. HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 90/10, 1.0 mL/min, λ = 280 nm, t_R (minor) = 5.6 min, t_R (major) = 6.4 min, dr ≈ 1:1.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (E)-2-methyl-3-phenylacrylate (28)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (61.9 mg, 59%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.69

(s, 1H), 7.41 – 7.37 (m, 4H), 7.32 (q, J = 5.2, 4.4 Hz, 1H), 7.08 (t, J = 7.7 Hz, 2H), 7.00 (d, J = 8.3 Hz, 2H), 6.29 (d, J = 7.2 Hz, 2H), 5.81 (s, 2H), 4.24 (td, J = 6.6, 1.9 Hz, 2H), 2.11 (s, 3H), 1.76 (q, J = 7.1 Hz, 2H), 1.65 – 1.43 (m, 4H), 1.24 (d, J = 6.7 Hz, 12H), 0.90 (t, J = 6.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 141.3, 138.7, 136.3, 135.96, 129.65, 128.36, 128.25, 127.56, 119.52, 117.30, 105.50, 83.25, 64.93, 28.87, 28.77, 26.12, 25.04, 24.51, 14.08. ¹¹B NMR (160 MHz, CDCl₃) δ 33.24, 33.15. HRMS (ESI, m/z) calcd for C₃₁H₃₉B₂N₂O₄ [M+H] +: 525.3090; found: 525.3092.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pentyl (1R,2S,4R)-bicyclo[2.2.1]hept-5-ene-2-carboxylate (29)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (63.0 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (t, *J* = 7.7 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.2 Hz, 2H), 6.12 (dd, *J* = 5.7, 3.1 Hz, 1H), 6.09 – 6.06 (m, 1H), 5.79 (s, 2H), 4.11 – 4.07 (m, 2H), 3.02 (s, 1H), 2.89 (s, 1H), 2.22 – 2.19 (m, 1H), 1.93 – 1.89 (m, 1H), 1.67 (dd, *J* = 12.3, 5.1 Hz, 4H), 1.50 (s, 1H), 1.39 – 1.31 (m, 4H), 1.24 (d, *J* = 6.6 Hz, 12H), 0.75 (dd, *J* = 9.4, 6.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 141.3, 136.3, 127.5, 117.3, 105.5, 83.2, 64.2, 46.1, 40.5, 40.1, 37.0, 31.9, 29.1, 28.9, 28.64, 28.62, 26.1, 25.02, 25.01, 24.9, 24.8, 24.53, 24.51. ¹¹B NMR (160 MHz, CDCl₃) δ 35.22, 34.45. HRMS (ESI, m/z) calcd for C₂₉H₃₈¹⁰B₂KN₂O₄ [M+K] +: 537.2722; found: 537.2725. HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 97/3, 0.5 mL/min, λ = 280 nm, t_R (major) = 19.4 min, t_R (minor) = 21.0 min, dr ≈ 1:1.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pentyl 2,3-dihydrobenzo[b][1,4]dioxine-2-carboxylate (30)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (66.6 mg, 59%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.09 (t, *J* = 7.7 Hz, 2H), 6.99 (d, *J* = 7.6 Hz, 3H), 6.86 (d, *J* = 1.6 Hz, 3H), 6.30 (d, *J* = 7.3 Hz, 2H), 5.79 (s, 2H), 4.81 (dd, *J* = 3.9, 2.8 Hz, 1H), 4.39 – 4.32 (m, 2H), 4.22 (dt, *J* = 13.8, 5.0 Hz, 2H), 1.69 – 1.65 (m, 2H), 1.60 (d, *J* = 5.7 Hz, 1H), 1.56 – 1.49 (m, 1H), 1.41 – 1.33 (m, 2H), 1.24 (d, *J* = 7.2 Hz, 12H), 0.72 (dd, *J* = 9.0, 6.3 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.1, 143.0, 142.4, 141.3, 136.3, 127.6, 126.2, 122.2, 121.8,

119.8, 119.5, 117.4, 117.34, 117.28, 111.6, 105.5, 83.3, 83.0, 72.1, 65.9, 65.9, 65.0, 31.6, 28.6, 28.4, 28.3, 26.0, 25.9, 25.0, 24.9, 24.5, 22.7, 14.1. ¹¹**B NMR** (160 MHz, CDCl₃) δ 33.33, 32.34. **HRMS** (ESI, m/z) calcd for C₃₀H₃₆B₂N₂NaO₆ [M+Na] ⁺: 565.2652; found: 565.2644.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 6-(3-(bicyclo[3.3.1]nonan-1-yl)-4-methoxyphenyl)-2-naphthoate (31)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (73.2 mg, 48%). ¹**H NMR** (500 MHz, CDCl₃) δ 8.63 (d, *J* = 1.7 Hz, 1H), 8.09 (dd, *J* = 8.6, 1.8 Hz, 1H), 8.08 – 7.73 (m, 5H), 7.64 (d, *J* = 2.4 Hz, 1H), 7.56 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.10 (dd, *J* = 8.3, 7.3 Hz, 2H), 7.02 – 7.02 (m, 1H), 7.01 – 7.00 (m, 1H), 6.30 (dd, *J* = 7.2, 1.0 Hz, 2H), 5.85 (s, 2H), 4.44 (td, *J* = 6.5, 1.5 Hz, 2H), 3.92 (s, 3H), 2.23 (d, *J* = 3.0 Hz, 6H), 2.16 – 2.12 (m, 3H), 1.89 (t, *J* = 7.0 Hz, 2H), 1.84 (s, 6H), 1.78 – 1.75 (m, 1H), 1.68 – 1.60 (m, 2H), 1.26 (d, *J* = 7.3 Hz, 12H), 0.94 – 0.90 (m, 1H), 0.84 (dd, *J* = 9.5, 5.4 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 166.9, 159.0, 141.3, 139.0, 136.3, 136.0, 132.6, 131.3, 130.8, 129.7, 128.2, 127.6, 127.3, 126.5, 126.0, 125.8, 125.6, 124.7, 119.6, 117.3, 112.2, 105.6, 83.3, 65.1, 55.2, 40.7, 37.3, 37.2, 31.6, 29.2, 29.0, 28.9, 26.2, 25.1, 24.5, 22.7, 14.2. ¹¹**B NMR** (160 MHz, CDCl₃) δ 36.03, 35.68. **HRMS** (ESI, m/z) calcd for C₄₈H₅₇B₂N₂O₅ [M+H] ⁺: 763.4448; found: 763.4443.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2S)-2-(6-methoxynaphthalen-2-yl)propanoate (32)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (68.7 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.67 (m, 3H), 7.42 (dd, J = 8.5, 1.9 Hz, 1H), 7.17 – 7.12 (m, 2H), 7.11 – 7.10 (m, 2H), 7.02 (d, J = 8.2 Hz, 2H), 6.31 (d, J = 7.3 Hz, 2H), 5.78 (s, 2H), 4.11 (t, J = 6.8 Hz, 2H), 3.90 (d, J = 5.2 Hz, 3H), 3.85 (d, J = 7.1 Hz, 1H), 1.63 (d, J = 7.4 Hz, 2H), 1.59 (d, J = 7.1 Hz, 3H), 1.50 (ddt, J = 16.8, 12.9, 6.9 Hz, 2H), 1.32 – 1.29 (m, 2H), 1.25 (s, 6H), 1.23 (s, 6H), 0.85 (dd, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.8, 157.6, 141.3, 136.3, 135.9, 133.7, 129.3, 129.0, 127.6, 127.1, 126.3, 125.9, 119.6, 119.0, 117.3, 105.5, 83.2, 64.7, 55.3, 45.6, 29.8,

28.7, 28.5, 25.97, 25.95, 25.0, 24.9, 24.5, 18.5. ¹¹**B** NMR (160 MHz, CDCl₃) δ 34.62, 33.51. **HRMS** (ESI, m/z) calcd for C₃₅H₄₃B₂N₂O₅ [M+H] +:593.3353; found: 593.3346. **HPLC analysis**: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 90/10, 0.5 mL/min, λ = 250 nm, t_R (minor) = 9.4 min, t_R (major) = 11.8 min, dr = 0.94:1.

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 4-cyclohexylbenzoate (33)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (77.0 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.95 (s, 1H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.11 – 7.07 (m, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.3 Hz, 2H), 5.82 (s, 2H), 4.32 (t, *J* = 6.5 Hz, 2H), 2.56 – 2.52 (m, 1H), 1.87 – 1.85 (m, 4H), 1.79 (d, *J* = 6.9 Hz, 2H), 1.76 (t, *J* = 3.7 Hz, 2H), 1.66 – 1.58 (m, 2H), 1.57 – 1.50 (m, 2H), 1.40 (dd, *J* = 8.5, 3.7 Hz, 4H), 1.24 (s, 6H), 1.22 (s, 6H), 0.79 (ddd, *J* = 9.5, 6.2, 2.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 141.3, 129.7, 127.6, 126.8, 117.3, 105.5, 83.2, 64.7, 44.7, 34.2, 28.9, 28.8, 26.8, 26.1, 25.0, 24.9, 24.5, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.71, 33.02. HRMS (ESI, m/z) calcd for C₃₄H₄₅B₂N₂O₄ [M+H] ⁺:567.3560; found: 567.3560.

2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (34)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (45.4 mg, 57%). ¹H NMR (500 MHz, CDCl₃) δ 7.25 (s, 4H), 7.17 – 7.14 (m, 1H), 7.08 (t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.27 (d, *J* = 7.3 Hz, 2H), 5.81 (s, 2H), 2.96 (dd, *J* = 14.1, 9.6 Hz, 1H), 2.91 – 2.86 (m, 1H), 1.28 – 1.25 (m, 1H), 1.18 (s, 6H), 1.16 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 141.2, 136.3, 128.3, 128.2, 127.5, 125.7, 119.5, 117.3, 105.5, 83.4, 32.0, 24.9, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.27, 33.68. HRMS (ESI, m/z) calcd for C₂₄H₂₉B₂N₂O₂ [M+H] +: 399.2410; found: 399.2418.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (35)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (42.9 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, *J* = 7.8 Hz, 2H), 7.11 – 7.07 (m, 4H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.83 (s, 2H), 2.95 (dd, *J* = 14.2, 9.3 Hz, 1H), 2.87 (t, *J* = 4.7 Hz, 1H), 2.32 (s, 3H), 1.20-1.26 (m, 1H), 1.21 (s, 6H), 1.19 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 140.6, 136.3, 135.1, 129.0, 128.1, 127.6, 119.6, 117.3, 105.5, 83.4, 31.5, 29.7, 25.0, 24.8, 24.5, 21.0. ¹¹B NMR (160 MHz, CDCl₃) δ 34.27, 34.09. HRMS (ESI, m/z) calcd for C₂₅H₃₀B₂N₂NaO₂ [M+Na] +: 435.2386; found: 435.2381.

2-(2-(4-ethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (36)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (37.9 mg, 46%). ¹H NMR (500 MHz, CDCl₃) δ 7.14 (d, *J* = 7.9 Hz, 2H), 7.10 – 7.05 (m, 4H), 6.98 (d, *J* = 8.2 Hz, 2H), 6.26 (d, *J* = 7.3 Hz, 2H), 5.81 (s, 2H), 2.93 (dd, *J* = 14.2, 9.3 Hz, 1H), 2.84 (dd, *J* = 14.2, 6.8 Hz, 1H), 2.30 (s, 3H), 1.26 (s, 2H), 1.18 (d, *J* = 8.4 Hz, 12H), 1.15 – 1.13 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.2 (s), 140.6 (s), 135.1 (s), 128.9 (s), 128.0 (s), 127.5 (s), 117.3 (s), 105.5 (s), 83.3 (s), 31.5 (s), 25.0 (s), 24.5 (s), 21.0 (s). ¹¹B NMR (160 MHz, CDCl₃) δ 34.45, 34.09. HRMS (ESI, m/z) calcd for C₂₆H₃₃B₂N₂O₂ [M+H] +: 427.2723; found: 427.2722.

2-(2-(4-(tert-butyl)phenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (37)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (56.3 mg, 62%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.31 – 7.28 (m, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 7.09 (dd, *J* = 8.3, 7.3 Hz, 2H), 7.00 (dd, *J* = 8.4, 1.0 Hz, 2H), 6.27 (d, *J* = 7.3 Hz, 2H), 5.82 (s, 2H), 2.97 – 2.85 (m, 2H), 1.30 (s, 9H), 1.24 (d, *J* = 4.3 Hz, 1H), 1.19 (s, 6H), 1.17 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.3, 140.6, 136.3, 127.8, 127.5, 125.1, 117.3, 105.5, 83.3, 34.3, 31.4, 24.9, 24.5. ¹¹**B NMR** (160 MHz, CDCl₃) δ 34.62, 33.92. **HRMS** (ESI, m/z) calcd for C₂₈H₃₆B₂KN₂O₂ [M+K] ⁺: 493.2594; found: 493.2588.

2-(2-(4-isopropylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-

naphtho[1,8-de][1,3,2]diazaborinine (38)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (31.7 mg, 36%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.19 (d, *J* = 8.2 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.09 (dd, *J* = 8.3, 7.3 Hz, 2H), 7.00 (dd, *J* = 8.4, 1.0 Hz, 2H), 6.27 (dd, *J* = 7.3, 1.0 Hz, 2H), 5.82 (s, 2H), 2.94 (dd, *J* = 14.2, 9.3 Hz, 1H), 2.87 (ddd, *J* = 13.7, 6.9, 2.1 Hz, 2H), 1.23 (d, *J* = 6.9 Hz, 6H), 1.19 (s, 1H), 1.18 (d, *J* = 6.9 Hz, 12H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.2, 141.0, 136.3, 1281 127.5, 126.3, 117.3, 105.5, 83.3, 33.7, 31.5, 24.9, 24.5, 24.1. ¹¹**B NMR** (160 MHz, CDCl₃) δ 33.33, 32.10. **HRMS** (ESI, m/z) calcd for C₂₇H₃₄B₂N₂NaO₂ [M+Na] +: 463.2699; found: 463.2706.

2-(2-(4-butylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (39)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (40.9 mg, 45 %). ¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, *J* = 8.0 Hz, 2H), 7.08 (t, *J* = 7.8 Hz, 4H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.26 (d, *J* = 7.3 Hz, 2H), 5.81 (s, 2H), 2.93 (dd, *J* = 14.1, 9.4 Hz, 1H), 2.86 (dd, *J* = 14.2, 6.9 Hz, 1H), 2.58 – 2.54 (m, 2H), 1.58 – 1.53 (m, 2H), 1.36 – 1.31 (m, 2H), 1.27 (d, *J* = 7.4 Hz, 1H), 1.18 (s, 6H), 1.17 (s, 6H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.2, 140.8, 140.2, 136.3, 128.3, 128.0, 127.5 119.5, 117.3, 105.5, 83.3, 35.2, 33.7, 31.6, 24.9, 24.5, 22.3, 14.0. ¹¹B NMR (160 MHz, CDCl₃) δ 34.09, 33.51.

HRMS (ESI, m/z) calcd for C₂₈H₃₆B₂KN₂O₂ [M+K] ⁺: 493.2594; found: 493.2598.

2-(2-(4-propylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (40)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (45.8 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, *J* = 7.8 Hz, 2H), 7.10 (t, *J* = 7.8 Hz, 4H), 7.01 (dd, *J* = 8.3, 1.0 Hz, 2H), 6.28 (dd, *J* = 7.3, 1.0 Hz, 2H), 5.84 (s, 2H), 2.96 (dd, *J* = 14.2, 9.4 Hz, 1H), 2.88 (dd, *J* = 14.1, 6.9 Hz, 1H), 2.58 – 2.55 (m, 2H), 1.66 – 1.61 (m, 2H), 1.24 – 1.22 (m, 1H), 1.20 (d, *J* = 7.8 Hz, 12H), 0.94 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃)

δ 141.3, 140.9, 140.0, 136.3, 128.4, 128.1, 127.6, 119.6, 117.3, 105.5, 83.4, 37.7, 31.6, 24.9, 24.7, 24.5, 13.8. ¹¹**B** NMR (160 MHz, CDCl₃) δ 33.68, 32.10. **HRMS** (ESI, m/z) calcd for C₂₇H₃₅B₂N₂O₂ [M+H] ⁺: 441.2879; found: 441.2878.

2-(2-([1,1'-biphenyl]-4-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (41)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (45.6 mg, 48%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (dd, *J* = 7.0, 1.6 Hz, 2H), 7.51 (d, *J* = 8.2 Hz, 2H), 7.44 – 7.41 (m, 3H), 7.35 (s, 1H), 7.33 (d, *J* = 3.7 Hz, 1H), 7.09 (dd, *J* = 8.3, 7.3 Hz, 2H), 7.00 (d, *J* = 8.3 Hz, 2H), 6.29 (dd, *J* = 7.3, 1.1 Hz, 2H), 5.84 (s, 2H), 3.03 – 2.98 (m, 1H), 2.96 – 2.91 (m, 1H), 1.22 (s, 1H), 1.20 (s, 6H), 1.18 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 142.9, 141.2, 138.7, 136.3, 128.7, 128.6, 127.6, 127.0, 127.0, 117.4, 105.6, 83.4, 31.7, 29.7, 25.0, 24.5. ¹¹**B NMR** (160 MHz, CDCl₃) δ 34.09, 33.51. **HRMS** (ESI, m/z) calcd for C₃₀H₃₃B₂N₂O₂ [M+H] ⁺: 475.2723; found: 475.2723.

2-(2-(4-methoxyphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (42)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (40.3 mg, 47%). ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, *J* = 8.6 Hz, 2H), 7.11 – 7.08 (m, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.83 – 6.80 (m, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.83 (s, 2H), 3.78 (s, 3H), 2.92 (dd, *J* = 14.1, 9.5 Hz, 1H), 2.85 (s, 1H), 1.31 – 1.26 (m, 1H), 1.20 (s, *J* = 1.3 Hz, 6H), 1.19 (s, 3H), 1.18 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.7, 141.2, 136.3, 135.9, 129.1, 127.6, 117.3, 113.7, 105.5, 83.4, 55.3, 31.1, 25.0, 24.8, 24.55 (s), 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.97, 34.45. HRMS (ESI, m/z) calcd for C₂₅H₃₁B₂N₂O₃ [M+H] ⁺: 429.2515; found: 429.2508.

2-(2-(3-methoxyphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (43)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (36.8 mg, 43%). ¹H NMR (500 MHz, CDCl₃) δ 7.17 (t, *J* = 7.9 Hz, 1H), 7.07 (d, *J* = 7.4 Hz, 2H), 7.00 – 6.96 (m, 2H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.81 – 6.78 (m, 1H), 6.70 (dd, *J* = 8.1, 2.3 Hz, 1H), 6.26 (dd, *J* = 7.3, 0.8 Hz, 2H), 5.81 (s, 2H), 3.77 (s, 3H), 2.93 (dd, *J* = 14.1, 9.5 Hz, 1H), 2.86 (d, *J* = 8.0 Hz, 1H), 1.27 – 1.25 (m, 1H), 1.18 (s, 6H), 1.17 (d, *J* = 1.7 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 159.6, 146.1, 145.4, 141.2, 136.3, 129.2, 128.9, 127.5, 120.8, 120.6, 119.5, 117.3, 116.8, 113.9, 113.8, 111.3, 111.2, 105.5, 83.4 55.1, 32.0, 31.4, 25.0, 24.8, 24.6, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 33.68. HRMS (ESI, m/z) calcd for C₂₅H₃₁B₂N₂O₃ [M+H] ⁺: 429.2515; found: 429.2512.

2-(2-(4-(pentyloxy)phenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (44)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (56.2 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 7.16 (d, *J* = 8.5 Hz, 2H), 7.11 – 7.06 (m, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.80 (d, *J* = 8.6 Hz, 2H), 6.27 (d, *J* = 7.3 Hz, 2H), 5.81 (s, 2H), 3.92 (t, *J* = 6.6 Hz, 2H), 2.90 (dd, *J* = 14.1, 9.4 Hz, 1H), 2.85 – 2.81 (m, 1H), 1.81 – 1.72 (m, 3H), 1.43 – 1.37 (m, 4H), 1.19 (s, 6H), 1.18 (s, 6H), 1.14 (dd, *J* = 6.8, 2.4 Hz, 1H), 0.93 (d, *J* = 5.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 141.2, 136.3, 135.7, 129.2, 129.0, 127.5, 119.5, 117.3, 114.4, 114.1, 105.5, 83.3, 68.1, 31.1, 29.1, 28.2, 25.0, 24.8 24.54, 24.52, 22.5, 14.0. ¹¹B NMR (160 MHz, CDCl₃) δ 34.27, 34.09. HRMS (ESI, m/z) calcd for C₂₉H₃₉B₂N₂O₃ [M+H] +: 485.3141; found: 485.3147.

4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-N,N-dimethylaniline (45)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (30.9 mg, 35%). ¹H NMR (500 MHz, CDCl₃) δ 7.15 (d, *J* = 8.6 Hz, 2H), 7.11 – 7.07 (m, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.70 (d, *J* = 8.6 Hz, 2H), 6.27 (d, *J* = 7.3 Hz, 2H), 5.84 (s, 2H), 2.91 (s, 6H), 2.89 – 2.79 (m, 2H), 1.21 (d, *J* = 6.4 Hz, 12H), 1.18 – 1.14 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.1, 141.3, 136.3, 128.7, 127.5, 119.5, 117.2, 113.1, 105.5, 83.3, 41.0, 30.9, 25.0, 24.6. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 32.45. HRMS (ESI, m/z) calcd for C₂₆H₃₄B₂N₃O₂ [M+H] +: 442.2832; found: 442.2828.

Methyl 4-(2-(1H-naphtho[1,8-de] [1,3,2]diazaborinin-2(3H)-yl) -2-(4,4,5,5-tetramethy l-1,3,2 -
dioxaborolan-2-yl)ethyl)benzoate (46)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (43.8 mg, 48%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.97 (s, 1H), 7.93 (d, *J* = 8.3 Hz, 1H), 7.32 (s, 1H), 7.29 (s, 1H), 7.09 (dd, *J* = 8.3, 7.3 Hz, 2H), 7.01 (dd, *J* = 8.3, 1.0 Hz, 2H), 6.27 (dd, *J* = 7.3, 1.0 Hz, 2H), 5.58 (s, 2H), 3.91 (s, 3H), 2.85 (d, *J* = 8.2 Hz, 1H), 2.80 (s, 1H), 1.40 – 1.37 (m, 1H), 1.21 (s, 12H). ¹³**C NMR** (126 MHz, CDCl₃) δ 167.3, 149.4, 140.9, 136.3, 129.9, 129.6, 128.1, 128.0, 127.6, 117.6, 105.6, 83.2, 52.0, 31.0, 30.0, 24.8. ¹¹**B NMR** (160 MHz, CDCl₃) δ 34.80, 34.27. **HRMS** (ESI, m/z) calcd for C₂₆H₃₁B₂N₂O₄ [M+H] ⁺:457.2464; found: 457.2461.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(trifluoromethoxy)phenyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (47)

The reaction was performed following the general procedure B. The residue was purified by flash column chromatograph to give the product as a crystalline solid (46.3 mg, 48%). ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 2.7 Hz, 1H), 7.27 (d, J = 3.1 Hz, 1H), 7.13 – 7.11 (m, 2H), 7.10 – 7.08 (m, 2H), 7.01 (dd, J = 8.3, 2.8 Hz, 2H), 6.30 (d, J = 7.4 Hz, 2H), 5.80 (s, 2H), 2.93 – 2.87 (m, 2H), 1.27 (s, 1H), 1.17 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 147.3, 142.6, 141.1, 136.3, 129.5, 127.6, 120.8, 120.4 (q, J = 119.7), 119.5, 117.5, 105.6, 83.5, 31.4, 24.9, 24.4. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 33.15. ¹⁹F NMR (471 MHz, CDCl₃) δ -57.96. HRMS (ESI, m/z) calcd for C₂₅H₂₈B₂F₃N₂O₃ [M+H] ⁺:483.2233; found: 483.2229.

2-(2-(4-fluorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (48)

The reaction was performed following the general procedure B. The residue was purified by flash column chromatograph to give the product as a crystalline solid (37.5 mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 7.22 (dd, *J* = 8.4, 5.5 Hz, 2H), 7.10 (t, *J* = 7.8 Hz, 2H), 7.01 (d, *J* = 8.2 Hz, 2H), 6.95 (t, *J* = 8.7 Hz, 2H), 6.29 (d,

J = 7.3 Hz, 2H), 5.81 (s, 2H), 2.94 – 2.84 (m, 2H), 1.33 – 1.21 (m, 1H), 1.17 (d, *J* = 12.5 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 161.2 (d, *J* = 243.4 Hz), 141.1, 139.4 (d, *J* = 3.1 Hz), 136.3, 129.6 (d, *J* = 7.9 Hz), 127.6, 119.5, 117.4, 114.9 (d, *J* = 21.3 Hz), 105.6, 83.4, 31.2, 25.0, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.54, 34.34. ¹⁹F NMR (471 MHz, CDCl₃) δ -117.92. HRMS (ESI, m/z) calcd for $C_{24}H_{28}B_2FN_2O_2$ [M+H] +: 417.2315; found: 417.2307.

2-(2-(4-chlorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (49)

The reaction was performed following the general procedure B. The residue was purified by flash column chromatograph to give the product as a crystalline solid (40.6 mg, 47%). ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, *J* = 8.3 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.09 (t, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.80 (s, 2H), 2.91 (dd, *J* = 14.1, 9.8 Hz, 1H), 2.85 (t, *J* = 3.9 Hz, 1H), 1.27 (d, *J* = 6.0 Hz, 1H), 1.19 (s, 6H), 1.17 (s, 3H), 1.16 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.2, 141.1, 136.3, 131.4, 129.7, 129.6, 128.3, 128.0, 127.6, 119.5, 117.5, 105.6, 83.5, 31.4, 30.7, 25.0, 24.8, 24.7, 24.5, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.25, 33.50. HRMS (ESI, m/z) calcd for C₂₄H₂₈B₂ClN₂O₂ [M+H] +:433.2020; found: 433.2017.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(trifluoromethyl)phenyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (50)

The reaction was performed following the general procedure B. The residue was purified by flash column chromatograph to give the product as a crystalline solid (48.5 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 7.51 (s, 2H), 7.37 (d, J = 9.1 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 9.1 Hz, 2H), 6.30 (d, J = 8.2 Hz, 2H), 5.81 (s, 2H), 2.95 (dd, J = 16.9, 9.6 Hz, 2H), 1.18 (s, 6H), 1.15 (s, 6H), 0.88 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.9, 141.0, 136.3, 128.5, 128.0, 127.6, 125.2 (q, J = 3.7 Hz, 1H), 119.5, 117.6, 105.6, 83.5, 31.9, 24.9, 24.44. ¹¹B NMR (160 MHz, CDCl₃) δ 34.80, 34.27. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.27. HRMS (ESI, m/z) calcd for C₂₅H₂₇B₂F₃N₂NaO₂ [M+H] ⁺: 489.2103; found: 489.2108.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (51)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (43.0 mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 7.14 (d, J = 7.5 Hz, 1H), 7.08 (t, J = 7.8 Hz, 5H), 6.99 (d, J = 8.2 Hz, 3H), 6.27 (d, J = 7.3 Hz, 2H), 5.81 (s, 2H), 2.92 (dd, J = 14.0, 9.7 Hz, 1H), 2.84 (dd, J = 14.1, 6.5 Hz, 1H), 2.31 (s, 3H), 1.21 (s, 1H), 1.19 (s, 6H), 1.17 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 143.7 (s), 141.2 (s), 137.7 (s), 129.0 (s), 128.2 (s), 127.5 (s), 126.4 (s), 125.2 (s), 117.3 (s), 105.5 (s), 83.3 (s), 31.9 (s), 25.0 (s), 24.5 (s), 21.4 (s). ¹¹B NMR (160 MHz, CDCl₃) δ 34.32, 34.09. HRMS (ESI, m/z) calcd for C₂₅H₃₀B₂N₂NaO₂ [M+Na] +: 435.2386; found: 435.2391.

2-(2-(3,4-dimethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (52)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (34.1mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (td, J = 7.9, 7.5, 2.0 Hz, 2H), 7.05 – 6.98 (m, 5H), 6.27 (d, J = 7.4 Hz, 2H), 5.83 (s, 2H), 2.92 (ddd, J = 14.0, 9.3, 2.5 Hz, 1H), 2.82 (ddd, J = 14.1, 6.8, 2.5 Hz, 1H), 2.23 (dd, J = 4.6, 2.1 Hz, 6H), 1.20 (dd, J = 6.4, 2.0 Hz, 12H), 1.16 – 1.13 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 141.2, 136.3, 136.2, 133.7, 129.5, 127.5, 125.5, 119.5, 105.5, 83.3, 31.5, 29.7, 25.0, 24.5, 19.8, 19.3. ¹¹B NMR (160 MHz, CDCl₃) δ 32.27, 31.57. HRMS (ESI, m/z) calcd for C₂₆H₃₂B₂KN₂O₂ [M+K] ⁺: 465.2281; found: 465.2288.

2-(2-(3,5-dimethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (53)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (49.4 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (dd, J = 8.3, 7.3 Hz, 2H), 6.99 (dd, J = 8.2, 1.0 Hz, 2H), 6.89 (d, J = 1.5 Hz, 2H), 6.80 (s, 1H), 6.27 (dd, J = 7.2, 1.0 Hz, 2H), 5.82 (s, 2H), 2.90 (dd, J = 13.9, 9.9 Hz, 1H), 2.80 (dd, J = 13.9, 6.2 Hz, 1H), 2.28 (s, 6H), 1.19 (d, J = 6.1 Hz, 12H), 1.14 (d, J = 3.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 141.3, 137.6, 136.3,

127.6, 127.3, 126.1, 119.5, 117.3, 105.5, 83.3, 31.8, 29.7, 25.0, 24.5, 21.3. ¹¹**B** NMR (160 MHz, CDCl₃) δ 34.09, 32.63. **HRMS** (ESI, m/z) calcd for C₂₆H₃₃B₂N₂O₂ [M+H] +: 427.2723; found: 427.2725.

2-(2-(4,4-dimethylthiochroman-7-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (54)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (56.8 mg, 57%). ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 1.6 Hz, 1H), 7.08 (dd, J = 8.2, 7.4 Hz, 2H), 7.01 – 6.97 (m, 3H), 6.94 (dd, J = 8.0, 1.8 Hz, 1H), 6.26 (dd, J = 7.3, 0.8 Hz, 2H), 5.81 (s, 2H), 3.01 – 2.98 (m, 2H), 2.91 – 2.79 (m, 2H), 1.94 – 1.91 (m, 2H), 1.29 (s, 3H), 1.27 (s, 3H), 1.19 (s, 6H), 1.17 (s, 6H), 1.15 – 1.12 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.8, 141.2, 139.5, 136.3, 128.4, 127.5, 126.5, 126.4, 126.0, 119.5, 117.3, 105.5, 83.34, 37.7, 33.0, 31.7, 30.31, 30.26, 25.0, 24.6, 23.1. ¹¹B NMR (160 MHz, CDCl₃) δ 33.15, 32.27. HRMS (ESI, m/z) calcd for C₂₉H₃₇B₂N₂O₂S [M+H] ⁺: 499.2756; found: 499.2754.

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(thiophen-3-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (55)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (46.9 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 3.0 Hz, 1H), 7.50 (s, 1H), 7.41 (dd, *J* = 5.1, 1.3 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.3 Hz, 2H), 6.34 (d, *J* = 7.3 Hz, 2H), 6.21 (s, 2H), 1.38 (s, 12H), 1.26 (d, *J* = 6.5 Hz, 2H), 1.20 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.6, 141.5, 136.4, 127.9, 127.6, 126.1, 125.4, 117.3, 105.7, 83.9, 53.4, 25.0, 24.8. ¹¹B NMR (160 MHz, CDCl₃) δ 32.08, 31.80. HRMS (ESI, m/z) calcd for C₂₂H₂₇B₂N₂O₂S [M+H] ⁺:405.1974; found: 405.1974.

2-(2-(1H-phenalen-5-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (56)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (50.6 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 8.77 – 8.75 (m, 1H), 8.66 (s, 1H), 8.17 (dt, *J* = 7.8, 3.0 Hz, 1H), 7.84 – 7.82 (m, 1H), 7.74 (s, 1H), 7.67 (s, 1H), 7.65 – 7.63 (m, 1H), 7.60 – 7.57 (m, 2H), 7.13 (t, *J* = 7.8 Hz, 2H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.34 (d, *J* = 7.3 Hz, 2H), 5.97 (s, 2H), 3.45 (s, 2H), 1.23 (s, 3H), 1.23 (s, 3H), 1.19 (s, 3H), 1.18 (s, 3H), 0.92 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.2, 137.6, 136.4, 131.9, 131.3, 129.7, 128.1, 128.0, 127.6, 126.62, 126.60, 126.4, 126.2, 126.0, 125.7, 125.5, 125.3, 124.7, 124.4, 123.3, 123.0, 122.5, 122.4, 119.6, 117.5, 105.7, 83.5, 83.2, 31.6, 29.2, 28.6, 25.1, 24.9, 24.6, 24.5, 22.7, 14.2. ¹¹B NMR (160 MHz, CDCl₃) δ 34.62, 34.09. HRMS (ESI, m/z) calcd for C₃₂H₃₂B₂N_{2Na}O₂ [M+Na] +:521.2542; found: 521.2539.

2-(2-(4-(9H-carbazol-9-yl)phenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (57)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (53.0 mg, 47%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 7.8 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.48 – 7.46 (m, 2H), 7.43 – 7.40 (m, 2H), 7.40 – 7.37 (m, 2H), 7.30 – 7.28 (m, 2H), 7.15 – 7.11 (m, 2H), 7.04 (dd, *J* = 8.3, 1.0 Hz, 2H), 6.34 (dd, *J* = 7.3, 1.0 Hz, 2H), 5.88 (s, 2H), 3.11 – 3.02 (m, 2H), 1.24 (s, 6H), 1.22 (s, 6H), 0.89 – 0.88 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.3, 141.2, 141.1, 136.3, 135.3, 129.7, 127.6, 127.0, 125.9, 123.3, 120.3, 119.8, 117.5, 109.8, 105.7, 83.5, 31.8, 25.0, 24.6. ¹¹B NMR (160 MHz, CDCl₃) δ 34.27, 33.51. HRMS (ESI, m/z) calcd for C₃₆H₃₆B₂N₃O₂ [M+H] ⁺: 564.2988; found: 564.2986.

2-(2-(naphthalen-2-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (58)

The reaction was performed following the general procedure A. The residue was purified by flash column chromatograph to give the product as a crystalline solid (42.6 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 1H), 7.79 – 7.77 (m, 2H), 7.72 (s, 1H), 7.46 – 7.42 (m, 3H), 7.11 (t, *J* = 7.7 Hz, 2H), 7.03 (s, 2H), 6.30 (d, *J* = 7.3 Hz, 2H), 5.88 (s, 2H), 3.16 (dd, *J* = 14.2, 9.9 Hz, 1H), 3.07 (dd, *J* = 14.2, 6.2 Hz, 1H), 1.31 (d, *J* = 6.3 Hz, 1H), 1.18 (d, *J* = 9.7 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 141.2, 133.6, 127.9, 127.6, 127.5, 127.3, 126.0, 125.8, 125.1, 117.4, 117.3, 105.6, 83.4, 32.2, 29.7, 25.00, 24.8, 24.73, 24.71, 24.6, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 33.15, 32.27. HRMS (ESI, m/z) calcd for C₂₈H₃₁B₂N₂O₂ [M+H] ⁺: 449.2566; found: 449.2560.

(R)-2-(4-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (59)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (66.5 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.21 – 7.18 (m, 3H), 7.11 – 7.07 (m, 2H), 6.99 (d, J = 8.3 Hz, 2H), 6.27 (d, J = 7.3 Hz, 2H), 5.76 (s, 2H), 2.65 (t, J = 6.9 Hz, 2H), 1.71 – 1.66 (m, 2H), 1.62 – 1.56 (m, 2H), 1.25 (d, J = 6.0 Hz, 12H), 0.78 (dd, J = 8.2, 6.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 142.6, 141.3, 136.3, 128.4, 128.3, 127.56, 125.7 119.5, 117.3, 105.5, 83.2, 36.0, 34.0, 26.0, 25.1, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.18, 33.79. HRMS (ESI, m/z) calcd for C₂₆H₃₃B₂N₂O₃ [M+H] ⁺: 427.2723; found: 427.2726. Specific rotation: [α]²⁵_D= -8.78° (c = 0.82, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 90/10, 0.5 mL/min, $\lambda = 280$ nm, t_R (minor) = 9.8 min, t_R (major) = 10.4 min, er = 94:6.

(R)-2-(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (60)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (62.6 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.21 (dd, J = 13.2, 7.0 Hz, 3H), 7.10 (t, J = 7.8 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.3 Hz, 2H), 5.80 (s, 2H), 2.78 – 2.70 (m, 1H), 2.64 – 2.60 (m, 1H), 2.03 – 1.94 (m, 1H), 1.88 – 1.83 (m, 1H), 1.28 (s, 6H), 1.27 (s, 6H), 0.84 (dd, J = 9.8, 5.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 142.6, 141.3, 136.3, 128.5, 128.33 (s), 127.6, 125.8, 119.5, 117.3, 105.5, 83.3, 38.5, 28.6, 25.1, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.23, 34.02. HRMS (ESI, m/z) calcd for C₂₅H₃₁B₂N₂O₂ [M+H] ⁺: 413.2566; found: 413.2561. Specific rotation: [α]²⁵_D= -4.08° (c = 0.76, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 99/1, 1.0 mL/min, $\lambda = 280$ nm, t_R (minor) = 14.5 min, t_R (major) = 16.4 min, er = 89:11.

(R)-2-(2-cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (61)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (56.6 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ 7.12 – 7.07 (m, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.2 Hz, 2H), 5.80 (s, 2H), 1.75 – 1.63 (m, 8H), 1.56 (d, J = 4.3 Hz, 2H), 1.24 (s, 12H), 1.18 (dd, J = 18.8, 6.8 Hz, 3H), 0.89 (d, J = 11.3 Hz, 2H), 0.73 – 0.69 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 40.3, 37.8, 33.5, 33.4, 33.3, 26.8, 26.4, 25.1, 24.9, 24.5, 24.5, 23.7. ¹¹B NMR (160 MHz, CDCl₃) δ 34.26, 34.14. HRMS (ESI, m/z) calcd for C₂₄H₃₅B₂N₂O₂ [M+H] ⁺: 405.2879; found: 405.2873. Specific rotation: [α]²⁵_D= -6.3° (c = 1.02, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 99/1, 0.5 mL/min, $\lambda = 280$ nm, t_R (major) = 20.4 min, t_R (minor) = 24.8 min, er = 97:3.

(R)-2-(2-cyclopentyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (62)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (52.3 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.3 Hz, 2H), 5.78 (s, 2H), 1.79 – 1.69 (m, 4H), 1.61 – 1.56 (m, 3H), 1.52 – 1.48 (m, 2H), 1.24 (d, *J* = 5.7 Hz, 12H), 1.09 (dt, *J* = 10.7, 3.3 Hz, 2H), 0.83 (dd, *J* = 9.1, 6.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.2, 82.9, 42.4, 32.8, 32.6, 32.52, 32.50, 25.21, 25.18, 25.0, 24.8, 24.60, 24.57. ¹¹B NMR (160 MHz, CDCl₃) δ 34.38, 33.90. HRMS (ESI, m/z) calcd for C₂₃H₃₂B₂N₂NaO₂ [M+Na] ⁺: 413.2542; found: 413.2534. Specific rotation: $[\alpha]^{25}_{D}$ = -8.44° (c = 1.28, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 90/10, 1.0 mL/min, λ = 280 nm, t_R (major) = 6.8 min, t_R (minor) = 7.9 min, er = 86:14.

(R)-2-(2-cyclopropyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (63)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (48.5 mg, 67%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.08

(t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.80 (s, 2H), 1.57 – 1.52 (m, 1H), 1.47 – 1.43 (m, 1H), 1.25 (d, *J* = 4.6 Hz, 12H), 0.90 (dd, *J* = 9.5, 6.1 Hz, 1H), 0.76 (dt, *J* = 12.3, 5.1 Hz, 1H), 0.41 (d, *J* = 7.9 Hz, 2H), 0.13 (dd, *J* = 8.8, 3.9 Hz, 1H), 0.07 – 0.04 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 136.3, 127.5, 119.5, 117.2, 105.4, 83.2, 31.6, 25.0, 24.8, 24.6, 13.4, 5.1, 4.8. ¹¹B NMR (160 MHz, CDCl₃) δ 34.58, 34.03. **HRMS** (ESI, m/z) calcd for C₂₁H₂₉B₂N₂O₂ [M+H] +: 363.2410; found: 363.2401. **Specific rotation:** $[\alpha]^{25}_{D}$ = -14.69° (c = 0.49, CHCl₃). **HPLC analysis**: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 95/5, 0.5 mL/min, λ = 280 nm, t_R (major) = 26.8 min, t_R (minor) = 29.5 min, er = 93:7.

(R)-2-(3,3-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (64)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (42.4 mg, 56%). ¹H NMR (500 MHz, CDCl₃) δ 7.11 – 7.06 (m, 2H), 7.00 (dd, *J* = 8.3, 1.8 Hz, 2H), 6.26 (d, *J* = 7.2 Hz, 2H), 5.60 (d, *J* = 18.6 Hz, 2H), 1.35 – 1.27 (m, 12H), 1.26 (s, 2H), 1.24 – 1.17 (m, 9H), 0.91 – 0.86 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 127.5, 117.2, 105.4, 83.2, 82.9, 40.3, 39.23 31.8, 31.6, 29.3, 29.2, 24.9, 24.8, 24.7, 24.6. ¹¹B NMR (160 MHz, CDCl₃) δ 34.35, 34.06. HRMS (ESI, m/z) calcd for C₂₂H₃₃B₂N₂O₂ [M+H] ⁺: 379.2723; found: 379.2723. Specific rotation: [α]²⁵_D= -15.45° (c = 0.44, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 99.0/1.0, 1.0 mL/min, λ = 280 nm, t_R (major) = 5.8 min, t_R (minor) = 7.5 min, er = 85:15.

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (65)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (49.5 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.3 Hz, 2H), 5.80 (s, 2H), 1.67 – 1.59 (m, 1H), 1.54 (dd, *J* = 13.9, 7.4 Hz, 1H), 1.37 – 1.31 (m, 4H), 1.25 (d, *J* = 6.1 Hz, 12H), 0.91 (t, *J* = 6.9 Hz, 3H), 0.75 (dd, *J* = 9.3, 6.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 34.9, 34.6, 26.1, 25.0, 24.9, 24.5, 24.5, 22.8, 14.1. ¹¹B NMR (160 MHz, CDCl₃) δ 34.66, 34.34. HRMS (ESI, m/z) calcd for C₂₁H₃₁B₂N₂O₂ [M+H] ⁺: 365.2566; found: 365.2571. Specific rotation: [α]²⁵_D= -11.27° (c = 0.55, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 99.5/0.5, 1.4 mL/min, λ = 280 nm, t_R (minor) = 5.2 min, t_R (major) = 6.3 min, er = 93:7.

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (66)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (54.4 mg, 72%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 (dd, J = 8.3, 7.3 Hz, 2H), 7.00 (dd, J = 8.3, 1.0 Hz, 2H), 6.30 (dd, J = 7.3, 1.0 Hz, 2H), 5.81 (s, 2H), 1.66 – 1.61 (m, 1H), 1.55 – 1.51 (m, 1H), 1.37 – 1.30 (m, 6H), 1.26 (d, J = 6.3 Hz, 12H), 0.93 – 0.89 (m, 3H), 0.76 (dd, J = 9.5, 6.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.6, 119.5, 117.2, 105.4, 83.2, 32.1, 31.9, 26.4, 25.0, 24.5, 22.6, 14.1. ¹¹B NMR (160 MHz, CDCl₃) δ 34.80, 33.92. HRMS (ESI, m/z) calcd for C₂₂H₃₂B₂N₂NaO₂ [M+Na] ⁺: 401.2542; found: 401.2540. Specific rotation: [α]²⁵_D= -7.72° (c = 1.32, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 99.5/0.5, 1.4 mL/min, $\lambda = 280$ nm, t_R (minor) = 6.2 min, t_R (major) = 7.0 min, er = 94:6.

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (67)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (58.1 mg, 74%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.07 (m, 2H), 6.98 (d, J = 7.3 Hz, 2H), 6.28 (d, J = 7.3 Hz, 2H), 5.78 (s, 2H), 1.54 (d, J = 7.3 Hz, 2H), 1.24 (s, 8H), 1.23 (s, 6H), 1.22 (s, 6H), 0.87 (d, J = 3.2 Hz, 3H), 0.74 – 0.72 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 82.9, 32.6, 32.4, 31.8, 29.4, 29.3, 26.4, 25.7, 25.0, 24.9, 24.53, 24.50, 22.7, 22.6, 14.1¹¹B NMR (160 MHz, CDCl₃) δ 34.88, 34.11. HRMS (ESI, m/z) calcd for C₂₃H₃₅B₂N₂O₂ [M+H] ⁺: 393.2879; found: 393.2874. Specific rotation: [α]²⁵_D= -10.7° (c = 1.43, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 99.5/0.5, 0.5 mL/min, $\lambda = 280$ nm, t_R (minor) = 12.5 min, t_R (major) = 12.9 min, er = 94:6.

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (68)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (63.4 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.06 (m, 2H), 6.98 (d, *J* = 8.2 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.79 (s, 2H), 1.57 – 1.41 (m, 2H), 1.27 (dd,

J = 7.6, 2.5 Hz, 10H), 1.25 (s, 6H), 1.24 (s, 6H), 0.88 (t, J = 6.8 Hz, 3H), 0.75 – 0.72 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 32.4, 31.9, 29.7, 29.2, 26.4, 25.0, 24.9, 24.5, 22.7, 14.1. ¹¹B NMR (160 MHz, CDCl₃) δ 34.23, 33.23. HRMS (ESI, m/z) calcd for C₂₄H₃₆B₂N₂NaO₂ [M+Na] ⁺: 429.2855; found: 429.2859. Specific rotation: [α]²⁵_D= -8.29° (c = 0.70, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 99.5/0.5, 0.5 mL/min, λ = 280 nm, t_R (minor) = 15.9 min, t_R (major) = 16.3 min, er = 92:8.

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (69)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (58.8 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 (t, J = 7.8 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.30 (d, J = 7.3 Hz, 2H), 5.81 (s, 2H), 1.67 – 1.61 (m, 1H), 1.55 – 1.50 (m, 1H), 1.34 – 1.27 (m, 12H), 1.26 (d, J = 6.2 Hz, 12H), 0.90 (t, J = 6.8 Hz, 3H), 0.76 (dd, J = 9.4, 6.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.6, 119.5, 117.2, 105.4, 83.2, 32.4, 31.9, 29.7, 29.5, 29.3, 26.4, 25.0, 24.5, 22.7, 14.1. ¹¹B NMR (160 MHz, CDCl₃) δ 34.45, 34.19. HRMS (ESI, m/z) calcd for C₂₅H₃₉B₂N₂O₂ [M+H] ⁺: 421.3192; found: 421.3195. Specific rotation: [α]²⁵_D= -21.97° (c = 1.22, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 99.5/0.5, 0.5 mL/min, $\lambda = 280$ nm, t_R (minor) = 14.4 min, t_R (major) = 14.9 min, er = 96:4.

(R)-2-(5-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (70)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (52.3 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 7.2 Hz, 2H), 5.80 (s, 2H), 1.64 – 1.60 (m, 1H), 1.53 (td, *J* = 8.1, 7.4, 4.5 Hz, 2H), 1.37 (qd, *J* = 8.3, 5.5 Hz, 4H), 1.26 (s, 3H), 1.25 (s, 5H), 1.24 (s, 4H), 1.23 (s, 3H), 0.88 (d, *J* = 6.6 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.76 (dt, *J* = 10.1, 5.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.4, 83.1, 39.1, 30.1, 27.8, 26.6, 25.0, 24.9, 24.5, 24.5, 22.7, 22.6. ¹¹B NMR (160 MHz, CDCl₃) δ 34.33, 33.33. HRMS (ESI, m/z) calcd for C₂₃H₃₄B₂N₂NaO₂ [M+Na] ⁺: 415.2699; found: 415.2699. Specific rotation: $[\alpha]^{25}_{D}$ = -4.04° (c = 0.99, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 99.4/0.6, 1.4 mL/min, λ = 280 nm, t_R (minor) = 5.0 min, t_R (major) = 5.2 min, er = 87:13.

(R)-tert-butyl 4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)ethyl)piperidine-1-carboxylate (71)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (72.8 mg, 72%). ¹H NMR (500 MHz, CDCl₃) δ 7.13 – 7.07 (m, 2H), 7.04 – 6.96 (m, 2H), 6.33 – 6.27 (m, 2H), 5.76 (s, 2H), 4.08 (s, 4H), 2.65 (s, 4H), 1.45 (d, *J* = 3.5 Hz, 9H), 1.24 (s, 12H), 1.06 (d, *J* = 12.2 Hz, 2H), 0.85 (s, 1H), 0.81 – 0.71 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 141.2, 136.3, 117.4, 105.5, 83.3, 79.3, 38.0, 33.0, 28.5, 25.0, 24.8, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 33.33. HRMS (ESI, m/z) calcd for C₂₁H₃₁B₂N₂O₂ [M+H] +: 365.2566; found: 365.2571. Specific rotation: [α]²⁵_D= -5.32° (c = 1.09, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 90/10, 0.5 mL/min, λ = 280 nm, t_R (minor) = 14.5 min, t_R (major) = 15.6 min, er = 94:6.

(R)-2-(4-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (72)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (60.5 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 7.11 (dd, J = 8.2, 7.3 Hz, 2H), 7.01 (dd, J = 8.3, 1.0 Hz, 2H), 6.30 (dd, J = 7.4, 1.0 Hz, 2H), 5.86 (s, 2H), 3.68 – 3.64 (m, 2H), 1.66 (dd, J = 13.6, 5.3 Hz, 2H), 1.63 – 1.56 (m, 2H), 1.26 (d, J = 5.3 Hz, 12H), 0.94 (s, 9H), 0.78 (dd, J = 8.7, 5.6 Hz, 1H), 0.09 (d, J = 1.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 136.3, 127.5, 119.5, 117.2, 105.4, 83.2, 82.9, 63.2, 35.4, 25.1, 24.9, 24.54, 24.52, 22.4, 18.4, -5.2. ¹¹B NMR (160 MHz, CDCl₃) δ 34.08, 33.91. HRMS (ESI, m/z) calcd for C₂₆H₄₃B₂N₂O₃Si [M+H] ⁺: 481.3224; found: 481.3221. Specific rotation: [α]²⁵_D= -2.30° (c = 0.87, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 95/5, 1.0 mL/min, $\lambda = 280$ nm, t_R (minor) = 3.9 min, t_R (major) = 4.3 min, er = 90.5:9.5. (R)-2-(6-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (73)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (70.2 mg, 69%). ¹H NMR (500 MHz, CDCl₃) δ 7.08 (t, *J* = 7.8 Hz, 2H), 6.98 (d, *J* = 8.2 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 2H), 5.79 (s, 2H), 3.59 (d, *J* = 6.6 Hz, 2H), 1.55 - 1.48 (m, 4H), 1.35 (dd, *J* = 12.2, 6.6 Hz, 4H), 1.25 (s, 6H), 1.23 (s, 6H), 0.89 (s, 9H), 0.75 - 0.71 (m, 1.25 + 0.25).

1H), 0.04 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 136.3, 127.5, 119.5, 117.2, 105.4, 83.2, 63.3, 32.8, 32.2, 26.4, 26.0, 25.9, 25.0, 24.9, 24.5, 24.52, 24.50, 18.4, -5.2. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 33.51. **HRMS** (ESI, m/z) calcd for C₂₈H₄₇B₂N₂O₃Si [M+H] ⁺: 509.3537; found: 509.3530. **Specific rotation:** [α]²⁵_D= -6.25° (c = 0.64, CHCl₃). **HPLC analysis**: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 99/1, 0.3 mL/min, λ = 280 nm, t_R (minor) = 26.5 min, t_R (major) = 29.3 min, er = 94:6.

(R)-2-(5-((tert-butyldiphenylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (74)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (91.5 mg, 74%). ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.67 (m, 4H), 7.40 (ddt, J = 12.1, 6.6, 3.5 Hz, 6H), 7.10 (td, J = 7.8, 2.2 Hz, 2H), 7.01 (dd, J = 8.4, 2.4 Hz, 2H), 6.29 (dd, J = 7.4, 2.2 Hz, 2H), 5.79 (d, J = 3.2 Hz, 2H), 3.71 – 3.67 (m, 2H), 1.62 (dd, J = 7.7, 3.6 Hz, 2H), 1.51 (h, J = 4.0, 3.4 Hz, 2H), 1.42 – 1.39 (m, 1H), 1.31 (d, J = 2.8 Hz, 1H), 1.25 (dd, J = 8.3, 2.4 Hz, 12H), 1.06 (d, J = 3.5 Hz, 9H), 0.75 (dd, J = 8.1, 3.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 135.6, 134.2, 129.5, 127.6, 127.6, 119.5, 117.2, 105.5, 83.2, 64.0, 32.8, 28.7, 26.9, 26.3, 25.0, 24.6, 19.2. ¹¹B NMR (160 MHz, CDCl₃) δ 34.42, 34.10. HRMS (ESI, m/z) calcd for C₃₇H₄₈B₂KN₂O₃Si [M+K] ⁺: 657.3252; found: 657.3262. Specific rotation: [α]²⁵_D= -4.97° (c = 1.45, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 99/1, 1.0 mL/min, $\lambda = 250$ nm, t_R (minor) = 22.1 min, t_R (major) = 26.8 min, er = 90:10.

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-((triisopropylsilyl)oxy)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (75)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (74.0 mg, 69%). ¹H NMR (500 MHz, CDCl₃) δ 7.12 – 7.07 (m, 2H), 7.00 (dd, J = 8.3, 0.9 Hz, 2H), 6.30 (dd, J = 7.2, 1.0 Hz, 2H), 5.81 (s, 2H), 3.70 (t, J = 6.5 Hz, 2H), 1.72 – 1.64 (m, 1H), 1.62 – 1.55 (m, 3H), 1.51 – 1.45 (m, 1H), 1.26 (d, J = 5.5 Hz, 12H), 1.24 (s, 2H), 1.13 – 1.10 (m, 2H), 1.08 (s, 13H), 0.78 (dd, J = 9.5, 5.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 136.3, 127.5, 119.5, 117.2, 105.5, 83.2, 63.5, 33.3, 26.4, 25.0, 24.5, 18.1, 12.1. ¹¹B NMR (160 MHz, CDCl₃) δ 34.32, 33.75. HRMS (ESI, m/z) calcd for C₃₀H₅₀B₂KN₂O₃Si [M+K] ⁺:575.3408; found: 575.3411. Specific rotation: $[\alpha]^{25}_{D}= -7.84^{\circ}$ (c =1.16, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 99.7/0.3, 0.5 mL/min, $\lambda = 280$ nm, t_R (minor) = 19.0 min, t_R (major) = 21.1 min, er = 92:8.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl propionate (76)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (56.7 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.11 – 7.06 (m, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.3 Hz, 2H), 5.79 (s, 2H), 4.06 (dt, J = 9.5, 5.2 Hz, 2H), 2.33 – 2.31 (m, 1H), 2.31 – 2.28 (m, 1H), 1.61 – 1.51 (m, 2H), 1.48 – 1.37 (m, 2H), 1.36 – 1.26 (m, 2H), 1.25 (s, 6H), 1.23 (s, 6H), 1.12 (t, J = 7.6 Hz, 3H), 0.75 (dd, J = 9.3, 6.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 141.3, 136.3, 127.5, 119.5, 117.3, 105.5, 83.2, 64.5, 64.3, 28.6, 28.55, 27.6, 26.0, 25.0, 24.9, 24.5, 9.2. ¹¹B NMR (160 MHz, CDCl₃) δ 34.34, 34.09. HRMS (ESI, m/z) calcd for C₂₄H₃₅B₂N₂O₄ [M+H] ⁺: 437.2777; found: 437.2774. Specific rotation: [α]²⁵_D= -11.62° (c = 0.37, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 97/3, 0.5 mL/min, $\lambda = 280$ nm, t_R (major) =23.0 min, t_R (minor) = 26.1 min, er = 90:10.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2E,4E)-hexa-2,4-dienoate (77)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (43.6 mg, 46%). ¹H NMR (500 MHz, CDCl₃) δ 7.08 (dd, J = 8.3, 7.3 Hz, 2H), 6.99 (dd, J = 8.3, 1.0 Hz, 2H), 6.29 (dd, J = 7.3, 1.0 Hz, 2H), 5.79 (s, 2H), 5.60 – 5.27 (m, 4H), 4.07 (dt, J = 6.6, 3.4 Hz, 2H), 2.35 – 2.32 (m, 2H), 2.30 – 2.27 (m, 2H), 1.63 (d, J = 1.2 Hz, 3H), 1.45 – 1.36 (m, 2H), 1.26 (s, 3H), 1.25 (s, 6H), 1.23 (s, 3H), 0.74 (dd, J = 9.3, 6.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 141.3, 136.3, 129.2, 127.6, 126.1, 117.3, 105.5, 83.2, 64.3, 34.4, 28.8, 28.6, 27.9, 26.0, 25.0, 24.8, 24.5, 17.9. ¹¹B NMR (160 MHz, CDCl₃) δ 34.45, 33.68. HRMS (ESI, m/z) calcd for C₂₇H₃₇B₂N₂O₄ [M+H] ⁺: 475.2934; found: 475.2929. Specific rotation: [α]²⁵_D= -1.24° (c = 0.86, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 90/10, 0.5 mL/min, $\lambda = 280$ nm, t_R (major) = 14.4 min, t_R (minor) = 15.7 min, er = 88:12.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 2-propylpentanoate (78)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (64.8 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 7.08 (t, J = 7.8 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.3 Hz, 2H), 5.79 (s, 2H), 4.07 – 4.03 (m, 2H), 2.35 – 2.32 (m, 1H), 1.66 (d, J = 7.1 Hz, 2H), 1.57 (dd, J = 10.5, 4.9 Hz, 4H), 1.41 – 1.36 (m, 4H), 1.27 (d, J = 7.7 Hz, 4H), 1.24 (s, 3H), 1.23 (d, J = 2.4 Hz, 6H), 1.22 (s, 3H), 0.88 (d, J = 5.4 Hz, 6H), 0.75 – 0.72 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 141.3, 136.3, 127.5, 119.5, 117.3, 105.5, 83.2, 83.0, 64.0, 45.4, 34.7, 28.9, 28.8, 28.6, 26.1, 25.0, 24.9, 24.5, 20.6, 14.0. ¹¹B NMR (160 MHz, CDCl₃) δ 34.80, 34.45. HRMS (ESI, m/z) calcd for C₂₉H₄₅B₂N₂O₄ [M+H] ⁺: 507.3560; found: 507.3559. Specific rotation: [α]²⁵_D= 4.57° (c = 0.46, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 97/3, 0.5 mL/min, $\lambda = 280$ nm, t_R (major) = 12.8 min, t_R (minor) = 14.3 min, er = 89:11.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl benzoate (79)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (66.8 mg, 69%). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 1.4 Hz, 1H), 8.05 (d, J = 1.7 Hz, 1H), 7.55 – 7.52 (m, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.10 (t, J = 7.8 Hz, 2H), 7.01 (d, J = 8.3 Hz, 2H), 6.30 (d, J = 7.3 Hz, 2H), 5.84 (s, 2H), 4.35 (t, J = 6.6 Hz, 2H), 1.82 (t, J = 7.0 Hz, 2H), 1.67 – 1.47 (m, 4H), 1.25 (s, 6H), 1.23 (s, 6H), 0.80 (dd, J = 9.4, 5.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 141.3, 136.3, 132.8, 130.5, 129.6, 128.3, 127.6, 119.6, 117.3, 105.5, 83.2, 64.9, 28.9, 28.7, 26.1, 25.0, 24.87, 24.54, 24.51. ¹¹B NMR (160 MHz, CDCl₃) δ 33.92, 32.98. HRMS (ESI, m/z) calcd for C₂₈H₃₅B₂N₂O₄ [M+H] ⁺:485.2777; found: 485.2773. Specific rotation: [α]²⁵_D= -5.6° (c = 0.75, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 95/5 1.0 mL/min, $\lambda = 250$ nm, t_R (minor) = 18.4 min, t_R (major) = 29.4 min, er = 90:10.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 4-methylbenzoate (80)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (67.9 mg, 66%). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.92 (d, J = 1.8 Hz, 1H), 7.20 (s, 1H), 7.18 (s, 1H), 7.11 – 7.07 (m, 2H), 6.99 (d, J = 8.1 Hz, 2H), 6.28 (d, J = 7.3 Hz, 2H), 5.81 (s, 2H), 4.32 (t, J = 6.5 Hz, 2H), 2.39 (s, 3H), 1.82 – 1.78 (m, 2H), 1.67 – 1.59 (m, 2H), 1.56 – 1.49 (m, 2H), 1.24 (s, 3H), 1.23 (s, 3H), 1.23 (s, 3H), 1.22 (s, 3H), 0.80 – 0.76 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 143.4, 141.3, 129.6, 129.0, 127.5, 117.3, 105.5, 83.2, 64.7, 28.9, 28.7, 26.1, 25.0, 24.9, 24.53, 24.50, 21.6. ¹¹B NMR (160 MHz, CDCl₃) δ 34.97, 34.27. HRMS (ESI, m/z) calcd for C₂₉H₃₇B₂N₂O₄ [M+H] ⁺:499.2934; found: 499.2932. Specific rotation: [α]²⁵_D= -7.65° (c = 0.51, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 95/5 1.0 mL/min, λ = 280 nm, t_R (minor) = 18.9 min, t_R (major) = 21.8 min, er = 88:12.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 4-cyclohexylbenzoate (81)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (74.8 mg, 66%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.95 (s, 1H), 7.22 (d, J = 8.3 Hz, 2H), 7.11 – 7.07 (m, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.3 Hz, 2H), 5.82 (s, 2H), 4.32 (t, J = 6.5 Hz, 2H), 2.56 – 2.52 (m, 1H), 1.87 – 1.85 (m, 4H), 1.79 (d, J = 6.9 Hz, 2H), 1.76 (t, J = 3.7 Hz, 2H), 1.66 – 1.58 (m, 2H), 1.57 – 1.50 (m, 2H), 1.40 (dd, J = 8.5, 3.7 Hz, 4H), 1.24 (s, 6H), 1.22 (s, 6H), 0.79 (ddd, J = 9.5, 6.2, 2.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 141.3, 129.7, 127.6, 126.8, 117.3, 105.5, 83.2, 64.7, 44.7, 34.2, 28.9, 28.8, 26.8, 26.1, 25.0, 24.9, 24.5, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.71, 33.02. HRMS (ESI, m/z) calcd for C₃₄H₄₅B₂N₂O₄ [M+H] ⁺:567.3560; found: 567.3560. Specific rotation: [α]²⁵_D= -4.66° (c = 0.88, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 95/5, 1.0 mL/min, $\lambda = 280$ nm, t_R (major) = 9.2 min, t_R (minor) = 11.3 min, er = 85:15.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (E)-2-methyl-3-phenylacrylate (82)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (51.4 mg, 49%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.69

(s, 1H), 7.41 – 7.37 (m, 4H), 7.32 (q, J = 5.2, 4.4 Hz, 1H), 7.08 (t, J = 7.7 Hz, 2H), 7.00 (d, J = 8.3 Hz, 2H), 6.29 (d, J = 7.2 Hz, 2H), 5.81 (s, 2H), 4.24 (td, J = 6.6, 1.9 Hz, 2H), 2.11 (s, 3H), 1.76 (q, J = 7.1 Hz, 2H), 1.65 – 1.43 (m, 4H), 1.24 (d, J = 6.7 Hz, 12H), 0.90 (t, J = 6.8 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 168.8, 141.3, 138.7, 136.3, 135.96, 129.65, 128.36, 128.25, 127.56, 119.52, 117.30, 105.50, 83.25, 64.93, 28.87, 28.77, 26.12, 25.04, 24.51, 14.08. ¹¹**B** NMR (160 MHz, CDCl₃) δ 33.24, 33.15. HRMS (ESI, m/z) calcd for C₃₁H₃₉B₂N₂O₄ [M+H] ⁺: 525.3090; found: 525.3092. **Specific rotation:** [α]²⁵_D= -8.48° (c =0.33, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 90/10, 0.5 mL/min, λ = 280 nm, t_R (major) = 13.6 min, t_R (minor) = 14.9 min, er = 91:9.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2R)-2-phenylpropanoate (83)

The reaction was performed following the **Condition C**. The residue was purified by flash column chromatograph (PE:EA=30:1) to give the product as a yellow oil liquid (60.4 mg, 59%). ¹**H** NMR (500 MHz, CDCl₃) δ 7.32 – 7.28 (m, 5H), 7.10 (t, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.3 Hz, 2H), 6.30 (d, *J* = 7.3 Hz, 2H), 5.78 (s, 2H), 4.07 (t, *J* = 6.8 Hz, 2H), 3.70 (d, *J* = 7.3 Hz, 1H), 1.62 (d, *J* = 7.1 Hz, 2H), 1.49 (d, *J* = 7.3 Hz, 3H), 1.27 (s, 2H), 1.25 (s, 6H), 1.23 (s, 6H), 1.22 (s, 2H), 0.72 – 0.68 (m, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 174.6, 141.3, 136.3, 128.6, 127.6, 127.5, 127.1, 117.3, 105.5, 83.2, 64.7, 45.6, 28.7, 28.5, 26.0, 25.0, 24.9, 24.8, 24.54, 24.52, 18.5. ¹¹**B** NMR (160 MHz, CDCl₃) δ 34.44, 33.92. **HRMS** (ESI, m/z) calcd for C₃₀H₃₉B₂N₂O₄ [M+H] ⁺: 513.3090; found: 513.3094. **Specific rotation:** [α]²⁵_D=-16.3° (c = 1.00, CHCl₃). Dr >95:5.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (S)-2-(4-isobutylphenyl)propanoate (84)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (64.8 mg, 57%). ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 7.9 Hz, 2H), 7.08 (dd, *J* = 10.7, 7.8 Hz, 4H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.30 (d, *J* = 7.3 Hz, 2H), 5.78 (s, 2H), 4.09 – 4.04 (m, 2H), 3.67 (d, *J* = 7.2 Hz, 1H), 2.43 (d, *J* = 7.3 Hz, 2H), 1.85 – 1.82 (m, 1H), 1.61 (d, *J* = 6.9 Hz, 2H), 1.47 (d, *J* = 7.2 Hz, 3H), 1.34 (dq, *J* = 11.2, 3.6 Hz, 2H), 1.27 (s, 3H), 1.25 (s, 3H), 1.23 (s, 6H), 0.89 (d, *J* = 6.6 Hz, 6H), 0.72 – 0.69 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 141.3, 140.5, 137.9, 136.3, 129.3, 127.6, 127.2, 119.5, 117.3, 105.5, 64.7, 45.2, 45.0, 30.2, 28.7, 28.5, 26.0, 25.0, 24.9, 24.8, 24.5, 10.5 (m) = 0.5 (m) + 0.5 (m)

22.4, 18.5. ¹¹**B** NMR (160 MHz, CDCl₃) δ 34.62, 34.09. **HRMS** (ESI, m/z) calcd for C₃₄H₄₇B₂N₂O₄ [M+H] +: 569.3716; found: 569.3713. **Specific rotation:** [α]²⁵_D= -3.03° (c = 0.99, CHCl₃). Dr >95:5.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (85)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (69.9 mg, 59%). ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.70 (m, 3H), 7.46 (dd, J = 8.4, 1.9 Hz, 1H), 7.16 (dd, J = 16.1, 8.2 Hz, 4H), 7.06 (d, J = 8.2 Hz, 2H), 6.34 (d, J = 7.3 Hz, 2H), 5.84 (s, 2H), 4.18 – 4.12 (m, 2H), 3.91 (d, J = 5.5 Hz, 3H), 3.88 (d, J = 7.2 Hz, 1H), 1.66 (d, J = 7.2 Hz, 2H), 1.63 (s, 3H), 1.53 (dt, J = 10.1, 6.4 Hz, 2H), 1.38 – 1.33 (m, 2H), 1.28 – 1.26 (m, 12H), 0.73 – 0.68 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 177.9, 157.0, 141.2, 136.4, 136.3, 130.3, 127.5, 123.6, 120.7, 119.5, 117.3, 112.0, 105.5, 83.2, 68.0, 64.4, 42.1, 37.1, 28.8, 28.6, 26.1, 25.2, 25.0, 24.8, 24.5, 21.4, 15.8. ¹¹B NMR (160 MHz, CDCl₃) δ 34.62, 33.51. HRMS (ESI, m/z) calcd for C₃₅H₄₃B₂N₂O₅ [M+H] +:593.3353; found: 593.3346. Specific rotation: [α]²⁵_D= 5.00° (c = 0.50, CHCl₃). Dr > 95:5.

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (1R,2S,4R)-bicyclo[2.2.1]hept-5-ene-2-carboxylate (86)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (60.0 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (t, J = 7.7 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.29 (d, J = 7.2 Hz, 2H), 6.12 (dd, J = 5.7, 3.1 Hz, 1H), 6.09 – 6.06 (m, 1H), 5.79 (s, 2H), 4.11 – 4.07 (m, 2H), 3.02 (s, 1H), 2.89 (s, 1H), 2.22 – 2.19 (m, 1H), 1.93 – 1.89 (m, 1H), 1.67 (dd, J = 12.3, 5.1 Hz, 4H), 1.51 (d, J = 8.4 Hz, 2H), 1.39 – 1.31 (m, 4H), 1.24 (d, J = 6.6 Hz, 12H), 0.75 (dd, J = 9.4, 6.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.3, 141.,3 138.0, 136.3, 135.8, 127.5, 117.3, 105.5, 64.4, 46.6, 46.4, 43.2, 41.6, 30.3, 28.9, 28.6, 26.1, 25.0, 24.8, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 35.22, 34.45. HRMS (ESI, m/z) calcd for C₂₉H₃₈¹⁰B₂KN₂O₄ [M+K] ⁺: 537.2722; found: 537.2725. Specific rotation: [α]²⁵_D= -7.4° (c = 0.50, CHCl₃). Dr >95:5.

(R)-2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (87^a)

The reaction was performed following the general procedure C. The residue was purified by flash column chromatograph to give the product as a crystalline solid (34.2 mg, 43%). ¹H NMR (500 MHz, CDCl₃) δ 7.25 (s, 4H), 7.17 – 7.14 (m, 1H), 7.08 (t, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.27 (d, *J* = 7.3 Hz, 2H), 5.81 (s, 2H), 2.96 (dd, *J* = 14.1, 9.6 Hz, 1H), 2.91 – 2.86 (m, 1H), 1.28 – 1.25 (m, 1H), 1.18 (s, 6H), 1.16 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 141.2, 136.3, 128.3, 128.2, 127.5, 125.7, 119.5, 117.3, 105.5, 83.4, 32.0, 24.9, 24.5. ¹¹B NMR (160 MHz, CDCl₃) δ 34.27, 33.68. HRMS (ESI, m/z) calcd for C₂₄H₂₉B₂N₂O₂ [M+H] ⁺: 399.2410; found: 399.2418. Specific rotation: $[\alpha]^{25}_{D}$ = -0.96° (c = 0.52, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 95/5, 0.5 mL/min, λ = 210 nm, t_R (major) = 17.2 min, t_R (minor) = 19.6 min, er = 71:29.

(S)-2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (87^b)

The reaction was performed following the general procedure D. The residue was purified by flash column chromatograph to give the product as a crystalline solid (41.4 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 7.25 (s, 4H), 7.17 – 7.14 (m, 1H), 7.08 (t, J = 7.8 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.27 (d, J = 7.3 Hz, 2H), 5.81 (s, 2H), 2.96 (dd, J = 14.1, 9.6 Hz, 1H), 2.91 – 2.86 (m, 1H), 1.28 – 1.25 (m, 1H), 1.18 (s, 6H), 1.16 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 140.6, 136.3, 135.1, 129.0, 128.1, 127.6, 119.6, 117.3, 105.5, 83.4, 31.5, 29.7, 25.0, 24.8, 24.5, 21.0. ¹¹B NMR (160 MHz, CDCl₃) δ 34.27, 33.68. HRMS (ESI, m/z) calcd for C₂₄H₂₉B₂N₂O₂ [M+H] ⁺: 399.2410; found: 399.2418. Specific rotation: [α]²⁵_D= 3.39° (c = 0.62, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL OD, hexane/isopropanol = 95/5, 0.5 mL/min, $\lambda = 210$ nm, t_R (minor) = 17.0 min, t_R (major) = 19.3 min, er = 9:91.

(S)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (88)

The reaction was performed following the general procedure D. The residue was purified by flash column chromatograph to give the product as a crystalline solid (48.6 mg, 59%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.17

(d, J = 7.8 Hz, 2H), 7.11 – 7.07 (m, 4H), 7.00 (d, J = 8.2 Hz, 2H), 6.28 (d, J = 7.3 Hz, 2H), 5.83 (s, 2H), 2.95 (dd, J = 14.2, 9.3 Hz, 1H), 2.87 (t, J = 4.7 Hz, 1H), 2.32 (s, 3H), 1.20-1.26 (m, 1H), 1.21 (s, 6H), 1.19 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.2 (s), 140.6 (s), 136.3 (s), 135.1 (s), 128.9 (s), 128.0 (s), 127.5 (s), 119.5 (s), 117.3 (s), 105.5 (s), 83.3 (s), 31.5 (s), 25.0 (s), 24.5 (s), 21.0 (s). ¹¹B NMR (160 MHz, CDCl₃) δ 34.27, 34.09. HRMS (ESI, m/z) calcd for C₂₅H₃₀B₂N₂NaO₂ [M+Na] +: 435.2386; found: 435.2381. Specific rotation: $[\alpha]^{25}_{D}= 4.5^{\circ}$ (c = 0.22, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 95/5, 0.5 mL/min, $\lambda = 280$ nm, t_R (major) = 14.8 min, t_R (minor) = 24.0 min, er = 86:14.

(S)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (99)

The reaction was performed following the general procedure **D**. The residue was purified by flash column chromatograph to give the product as a crystalline solid (46.9 mg, 57%). ¹H NMR (500 MHz, CDCl₃) δ 7.14 (d, J = 7.5 Hz, 1H), 7.08 (t, J = 7.8 Hz, 5H), 6.99 (d, J = 8.2 Hz, 3H), 6.27 (d, J = 7.3 Hz, 2H), 5.81 (s, 2H), 2.92 (dd, J = 14.0, 9.7 Hz, 1H), 2.84 (dd, J = 14.1, 6.5 Hz, 1H), 2.31 (s, 3H), 1.21 (s, 1H), 1.19 (s, 6H), 1.17 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 143.7 (s), 141.2 (s), 137.7 (s), 129.0 (s), 128.2 (s), 127.5 (s), 126.4 (s), 125.2 (s), 117.3 (s), 105.5 (s), 83.3 (s), 31.9 (s), 25.0 (s), 24.5 (s), 21.4 (s). ¹¹B NMR (160 MHz, CDCl₃) δ 34.32, 34.09. HRMS (ESI, m/z) calcd for C₂₅H₃₀B₂N₂NaO₂ [M+Na] ⁺: 435.2386; found: 435.2391. Specific rotation: [α]²⁵_D= 5.28° (c = 0.53, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 95/5, 0.5 mL/min, $\lambda = 210$ nm, t_R (major) = 11.9 min, t_R (minor) = 14.2 min, er = 79.5:20.5.

(S)-2-(2-(4-ethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (90)

The reaction was performed following the general procedure D. The residue was purified by flash column chromatograph to give the product as a crystalline solid (37.9 mg, 46%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.14 (d, *J* = 7.9 Hz, 2H), 7.10 – 7.05 (m, 4H), 6.98 (d, *J* = 8.2 Hz, 2H), 6.26 (d, *J* = 7.3 Hz, 2H), 5.81 (s, 2H), 2.93 (dd, *J* = 14.2, 9.3 Hz, 1H), 2.84 (dd, *J* = 14.2, 6.8 Hz, 1H), 2.30 (s, 3H), 1.26 (s, 2H), 1.18 (d, *J* = 8.4 Hz, 12H), 1.15 – 1.13 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.2 (s), 140.6 (s), 135.1 (s), 128.9 (s), 128.0 (s), 127.5 (s), 117.3 (s), 105.5 (s), 83.3 (s), 31.5 (s), 25.0 (s), 24.5 (s), 21.0 (s). ¹¹**B NMR** (160 MHz, CDCl₃) δ 34.45, 34.09. **HRMS** (ESI, m/z) calcd for C₂₆H₃₃B₂N₂O₂ [M+H] +: 427.2723; found: 427.2722. **Specific**

rotation: $[\alpha]^{25}_{D}=7.63^{\circ}$ (c = 0.76, CHCl₃). **HPLC analysis**: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 95/5, 0.5 mL/min, $\lambda = 250$ nMMm, t_R (major) = 14.7 min, t_R (minor) = 21.2 min, er = 78:22.

(R)-2-(2-(4-propylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (91)

The reaction was performed following the general procedure **D**. The residue was purified by flash column chromatograph to give the product as a crystalline solid (45.8 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, J = 7.8 Hz, 2H), 7.10 (t, J = 7.8 Hz, 4H), 7.01 (dd, J = 8.3, 1.0 Hz, 2H), 6.28 (dd, J = 7.3, 1.0 Hz, 2H), 5.84 (s, 2H), 2.96 (dd, J = 14.2, 9.4 Hz, 1H), 2.88 (dd, J = 14.1, 6.9 Hz, 1H), 2.58 – 2.55 (m, 2H), 1.66 – 1.61 (m, 2H), 1.24 – 1.22 (m, 1H), 1.20 (d, J = 7.8 Hz, 12H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 140.9, 140.0, 136.3, 128.4, 128.1, 127.6, 119.6, 117.3, 105.5, 83.4, 37.7, 31.6, 24.9, 24.7, 24.5, 13.8. ¹¹B NMR (160 MHz, CDCl₃) δ 33.68, 32.10. HRMS (ESI, m/z) calcd for C₂₇H₃₅B₂N₂O₂ [M+H] ⁺: 441.2879; found: 441.2878. Specific rotation: $[\alpha]^{25}_{D} = 8.8^{\circ}$ (c = 0.68, CHCl₃). HPLC analysis: HPLC DAICEL CHIRALCEL AD, hexane/isopropanol = 95/5, 0.5 mL/min, $\lambda = 210$ nm, t_R (major) = 13.4 min, t_R (minor) = 17.8 min, er = 77:23.

2-(4-phenylbutyl-1-d)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (97)

The reaction was performed following the general procedure F. The residue was purified by flash column chromatograph to give the product as a crystalline solid (44.5 mg, 74%). ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.22 – 7.18 (m, 3H), 7.10 (td, J = 7.7, 2.8 Hz, 2H), 7.01 (dd, J = 8.3, 2.8 Hz, 2H), 6.28 (d, J = 10.2 Hz, 2H), 5.57 (s, 2H), 2.66 (dt, J = 7.8, 3.9 Hz, 2H), 1.73 – 1.67 (m, 2H), 1.47 (d, J = 8.2 Hz, 2H), 0.87 (t, J = 9.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 142.60, 141.16, 136.33, 128.46, 128.33, 127.55, 125.71, 119.57, 117.38, 105.43, 35.78, 34.10, 24.31. ¹¹B NMR (160 MHz, CDCl₃) δ 32.35. HRMS (ESI, m/z) calcd for C₂₀H₂₁DBN₂ [M+H] ⁺: 302.1933; found: 302.1933.

3.5 DFT Data

Computational Method

Density functional theory (DFT) calculations were carried out with the *Gaussian 16*³ package. All geometry optimizations were performed using the dispersion-corrected B3LYP1⁴⁻⁷ functional with Grimme's D3 dispersion correction⁸, with a mixed basis set of SDD⁹ for Cu and Fe and 6-31G(d) for other atoms. Normal mode vibrational frequency calculations at the same level confirmed that the optimized structures are minima (no imaginary frequency) or transition states (with one imaginary frequency). Single point energies were calculated with the SMD solvation model in cyclohexane ($\epsilon = 2.0$) with the M06-L¹⁰ functional and a mixed basis set of SDD for Cu and Fe and 6-311+G(d,p) for other atoms¹¹⁻¹². Free energies were corrected using Truhlar's quasiharmonic correction, by raising vibrational frequencies that are below 100 cm⁻¹ to 100 cm⁻¹.¹³ In regard to the standard state change from 1 atm to 1 M at 298.15 K, a correction of RTln(C_s/C_g) (= 1.9 kcal/mol) was added to the Gibbs free energy (C_s is the concentration in solution phase and C_g is the concentration in gas phase).¹⁴⁻¹⁶ DFT-optimized structures are illustrated using *CYLView* v1.0 software.¹⁷

Supplementary Figure 18. DFT calculations on the proposed reaction pathway. Free energy profile for the 1,2- or 2,1-insertion of cyclopropyl alkyne into copper hydride.

4. Supplementary Figures

4.1 NMR Spectroscopic Data

2-(4-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (4)

¹H NMR (500 MHz, room temperature, CDCl₃)

¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 20. ¹³C NMR spectrum of compound 4

¹¹B NMR (160 MHz, room temperature, CDCl₃)

Supplementary Figure 21.¹¹B NMR spectrum of compound 4

2-(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2,3- dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (5)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 22. ¹H NMR spectrum of compound 5

¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 23. ¹³C NMR spectrum of compound 5

¹¹B NMR (160 MHz, room temperature, CDCl₃)

Supplementary Figure 24. ¹¹B NMR spectrum of compound 5

2-(2-cyclopropyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphtho[1,8-de][1,3,2]diazaborinine (6)

¹H NMR (500 MHz, room temperature, (CDCl₃)

Supplementary Figure 28. ¹H NMR spectrum of compound 7

¹³C NMR (126 MHz, room temperature, CDCl₃)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

Supplementary Figure 30. ¹¹B NMR spectrum of compound 7

2-(2-cyclopentyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl) naphtho[1,8-de][1,3,2]diazaborinine (8)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 31. ¹H NMR spectrum of compound 8

¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 32. ¹³C NMR spectrum of compound 8

¹¹B NMR (160 MHz, room temperature, CDCl₃)

Supplementary Figure 34. ¹H NMR spectrum of compound 9

¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 36. ¹¹B NMR spectrum of compound 9

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (10)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 38. ¹³C NMR spectrum of compound 10

¹¹B NMR (160 MHz, room temperature, CDCl₃)

Supplementary Figure 40. ¹H NMR spectrum of compound 11

Supplementary Figure 42. ¹¹B NMR spectrum of compound 11

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (12)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 43. ¹H NMR spectrum of compound 12

¹³C NMR (126 MHz, room temperature, CDCl₃)

¹¹B NMR (160 MHz, room temperature, CDCl₃)

Supplementary Figure 45. ¹¹B NMR spectrum of compound 12

2-(5-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (13)

¹H NMR (500 MHz, room temperature, CDCl₃)

¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 48. ¹¹B NMR spectrum of compound 13
2-(3,3-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (14)

2-(6-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-
dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (15)1,3,2-dioxaborolan-2-yl)hexyl)-2,3-

Supplementary Figure 52. ¹H NMR spectrum of compound 15

2-(4-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (16)

-1,3,2-dioxaborolan-2-yl)butyl)-2,3-

tert-butyl 4-(2-(1H-naphtho[1,8-de] [1,3,2] diazaborinin-2(3H)-yl) -2-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl) ethyl) piperidine-1-carboxylate (17)

Supplementary Figure 58. ¹H NMR spectrum of compound 17

Supplementary Figure 59. ¹³C NMR spectrum of compound 17

¹¹B NMR (160 MHz, room temperature, CDCl₃)

2-(2-(cyclohex-1-en-1-yl)-1-(4,4,5,5-tetramethyl- 1,3,2 naphtho[1,8-de][1,3,2]diazaborinine (18)

1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 62. ¹³C NMR spectrum of compound 18

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl) -5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl propionate (19)

Supplementary Figure 65. ¹³C NMR spectrum of compound 19

Supplementary Figure 66.¹¹B NMR spectrum of compound 19

2-(4-((tetrahydro-2H-pyran-2-yl)oxy) -1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (20)

33.51 32.45

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2E,4E)-hexa-2,4-dienoate (22)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 74. ¹³C NMR spectrum of compound 22

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pentyl 2-propylpentanoate (23)

¹H NMR (500 MHz, room temperature, CDCl₃)

00

6.0 5.5

2.01

6.5

98 02

7.0

8.5 8.0 7.5

4.0 3.5 f1 (ppm) Supplementary Figure 76. ¹H NMR spectrum of compound 23

2 03-

4.5

5.0

-00

3.0 2.5 2.0

-2.00

04 05 96

1.5 1.0

1.0 0.5 1.01 0.5

0.0 -0.5 -1.0

¹¹B NMR (160 MHz, room temperature, CDCl₃)

Supplementary Figure 78. ¹¹B NMR spectrum of compound 23

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 1-phenylcyclopentane-1-carboxylate (24)

¹H NMR (500 MHz, room temperature, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Supplementary Figure 80. ¹³C NMR spectrum of compound 24

Supplementary Figure 81.¹¹B NMR spectrum of compound 24

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2R)-2-phenylpropanoate (25)

Supplementary Figure 82. ¹H NMR spectrum of compound 25

Supplementary Figure 83. ¹³C NMR spectrum of compound 25

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl benzoate (26)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 86. ¹³C NMR spectrum of compound 26

Supplementary Figure 87. ¹¹B NMR spectrum of compound 26

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2S)-2-(4-isobutylphenyl)propanoate (27)

Supplementary Figure 88. ¹H NMR spectrum of compound 27

¹¹B NMR (160 MHz, room temperature, CDCl₃)

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (E)-2-methyl-3-phenylacrylate (28)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 91. ¹H NMR spectrum of compound 28

Supplementary Figure 92. ¹³C NMR spectrum of compound 28

Supplementary Figure 93. ¹¹B NMR spectrum of compound 28

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (1R,2S,4R)-bicyclo[2.2.1]hept-5-ene-2-carboxylate (29)

Supplementary Figure 94. ¹H NMR spectrum of compound 29

Supplementary Figure 95. ¹³C NMR spectrum of compound 29

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm) Supplementary Figure 96. ¹¹B NMR spectrum of compound 29

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 2,3-dihydrobenzo[b][1,4]dioxine-2-carboxylate (30)

¹H NMR (500 MHz, room temperature, CDCl₃)

30

Supplementary Figure 97. ¹H NMR spectrum of compound 30

¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 98. ¹³C NMR spectrum of compound 30

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

Supplementary Figure 99. ¹¹B NMR spectrum of compound 30

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 6-(3-(bicyclo[3.3.1]nonan-1-yl)-4-methoxyphenyl)-2-naphthoate (31)

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2R)-2-(6-methoxynaphthalen-2-yl)propanoate (32)

Supplementary Figure 104. ¹³C NMR spectrum of compound 32

Supplementary Figure 105. ¹¹B NMR spectrum of compound 32

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 4-cyclohexylbenzoate (33)

Supplementary Figure 106. ¹H NMR spectrum of compound 33

Supplementary Figure 107. ¹³C NMR spectrum of compound 33

¹¹B NMR (160 MHz, room temperature, CDCl₃)

2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (34)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 110. ¹³C NMR spectrum of compound 34

Supplementary Figure 111. ¹¹B NMR spectrum of compound 34

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (35)

2-(2-(4-ethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (36)

Supplementary Figure 116. ¹³C NMR spectrum of compound 36

Supplementary Figure 117. ¹¹B NMR spectrum of compound 36

2-(2-(4-(tert-butyl)phenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (37)

2-(2-(4-isopropylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (38)

Supplementary Figure 122. ¹³C NMR spectrum of compound 38

Supplementary Figure 123. ¹¹B NMR spectrum of compound 38

2-(2-(4-butylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (39)

Supplementary Figure 124. ¹H NMR spectrum of compound 39

C₄H₉

39

Supplementary Figure 126. ¹¹B NMR spectrum of compound 39

2-(2-(4-propylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (40)

Supplementary Figure 130. ¹H NMR spectrum of compound 41

Supplementary Figure 132. ¹¹B NMR spectrum of compound 41

2-(2-(4-methoxyphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (42)

Supplementary Figure 134. ¹³C NMR spectrum of compound 42

Supplementary Figure 135. ¹¹B NMR spectrum of compound 42

2-(2-(3-methoxyphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (43)

Supplementary Figure 136.¹H NMR spectrum of compound 43

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

2-(2-(4-(pentyloxy)phenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (44)

Supplementary Figure 140. ¹³C NMR spectrum of compound 44

4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-N,N-dimethylaniline (45)

Supplementary Figure 143. ¹³C NMR spectrum of compound 45

¹¹B NMR (160 MHz, room temperature, CDCl₃)

methyl 4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl) -2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)benzoate (46)

Supplementary Figure 149. ¹³C NMR spectrum of compound 47

¹¹B NMR (160 MHz, room temperature, CDCl₃)

Supplementary Figure 150. ¹¹B NMR spectrum of compound 47

2-(2-(4-fluorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (48) 1H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 152. ¹H NMR spectrum of compound 48

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Supplementary Figure 153. ¹³C NMR spectrum of compound 48

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

Supplementary Figure 155.¹⁹F NMR spectrum of compound 48

2-(2-(4-chlorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl) -2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (49)

¹H NMR (500 MHz, room temperature, CDCl₃)

9.0

Supplementary Figure 156. ¹H NMR spectrum of compound 49

Supplementary Figure 157. ¹³C NMR spectrum of compound 49

¹¹B NMR (160 MHz, room temperature, CDCl₃)

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(trifluoromethyl)phenyl) dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (50)

ethyl)-2,3-

¹H NMR (500 MHz, room temperature, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Supplementary Figure 160. ¹³C NMR spectrum of compound 50

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

Supplementary Figure 162.¹⁹F NMR spectrum of compound 50

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (51)

Supplementary Figure 164. ¹³C NMR spectrum of compound 51

f1 (ppm)

Supplementary Figure 165. ¹¹B NMR spectrum of compound 51

2-(2-(3,4-dimethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (52)

Supplementary Figure 167. ¹³C NMR spectrum of compound 52

¹¹B NMR (160 MHz, room temperature, CDCl₃)

2-(2-(3,5-dimethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (53)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 169. ¹H NMR spectrum of compound 53

Supplementary Figure 170. ¹³C NMR spectrum of compound 53

2-(2-(4,4-dimethylthiochroman-7-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (54)

Supplementary Figure 172. ¹H NMR spectrum of compound 54

Supplementary Figure 174. ¹¹B NMR spectrum of compound 54

2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(thiophen-3-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (55)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 175.¹H NMR spectrum of compound 55

Supplementary Figure 176. ¹³C NMR spectrum of compound 55

2-(2-(1H-phenalen-5-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (56)

Supplementary Figure 178. ¹H NMR spectrum of compound 56

Supplementary Figure 179. ¹³C NMR spectrum of compound 56

2-(2-(4-(9H-carbazol-9-yl)phenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (57)

¹H NMR (500 MHz, room temperature, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Supplementary Figure 182. ¹³C NMR spectrum of compound 57

¹H NMR (500 MHz, room temperature, CDCl₃)

82 80 73 77 77

113 113 113 113 113 113 113 113 113 113	32 31 33 30 30 17
n n n n n n n n n	

Supplementary Figure 186. ¹¹B NMR spectrum of compound 58

(R)-2-(4-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (59)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 188. ¹³C NMR spectrum of compound 59

Supplementary Figure 189. ¹¹B NMR spectrum of compound 59

(R)-2-(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (60)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

(R)-2-(2-cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (61)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 194. ¹³C NMR spectrum of compound 61

naphtho[1,8-de][1,3,2]diazaborinine (62)

Supplementary Figure 196. ¹H NMR spectrum of compound 62

Supplementary Figure 198. ¹¹B NMR spectrum of compound 62

(R)-2-(2-cyclopropyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (63)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 200. ¹³C NMR spectrum of compound 63

64

Supplementary Figure 202. ¹H NMR spectrum of compound 64

Supplementary Figure 203. ¹³C NMR spectrum of compound 64

34.35

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (65)

Supplementary Figure 206. ¹³C NMR spectrum of compound 65

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (66)

Supplementary Figure 208. ¹H NMR spectrum of compound 66

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (67)

Supplementary Figure 212. ¹³C NMR spectrum of compound 67

Supplementary Figure 213. ¹¹B NMR spectrum of compound 67

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (68)

Supplementary Figure 215. ¹³C NMR spectrum of compound 68

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (69)

Supplementary Figure 219. ¹¹B NMR spectrum of compound 69

(R)-2-(5-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (70)

Supplementary Figure 220. ¹H NMR spectrum of compound 70

Supplementary Figure 222. ¹¹B NMR spectrum of compound 70

(R)-tert-butyl 4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)piperidine-1-carboxylate (71)

Supplementary Figure 225.¹¹B NMR spectrum of compound 71

(R)-2-(4-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (72)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 226. ¹H NMR spectrum of compound 72

(R)-2-(6-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl -1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (73)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 230. ¹³C NMR spectrum of compound 73

¹¹B NMR (160 MHz, room temperature, CDCl₃)

(R)-2-(5-((tert-butyldiphenylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (74)

Supplementary Figure 232. ¹H NMR spectrum of compound 74

Supplementary Figure 234. ¹¹B NMR spectrum of compound 74

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-((triisopropylsilyl)oxy)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (75)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 236. ¹³C NMR spectrum of compound 75

¹¹B NMR (160 MHz, room temperature, CDCl₃)

dioxaborolan-2-yl)pentyl propionate (76)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 238. ¹H NMR spectrum of compound 76

Supplementary Figure 239. ¹³C NMR spectrum of compound 76

Supplementary Figure 240. ¹¹B NMR spectrum of compound 76

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2E,4E)-hexa-2,4-dienoate (77)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 242. ¹³C NMR spectrum of compound 77

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 2-propylpentanoate (78)

¹H NMR (500 MHz, room temperature, CDCl₃)

0.77 0.77 0.77 0.08 0.08 0.75

78

Supplementary Figure 244. ¹H NMR spectrum of compound 78

 \sim

Ċ₃H₇

Bdan

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl benzoate (79)

¹H NMR (500 MHz, room temperature, CDCl₃)

f1 (ppm)

Supplementary Figure 248. ¹³C NMR spectrum of compound 79

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)pentyl 4-methylbenzoate (80)

Supplementary Figure 250. ¹H NMR spectrum of compound 80

Supplementary Figure 252. ¹¹B NMR spectrum of compound 80

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 4-cyclohexylbenzoate (81)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 254. ¹³C NMR spectrum of compound 81

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)pentyl (E)-2-methyl-3-phenylacrylate (82)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 256. ¹H NMR spectrum of compound 82

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2R)-2-phenylpropanoate (83)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 260. ¹³C NMR spectrum of compound 83

Supplementary Figure 261. ¹¹B NMR spectrum of compound 83

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)pentyl (2S)-2-(4-isobutylphenyl)propanoate (84)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 262. ¹H NMR spectrum of compound 84

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2R)-2-(6-methoxynaphthalen-2-yl)propanoate (85)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 265. ¹H NMR spectrum of compound 85

Supplementary Figure 266. ¹³C NMR spectrum of compound 85

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (1R,2S,4R)-bicyclo[2.2.1]hept-5-ene-2-carboxylate (86)

Supplementary Figure 268. ¹H NMR spectrum of compound 86

Supplementary Figure 269. ¹³C NMR spectrum of compound 86

¹¹B NMR (160 MHz, room temperature, CDCl₃)

(R)-2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (87^a)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 272. ¹³C NMR spectrum of compound 87^a

Supplementary Figure 274. ¹H NMR spectrum of compound 87^b

(S)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (88)

Supplementary Figure 278. ¹³C NMR spectrum of compound 88

Supplementary Figure 279. ¹¹B NMR spectrum of compound 88

(S)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (89)

¹¹B NMR (160 MHz, room temperature, CDCl₃)

(S)-2-(2-(4-ethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (90)

Supplementary Figure 284. ¹³C NMR spectrum of compound 90

Supplementary Figure 285. ¹¹B NMR spectrum of compound 90

(S)-2-(2-(4-propylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (91)

Supplementary Figure 286. ¹H NMR spectrum of compound 91

 C_3H_7

Ēdan

Supplementary Figure 288. ¹¹B NMR spectrum of compound 91

2-(4-phenylbutyl-1-d)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (97)

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 289. ¹H NMR spectrum of compound 97

Supplementary Figure 290. ¹³C NMR spectrum of compound 97

Supplementary Figure 291. ¹¹B NMR spectrum of compound 97

4.2. Chiral HPLC charts

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2R)-2-phenylpropanoate (25)

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2S)-2-(4-isobutylphenyl)propanoate (27)

Supplementary Figure 293. HPLC of compound rac-27

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (1R,2S,4R)-bicyclo[2.2.1]hept-5-ene-2-carboxylate (29)

Supplementary Figure 294. HPLC of compound rac-29

5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2S)-2-(6-methoxynaphthalen-2-yl)propanoate (32)

1	9.461	BB	0.4124	2476. 59546	93.07779	48.3490
2	11.771	VB R	0.5116	2645.73657	76.08044	51.6510

Supplementary Figure 295. HPLC of compound rac-32

(R)-2-(4-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (59)

Supplementary Figure 297. HPLC of compound (R)-59

(R)-2-(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (60)

(R)-2-(2-cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (61)

(R)-2-(2-cyclopentyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (62)

(R)-2-(2-cyclopropyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (63)

Supplementary Figure 304. HPLC of compound rac-63

Supplementary Figure 305. HPLC of compound (R)-63

(R)-2-(3,3-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (64)

1	5.767	BV	0.6388	2.14327e4	509.44110	85.2609
2	7.455	VB	0.5604	3705.09912	101.37244	14.7391

Supplementary Figure 307. HPLC of compound (R)-64

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (65)

Supplementary Figure 309. HPLC of compound (R)-65

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (66)

Supplementary Figure 311. HPLC of compound (R)-66

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (67)

Supplementary Figure 313. HPLC of compound (R)-67

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (68)

Supplementary Figure 315. HPLC of compound (R)-68

(R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (69)

Supplementary Figure 317. HPLC of compound (R)-69

(R)-2-(5-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (70)

Supplementary Figure 318. HPLC of compound rac-70

1	4.990	VV E	0.1086	149.74039	21.14183	12.9321
2	5.210	VB R	0.0753	1008.15424	192.02641	87.0679
		Suj	oplementar	ry Figure 319. I	HPLC of comp	ound (R)-70

(R)-tert-butyl 4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)piperidine-1-carboxylate (71)

Supplementary Figure 321. HPLC of compound (R)-71

(R)-2-(4-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (72)

(R)-2-(6-((tert-butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (73)

(R)-2-(5-((tert-butyldiphenylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (74)

Supplementary Figure 327. HPLC of compound (R)-74

⁽R)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-((triisopropylsilyl)oxy)pentyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (75)

1	19.032	BV	0.6016	1473. 51355	35. 39914	8.1744
2	21.107	VB	0.7746	1.65523e4	354. 57391	91.8256
		Su	pplementar	ry Figure 329. I	HPLC of comp	ound (R)-75

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl propionate (76)

Supplementary Figure 331. HPLC of compound (R)-76

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (2E,4E)-hexa-2,4-dienoate (77)

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 2-propylpentanoate (78)

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl benzoate (79)

Supplementary Figure 337. HPLC of compound (R)-79

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 4-methylbenzoate (80)

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl 4-cyclohexylbenzoate (81)

215

1	9.184	BB	0.3745	2967.78223	121.71830	85.3946
2	11.310	BB	0.5770	507.59317	13.30732	14.6054
		Su	pplementa	ry Figure 341.	HPLC of com	pound (R)-81

(R)-5-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl (E)-2-methyl-3-phenylacrylate (82)

Supplementary Figure 343. HPLC of compound (R)-82
(R)-2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (87^a)

(S)-2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1Hnaphtho[1,8-de][1,3,2]diazaborinine (87^b)

(S)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (88)

(S)-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (99)

Supplementary Figure 351. HPLC of compound (S)-89

(S)-2-(2-(4-ethylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (90)

1	14.676	VV R	0.4974	2.56564e4	790. 87378	77.7908
2	21.163	BB	0.4387	7324.85742	256.82422	22.2092

Supplementary Figure 353. HPLC of compound (S)- 90

(R)-2-(2-(4-propylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (91)

Supplementary Figure 355. HPLC of compound (S)- 91

5. Supplementary References

1. Kuang, Z., Mai, S., Yang, K. & Song, Q. Synthesis of anti-vicinal diboronates from diarylethynes and B₂pin₂. *Science Bulletin*. **64**, 1685-1690 (2019).

2. Feng, X., Jeon, H. & Yun, J. Regio- and Enantioselective Copper(I)-Catalyzed Hydroboration of Borylalkenes: Asymmetric Synthesis of 1,1-Diborylalkanes. *Angew*. *Chem. Int. Ed.* **52**, 3989–3992 (2013).

 Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; A. Marenich,V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg,
J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; K. Kudin, N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

4. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. *Phys. Rev. B.* **37**, 785-789 (1988).

5. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A.* **38**, 3098 (1988).

6. Miehlich, B., Savin, A., Stoll, H. & Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. *Chem. Phys. Lett.* **157**, 200-206 (1989).

7. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **98**, 5648-5652 (1993).

8. Grimme, S., Antony, S., Ehrlich, S. & Krieg, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).

9. Roy, L. E., Hay, P. J. & Martin, R. L. Revised basis sets for the LANL effective core potentials. *J. Chem. Theory Comput.* **4**, 1029-1031 (2008).

10. Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. *J. Chem. Phys.* **125**, 194101 (2006).

11. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B.* **113**, 6378-6396 (2009).

12. Weaver, J. H. & Frederikse, H. P. R. Crc handbook of chemistry and physics. *CRC Press. Boca Raton.* **76**, 12-156 (1977).

13. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* **10**, 6615-6620 (2008).

14. Li, H. & Hall, M. B. Role of the chemically con-innocent ligand in the catalytic formation of hydrogen and carbon dioxide from methanol and water with the metal as the spectator. *J. Am. Chem. Soc.* **137**, 12330-12342 (2015).

15. Jiang, Y.-Y., Yan, L., Yu, H.-Z., Zhang, Q. & Fu, Y. Mechanism of vanadiumcatalyzed selective C-O and C-C cleavage of lignin model compound. *ACS Catal.* **6**, 4399-4410 (2016).

16. Yu, J.-L., Zhang, S.-Q. & Hong, X. Mechanisms and origins of chemo- and regioselectivities of Ru(II)-catalyzed decarboxylative C-H alkenylation of aryl

carboxylic acids with alkynes: A computational study. J. Am. Chem. Soc. 139, 7224-7243 (2017).

17. Legault, C. Y. CYLview, 1.0b, Universite de Sherbrooke: Quebec, Canada, 2009; http://www.cylview.org.