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Supplementary Note 1 

Instead of Cartesian coordinates, rotationally invariant properties such as dihedral angles or distance 

matrices could be used as the input to autoencoders. We tested such models. Training using 30% of the 

MD run1 data for Aβ40, with backbone dihedral angles (three per residue) as input and a latent-space 

dimension of 200, we obtained a reconstruction RMSD (Ca only) of 11.78 Å (calculated on the 100-fold 

diluted test set of 980 conformations). In comparison, the reconstruction Ca RMSD using Cartesian 

coordinates of the same training set and the same latent-space dimension was only 3.28 Å. The 

reconstruction results (RMSDs calculated on heavy atoms) for the latter Cartesian model are reported in 

Fig. S2. 

The reconstruction RMSE of the dihedral model was 35°, but the error of any individual dihedral angle 

could be as large as 100° (calculated from the largest error among the individual dihedral angles in each 

test conformation, averaged over the test set). A dihedral error this large in the middle of the IDP chain 

produces RMSDs of 12.3 ± 3.7 Å (calculated on 10 test conformations), because the dihedral angle affects 

the Cartesian coordinates of all the residues in the second half of the chain. 

Autoencoders using a distance matrix as input had a similar problem. For example, using Ca-Ca distances 

of residue i to residues i + 1, i + 2, i + 3, i + 4 as input, the reconstruction Ca RMSD for Aβ40 was 11.13 

Å. An i to i + 3 Ca-Ca distance corresponds to a virtual dihedral angle defined by the Ca atoms of residues 

i, i + 1, i + 2, and i + 3. Therefore the high reconstruction RMSD of the distance-matrix model can in 

particular be attributed to errors in the i to i + 3 Ca-Ca distance. The reconstruction RMSE of the distance-

matrix model was 1.1 Å for the i to i + 3 Ca-Ca distance, and the corresponding mean largest error was 

3.0 Å. 

Here are some details of the models and data analysis when dihedral angles or distance matrices were 

used as input. The autoencoder architecture was the same as described for the case where Cartesian 

coordinates were the input, with a dimension of 200 for the latent space. Again the loss function was the 

binary cross-entropy. For dihedral angles, the number of input and output neurons was 3Nres – 3 (117 for 

Aβ40); for distance matrices, the number of input and output neurons was 4Nres – 10 (150 for Aβ40). The 

conversion from Cartesian coordinates (backbone heavy atoms only) to dihedral angles was done using 

the BAT (bond-angle-torsion) module 1 in the MDAnalysis package 2. The back conversion was also done 

using the BAT module, with each bond or bond angle fixed at the average value of the training set. For 

distance matrices, the back conversion to Cartesian coordinates (Ca atoms only) was done in a Fortran 

code, with Ca Cartesian coordinates of residues i, i + 1, i + 2, and i + 3 calculated from the i to i + 1, i +1 
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to i + 2, i +2 to i + 3, i to i + 2, i +1 to i + 3, and i to i + 3 distances. This procedure generated two possible 

positions for the i + 3 Ca (mirror images of each other); the i – 1 to i + 3 distance was used to select one 

of the two image positions. That is, we selected the i + 3 Ca position with an i – 1 to i + 3 distance closer 

to the supplied i – 1 to i + 3 distance. 

Supplementary Note 2 

Figure S4 and Table S1 show that the training data in the latent space from MD run1 of ChiZ is not 

represented well by a single multivariate Gaussian. We explored the idea of representing the training data 

by a mixture of multivariate Gaussians. To that end, we first clustered the latent-space positions of the 

training set. The clustering method was k-means cluster and the distances between latent-space positions 

were the Euclidian distances. The number of clusters was set to 2, 4, or 8. We then used the mean vector 

and covariance matrix calculated on the points within each cluster to define a cluster-specific multivariate 

Gaussian. Lastly each cluster-specific Gaussian was assigned a weight proportional to the number of 

points in that cluster, and new points were sampled from all the cluster-specific Gaussians, with a 

particular Gaussian selected each time based its assigned weight. The new points were fed to the decoder 

to produce conformations in Cartesian coordinates. 

We compared a generated set of conformations (at size 1´) against the 10-fold diluted training set and test 

set. The best-match RMSDs are listed below. Without clustering (i.e., a single Gaussians), the best-match 

RMSD with the training set was 6.06 Å; this RMSD decreases as the number of Gaussians increases, 

reaching 4.65 Å with 8 Gaussians. Thus a mixture of multivariate Gaussians indeed improved the 

representation of the training data in the latent space. However, the degree of match with the test set went 

in the opposite direction. The best-match RMSD increased steadily from 7.95 Å for a single Gaussian to 

8.50 Å with 8 Gaussians. The mixture of multivariate Gaussians was apparently overfitting the training 

data, thereby compromising the ability to capture generic features shared by the test data. 

# of Gaussians Best-match RMSD with training set (Å) Best-match RMSD with test set (Å) 

1 6.06 7.95 

2 5.71 8.05 

4 5.26 8.22 

8 4.65 8.50 

Supplementary Note 3 
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We assessed the effect of increasing the training size on the accuracy of generated conformations in match 

with the test set. For MD run1 of each IDP, we included a growing percentage of conformations in the 

training set, from 10% to 70%. The best-match RMSDs with the corresponding test sets are listed below. 

For Q15, as the training size increased from 10% to 70%, there was a slight improvement in prediction 

accuracy, with the best-match RMSD decreasing from 3.59 Å to 3.44 Å. We did not deem the small gain 

in accuracy (a mere 0.15 Å reduction in RMSD) at the cost of expanding the MD simulations by 7 times 

was justified, and hence we selected 10% as the training size for Q15. For Aβ40, a similar slight 

improvement in prediction accuracy was obtained, with the best-match RMSD plateauing at ~5.2 Å when 

the training size reached 50%, compared to 5.60 Å at the 20% training size. We chose 20% as the training 

size for Aβ40 as a comprise between accuracy and cost. For ChiZ, the best-match RMSD already reached 

plateau at the 30% training size, and that was our final selection for training size. 

 Best-match RMSD (Å) at size 1´b 

Training sizea Q15 Aβ40 ChiZ 

10% 3.59c 5.94 10.08 

20% 3.52 5.60c 8.18 

30% 3.50 5.47 7.95c 

50% 3.48 5.15 8.23 

70% 3.44 5.22 7.89 

aSize expressed as percentage of the full dataset, from MD run1 of each protein. 
b1´ means that the generated set had the same size as the particular test set (e.g., 70% of the full dataset). 
cEntries in bold are for the training sizes eventually selected in the autoencoders for the respective IDPs. 

A practice popular in other applications of autoencoders is to randomize, or shuffle the data before 

separating into the training set and test set. For IDP conformations sampled from MD simulations, 

shuffling increases the similarity between the training and test sets, as conformations in the two sets 

become more likely to be near each other along the MD trajectory. When shuffling was applied, the best-

match RMSDs were 3.05 Å for Q15 at 10% training size, 3.99 Å for Aβ40 at 20% training size, and 6.20 

Å for ChiZ at 30% training size. Significant gains in prediction accuracy were indeed obtained upon data 

shuffling. However, doing so departs from our goal of achieving accuracy at the lowest cost of MD 

simulations. 
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We selected 0.75Nres as the latent-space dimension (=13 for Q15, 30 for Ab40, and 48 for ChiZ), but also 

assessed the effect of the latent-space dimension on the prediction accuracy. The results are listed below. 

In short, while reducing the latent-space dimensions from the selected values by 10 resulted in 

deterioration in accuracy, increasing the dimensions by 10, 20, and 30 had little effect on the prediction 

accuracy. For Q15, a very large value, 200, for the latent-space dimension actually led to a slight increase 

in best-match RMSD (see also Fig. S6). 

Latent-space dimension | best-match RMSD (Å) at size 1´a 

Q15 Aβ40 ChiZ 

3 3.82 20 5.88 38 8.29 

13b 3.59 30b 5.60 48b 7.95 

23 3.59 40 5.54 58 7.77 

33 3.48 50 5.58 68 8.04 

43 3.48 60 5.55 78 7.93 

200 3.76     

aIn each row under an IDP, the first entry is the latent-space dimension and the second entry is the best-

match RMSD between the 100-fold diluted test set and the generated set at size 1´. Data are from MD 

run1 of each protein. 
bEntries in bold are the latent-space dimensions eventually selected in the autoencoders for the respective 

IDPs. 

Supplementary Note 4 

The main results that we report for ChiZ were based on MD simulations using the AMBER14SB/TIP4PD 

force-field combination. To further demonstrate the robustness of conformational generation by 

autoencoders, we applied this approach to ChiZ conformations sampled from MD simulations using four 

other protein/water force-field combinations. For AMBER03ws/TIP4P2005, the amount of simulations 

was the same as for AMBER14SB/TIP4PD, i.e., 12 trajectories of 3 µs each. The autoencoder results for 

AMBER03ws/TIP4P2005 were very similar to those for AMBER14SB/TIP4PD. The reconstruction 

RMSDs for AMBER03ws/TIP4P2005 at a 30% training size were 7.1 ± 1.6 Å (mean ± standard deviation 

among 12 MD runs), comparable to the counterparts, 6.4 ± 1.0 Å, for AMBER14SB/TIP4PD. For 

generating new conformations, the best-match RMSDs at size 1´ were 7.9 ± 1.3 Å for 

AMBER03ws/TIP4P2005; the corresponding result for AMBER14SB/TIP4PD run1 was 7.95 Å, right in 

the middle of the range of best-match RMSDs obtained from the 12 AMBER03ws/TIP4P2005 runs. 
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For each of the other three force-field combinations, we ran four trajectories of 0.5 µs each. Given the 

shorter trajectories, we used 70% of the conformations (25, 000 total) for training and 30% for testing. 

The reconstruction RMSDs were 7.2 Å for AMBER99SB-ILDN/TIP4PD, 5.9 Å for 

AMBER15IPQ/SPCEb, and 4.4 Å for CHARMM36m/TIP3Pm. For generating new conformations, the 

best-match RMSDs were each approximately 1 Å higher than the respective reconstruction RMSDs. 

Again, these ranges of RMSDs for conformational reconstruction and generation are comparable to those 

obtained using AMBER14SB/TIP4PD, thereby demonstrating the robustness of the autoencoder 

approach. 

Supplementary Note 5 

We tested autoencoders where the loss function was the mean square error (MSE) instead of the binary 

cross-entropy (BCE). The results, listed below, showed no significant differences between the two loss 

functions. Likewise, the particular conformation used for structural alignment before shifting and scaling 

the Cartesian coordinates for autoencoder input had no effect on the accuracy of generated conformations. 

 Best-match RMSD (Å) at size 1´a 

 Q15 Aβ40 ChiZ 

1st frameb; BCEc 3.59 5.60 7.95 

1st frameb; MSEd 3.48 5.68 7.85 

50000th frameb, BCEc 3.51 5.56 7.81 

aThe data for training and testing were from MD run1 of each protein. 
bThe frame number used for structural alignment before shifting and scaling the coordinates. 
cThe loss function was binary cross-entropy (BCE). 
dThe loss function was mean square error (MSE). 
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Table S1. Kullback-Leibler divergence between histograms in two-dimensional spaces of the latent 

space 

Fig. 3 
 0,3 5,6 7,10 12,13 15,20 21,22 23,25 0,27   

training | Gaussian 0.116 0.071 0.074 0.080 0.054 0.056 0.078 0.098   

test | Gaussian 0.376 0.079 0.110 0.122 0.731 0.335 0.209 0.543   

training | test 0.580 0.189 0.204 0.168 0.930 0.312 0.348 0.572   

Fig. 5a 
 4,6 9,14 15,16 24,26 28,30 34,36 38,39 44,47   

training | Gaussian 0.023 0.079 0.019 0.079 0.045 0.030 0.079 0.023   

test | Gaussian 0.042 0.081 0.097 0.089 0.027 0.037 0.073 0.032   

training | test 0.040 0.036 0.077 0.066 0.034 0.036 0.061 0.038   

Fig. S3 

 3,4 4,9 5,8 3,11 5,9 5,11 8,12 9,11 9,12 11,12 

training | Gaussian 0.089 0.089 0.051 0.058 0.109 0.056 0.053 0.093 0.066 0.077 

test | multivariate 0.063 0.068 0.051 0.051 0.071 0.055 0.054 0.063 0.068 0.055 

training | test 0.084 0.097 0.078 0.136 0.097 0.105 0.073 0.101 0.080 0.105 

Fig. S4 

 0,4 5,8 9,14 15,16 20,21 24,26 25,27 28,30 38,39 44,47 

training | Gaussian 0.479 0.081 0.125 0.092 0.091 0.104 0.072 0.075 0.097 0.118 

test | multivariate 0.767 0.215 0.257 0.702 0.116 0.193 0.266 0.223 0.267 0.343 

training | test 0.362 0.188 0.452 0.424 0.181 0.319 0.282 0.311 0.378 0.294 
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Table S2. Diversity of test sets and similarity between training and test sets 

 
Pairwise RMSD (Å)a 

(dil test ´ dil test) 

Best Match RMSD (Å)b 

(dil test ´ dil test) 

Best Match RMSD (Å) c 

(dil test ´ train) 

Q15 (10% run1) 6.98 3.71 3.96 

Aβ40 (20% run1) 11.61 3.83 6.76 

ChiZ (30% run1) 18.21 4.83 10.17 

ChiZ (combined)d 19.23 8.62 8.47 

aAverage RMSD when each conformation is compared with all other conformations in the diluted test set. 
bAverage best-match RMSD of the diluted test set against other members of the same set. 
cAverage best-match RMSD of the diluted test set against the training set. 
dCombined training or test set, each from combining the corresponding data from all of the 12 MD runs. 

The combined training set is diluted 10-fold before use, whereas the combined test set is diluted 1000-

fold. 
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Figure S1. Conformational properties of Q15 and Aβ40 in MD simulations. (a) Fraction of  a-helical 

residues in two replicate MD runs of Q15. Run1 started from a random-coil conformation whereas run2 

started from an all a-helical conformation. These simulations were reported previously3, where 

conformational sampling was enhanced by the replica exchange with solute tempering (REST) method4, 

5. (b) Radius of gyration of Aβ40 in four replicate runs. All the four runs started from disordered 

conformations, but run2 happened to stay relatively compact for the first half of the simulation. The curves 

were smoothed by running average with a window of 1000 frames (sampled at 10-ps intervals for Q15 

and 20-ps intervals for Aβ40). 
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Figure S2. Reconstruction results when the dimension of the latent space is increased to 200. 

Average reconstruction RMSDs at different sizes of the training sets sampled from replicate MD runs. (a) 

Q15 at 5%, 10%, and 20% training sizes from two runs. (b) Aβ40 at 10%, 20%, and 30% training sizes 

from four runs. (c) ChiZ at 10%, 20%, and 30% training sizes from 12 runs. 
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Figure S3. Histograms of Q15 in the latent space, calculated from training data, test data, and 

multivariate Gaussian. Histograms for pairs of encoder nonzero outputs from run1 are shown as heat 

maps, with yellow representing pixels with the highest counts and dark blue representing pixels with 0 

count. 
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Figure S4. Histograms of ChiZ in the latent space, calculated from training data, test data, and 

multivariate Gaussian. Histograms for pairs of encoder nonzero outputs from run1 are shown as heat 

maps, with yellow representing pixels with the highest counts and dark blue representing pixels with 0 

count. 
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Figure S5. Results for autoencoder-generated conformations of ChiZ. The average best-match 

RMSDs of the 100-fold diluted test set of run1 are calculated against generated sets at different sizes. (a) 

Generated sets from run1, at sizes measured in multiples of the test size (= 101,500). (b) Generated sets 

pooled from run1 to runi, where i goes from 1 to 12. From each MD run, the generated set is at size 1´. 
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Figure S6. Results for autoencoder-generated conformations of Q15, with a 200-dimensioan latent 

space. The average best-match RMSDs of the 100-fold diluted test set are calculated against generated 

sets at different sizes. The latter sizes are measured in multiples of the test size (= 85,500). Run1 results 

are shown at sizes of the generated set ranging from the training size (9,500 or 0.11´) to 4´. For run2, the 

result is shown at 1´. 
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