
iScience, Volume 25
Supplemental information
Fast and accurate matching of cellular barcodes

across short-reads and long-reads of single-cell

RNA-seq experiments

Ghazal Ebrahimi, Baraa Orabi, Meghan Robinson, Cedric Chauve, Ryan
Flannigan, and Faraz Hach



Supplementary Material

Table S1: Statistics comparing the matches of FLAMES and scTagger against the Brute-force
method, related to Figure 6.

Sample
Brute
matched?

Brute match
unique?

scTagger =
Brute?

FLAMES =
Brute?

scTagger =
FLAMES?

% of LRs # of LRs

N

✓ ✓ ✓ ✓ ✓ 23.5% 1,734,479
✓ ✓ ✓ ✗ ✗ 26.7% 1,965,586
✓ ✓ ✗ ✓ ✗ 0.1% 3,742
✓ ✓ ✗ ✗ ✗ 1.5% 111,101
✓ ✗ ✓ ✗ ✗ 3.2% 235,318
✓ ✗ ✗ ✗ ✗ 20.6% 1,521,474
✗ ✗ ✗ ✗ ✗ 24.4% 1,799,495

NOA1

✓ ✓ ✓ ✓ ✓ 28.4% 1,606,970
✓ ✓ ✓ ✗ ✗ 28.2% 1,597,480
✓ ✓ ✗ ✓ ✗ 0.0% 1,586
✓ ✓ ✗ ✗ ✗ 0.7% 42,423
✓ ✗ ✓ ✗ ✗ 4.0% 228,219
✓ ✗ ✗ ✗ ✗ 14.2% 803,268
✗ ✗ ✗ ✗ ✗ 24.5% 1,385,299

NOA2

✓ ✓ ✓ ✓ ✓ 28.0% 1,321,345
✓ ✓ ✓ ✗ ✗ 28.4% 1,337,904
✓ ✓ ✗ ✓ ✗ 0.1% 4,581
✓ ✓ ✗ ✗ ✗ 2.1% 99,454
✓ ✗ ✓ ✗ ✗ 2.0% 93,328
✓ ✗ ✗ ✗ ✗ 15.3% 720,629
✗ ✗ ✗ ✗ ✗ 24.1% 1,136,768

i



Root

1:A 2:C 3:T 4:T 5:G

6:C 7:T 8:T 9:G
10:G

16:A

11:T 12:T 13:G
14:G 15:T

17:A 18:T

Barcode size = 4
𝑒 = 1
𝑘-mer size = 4 + 1 = 5

Node # Read set

3 𝑟1, 𝑟2

4 𝑟1, 𝑟2

5 𝑟1, 𝑟2

8 𝑟1, 𝑟2

9 𝑟1, 𝑟2

10 𝑟1

13 𝑟1, 𝑟2

14 𝑟1

15 𝑟1

16 𝑟2

17 𝑟2

18 𝑟2

𝑟1 : ACTTGGT
𝑟2 : ACTTGAT

Figure S1: Illustrative example of trie construction in scTagger, related to Figure 2. Assuming
barcode size of 4 and maximum allowed error e = 1, the k-mer size is 5. The k-mers of the two LR
barcode segments, r1 and r2, are inserted into the trie. The nodes IDs correspond to the order by
which they were inserted into the trie. Nodes at layers k − e = to k + e = (i.e. the deepest three
layers in the example) contain nodes that barcode alignment can successfully terminate within the
allowed error. A map with these nodes as keys is maintained. Each node maps to a set of LR
segments from which we extracted k-mers that threaded through the node at insertion time.

A, T, A, G, ...
Barcode, Index = 1, error = 2

A, T, A, G, ...
Barcode, Index = 2, error = 2

root

T C G

A C

A T G

A

T

A B

A, T, A, G, ...
Barcode, Index = 1, error = 2

A, T, A, G, ...
Barcode, Index = 2, error = 1

root

T C G

A C

A T G

A

T

root

A T C G

A T C

A T G

A, T, A, G, ...
Barcode, Index = 1, error = 2

A, T, A, G, ...
Barcode, Index = 2, error = 1

A, T, A, G, ...
Barcode, Index = 1, error = 2

A, T, A, G, ...
Barcode, Index = 1, error = 1

T C

root

G

A T G

A

A T C

C D

Figure S2: Illustrative example of trie querying, related to Figure 2. The different sub-queries of
the search at a given node: A) Matching: If the a child node’s character matches the next barcode
character, we explore this branch while incrementing the barcode index. B) Mismatch: If the a
child node’s character does not match the next barcode character, we explore this branch while
incrementing the barcode index and the total error incurred. C) Deletion: If a character is deleted
from the long-read segment, we skip that corresponding barcode index by incrementing the index
while stay on the same node in the trie and increment the total error incurred. D) Insertion: If
a character is inserted in the long-read segment, we skip that node and to its children without
increasing the barcode index while incrementing the total error incurred.

ii



Algorithm S1 Automatic detection of the ranges of the adapter alignments on the LRs, related
to Figure 7.

function getRanges(F) ▷ F[i] is the number adapter alignments on the i-th position
ranges = list()
while Q.size > 0 do

S = sum(F)
if S < 0.01∗T then

break
end if
Q = Queue()
Q.enqueue(P)
first = P ▷ first location in the range
last = P ▷ last location in the range
while Q.size > 0 do

i = Q.deque()
if i≤ P and F[i-1] > 0.001*T then ▷ Try expanding range to left

Q.enqueue(i-1)
first=i-1

end if
if i≥ P and F[i+1] > 0.001*T then ▷ Try expanding range to right

Q.enqueue(i+1)
last=i+1

end if
F[i]=0

end while
F[first-20:last+20] = 0 ▷ Set values in range’s neighborhood to 0
ranges.append((first,last))

end while
return ranges

end function

iii



Algorithm S2 Depth-first search in the trie, related to Figure 2.

function DFS(node, error budget, index, barcode)
if index = barcode.length then

edit distance = MAX ALLOWED ERRORS - error budget
output node.LRs,edit distance

end if
if error budget > 0 then

DFS(node, error budget - 1 , index + 1, barcode) ▷ Deletion
end if
for child in node.children do

if barcode[index] = child.char then
DFS(child, error budget, index +1, barcode) ▷ Match

end if
if barcode[index] != child.char then

DFS(child, error budget - 1, index +1, barcode) ▷ Mismatch
end if
if error budget > 0 then

DFS(child, error budget - 1, index, barcode) ▷ Insertion
end if

end for
end function
function QueryTrie(barcode)

DFS(root, MAX ALLOWED ERRORS, 0, barcode)
end function

iv


