iScience, Volume 25

Supplemental information

Murine double minute 2 aggravates adipose tissue

dysfunction through ubiquitin-mediated

six-transmembrane epithelial antigen

of prostate 4 degradation

Wei Zhao, Qiang Xu, Jiahui Yang, Xianghong Xie, Chunmei Li, Weihong Zhang, Enhui Chen, Yanfang Guo, Mingyue Gao, Jie Shi, Huabing Zhang, Hong Yao, Meixia Li, Li Yan, Fude Fang, Wenming Wu, and Xiaojun Liu

Figure S1. The MDM2 expression is increased with the maturity of adipocyte differentiation. Related to Figure 1.

Western blotting (up) and gray density (down) of MDM2 expression in SVF cells differentiation 0 day, 2 days and 6 days. n = 3. Data are represented as means \pm SD. Statistical analysis was carried out by one-way ANOVA. * p < 0.05, ** p < 0.01 and *** p < 0.001.

Figure S2. Creation of adipocyte-specific knock-in *Mdm2* mice. Related to Figure 2.

(A) Schematic diagram for the creation of adipocyte-specific knock-in *Mdm*2 (*Mdm*2-AKI) mice.

(B) Identification of *Mdm2*-AKI mouse genotype.

Figure S3. Adipose-specific MDM2 overexpression aggravates HFD-induced energy expenditure decrease and insulin resistance. Related to Figure 3.

(A) Body weight of WAT in WT and *Mdm*2-AKI mice on a HFD for 8 months (B). n = 8/group. Data are represented as mean ± SD. Statistical analysis was carried out by Student's t test. *** p < 0.001.

(B) Heat production of WT and *Mdm2*-AKI mice on a HFD for 8 months was measured by CLAMS. n = 8/group. Data are represented as mean \pm SEM. Statistical analysis was carried out by Student's t test. ** p < 0.01 and *** p < 0.001.

(C) Fat and lean mass of WT and *Mdm*2-AKI mice on a HFD for 8 months were determined by noninvasive EchoMRI. n = 8/group. Data are represented as mean \pm SD. Statistical analysis was carried out by Student's t test. *** p < 0.001.

(D) GTT (up), ITT (down) and area under the curve (AUC) of WT and *Mdm2*-AKI mice on a HFD for 8 months were analyzed. n = 8/group. Data are represented as mean \pm SD. Statistical analysis was carried out by two-way ANOVA for GTT and ITT, and Student's t test for AUC. * p < 0.05 and ** p < 0.01.

(E) Weight (left) and ratio (right) of fat weight/body weight of WAT in WT and *Mdm*2-AKI mice on a HFD for 8 months. n = 8/group. Data are represented as mean \pm SD. Statistical analysis was carried out by one-way ANOVA. * p < 0.05, ** p < 0.01 and *** p < 0.001.

(F) H&E staining of WAT and BAT of WT and *Mdm2*-AKI mice on a HFD for 8 months. Scare bars, 100 μ m.

Figure S4. MDM2 overexpression in adipose tissues increases HFD-induced eWAT dysfunction. Related to Figure 4.

(A) Senescence β -galactosidase staining in WAT of WT and *Mdm*2-AKI mice on a HFD for 8 months.

(B) Relative mRNA levels of *p21* in WAT of WT and *Mdm2*-AKI mice on a HFD for 8 months, relative to β -actin. Data are represented as mean ± SEM. Statistical analysis was carried out by Student's t test. ** p < 0.01.

(C) Representative immunofluorescence staining of TUNEL (green) in eWAT of WT and *Mdm*2-AKI mice on a HFD for 8 months. Scare bars, 50 μ m.

(D) Relative mRNA levels of *Bax* and *Bcl2* in WAT of WT and *Mdm2*-AKI mice on a HFD for 8 months, relative to β -actin. Data are represented as mean ± SEM. Statistical analysis was carried out by Student's t test. ** p < 0.01.

(E) F4/80 antigen positivity in WAT of WT and *Mdm2-*AKI mice on a HFD for 8 months. Scare bars, 100 μ m.

(F) Biochemical analysis of serum FFA in WT and *Mdm*2-AKI mice on a HFD for 8 months. Data are represented as mean ± SD. Statistical analysis was carried out by Student's t test.

(G) Relative mRNA levels of *Tnfa* and *II-6* in WAT of WT and *Mdm2*-AKI mice on a HFD for 8 months, relative to β -actin. Data are represented as mean ± SEM. Statistical analysis was carried out by Student's t test.

Figure S5. Western blotting (up) and protein gray value (down) of PPAR γ in WAT of WT and *Mdm*2-AKI mice on a NCD for 8 weeks (A) and on a HFD for 12 weeks(B). Related to Figure 4.

n = 3/group. Data are represented as mean \pm SD. Statistical analysis was carried out by Student's t test. * p < 0.05.

Figure S6. MDM2 overexpression in adipose tissues aggravates HFD-induced hepatic steatosis. Related to Figure 5.

(A) Liver weight (left) and ratio of liver weight/body weight (right) in WT and *Mdm*2-AKI mice on HFD for 8 months. n = 8/group. Data are represented as mean \pm SD. Statistical analysis was carried out by Student's t test. * p < 0.05.

(B) H&E (up) and oil red O staining (down) of livers of WT and *Mdm*2-AKI mice on a HFD for 8 months. Scare bars, 50 μ m.

(C) Biochemical analysis of serum in WT and *Mdm2*-AKI mice on a HFD for 8 months. n = 8/group. Data are represented as mean ± SD. Statistical analysis was carried out by Student's t test. ** p < 0.01 and *** p < 0.001.

Figure S7. Western blotting (up) and protein gray value (down) of PPAR γ in eWAT of WS and MS mice on a HFD for 12 weeks. Related to Figure 8.

n = 4/group. Data are represented as mean \pm SD. Statistical analysis was carried out by Student's t test.

Figure S8. Western blotting (up) and protein gray value (down) of p53 in eWAT (left) and iWAT (right) of WT and *Mdm2*-AKI mice on a HFD for 12 weeks. Related to Figure 7.

n = 3/group. Data are represented as mean \pm SD. Statistical analysis was carried out by Student's t test. * p < 0.05 and ** p < 0.01.

Supplementary Tables

Protein accession	Gene name	Downregulation Ratio	Ubiquitin Modified Upregulation Position
Q9D2R0	Aacs	0.242	24
Q61285	Abcd2	0.619	615
Q9WTQ5	Akap12	0.486	164
O70423	Aoc3	0.604	596
O54754	Aox1	0.641	1103
Q63918	Cavin2	0.582	156
Q9DB34	Chmp2a	0.639	9
P56198	Cidec	0.577	6, 112, 115, 180, 236
P56395	Cyb5a	0.57	39
P56387	Dynlt3	0.572	63
Q3TGW2	Eepd1	0.631	156
P54310	Lipe	0.664	323
P26645	Marcks	0.472	11, 30, 40
Q61753	Phgdh	0.465	21, 384
Q8BJ56	Pnpla2	0.594	92
P31324	Prkar2b	0.626	174, 202, 285, 370
Q99K85	Psat1	0.633	323
Q9ET01	Pygl	0.665	618
P07758	Serpina1a	0.443	186
P22599	Serpina1b	0.517	292
P82347	Sgcd	0.554	23
P51912	Slc1a5	0.53	7, 384, 502, 534
Q9Z0F7	Sncg	0.463	23, 110, 119
Q923B6	Steap4	0.658	18, 97, 161

 Table S1 Combining analysis proteomics and ubiquitinomics. Related to Figure 6.

Table S2 Primers of plasmids construction for Co-Immunoprecipitation and In vitroubiquitination assay. Related to Plasmid construction in STAR Methods.

Plasmids	Forward primer(5'3')	Reverse primer(5'3')
pEGFP-C1	ATTCTGCAGTCGACGGTACC	TAGATCCGGTGGATCCTTAA
-STEAP4	GAGAAAGCACATGCA	ATATCCGATT
pCMV3-myc	GCCGCCACCAAGCTTGGTA	GAATTCGGCGGCCGCTCTAG
-mSTEAP4		
pCMV3-myc	CTGATTCCTCAGAAAGGCAA	GACAACCCCTTGCCTTTCTG
-mSTEAP4(K18R)	GGGGTTGTC	AGGAATCAG
pCMV3-myc	CTAGTTGATTATCTCAGAGG	CAATACTTTTCCTCTGAGATA
-mSTEAP4(K97R)	AAAAGTATTG	ATCAACTAG
pCMV3-myc	GTGGAAATGACAGCAGGG	CTCTTTGTTTGGCCCTGCTG
-mSTEAP4(K161R)	CCAAACAAAGAG	TCATTTCCAC

Gene name	Forward primer (5'3')	Reverse primer(5'3')
actin	CCAGCCTTCCTTCTTGGGTAT	TGCTGGAAGGTGGACAGTGAG
Mdm2	CATGTCTGTGTCTACCGAGGG	TAAGTGTCGTTTTGCGCTCC
p21	TAAGGACGTCCCACTTTGCC	GACAACGGCACACTTTGCTC
Bax	GCGTGGTTGCCCTCTTCTACTTTG	AGTCCAGTGTCCAGCCCATGATG
Bcl2	TGAGTACCTGAACCGGCATCT	GCATCCCAGCCTCCGTTAT
Tnfα	CGTCAGCCGATTTGCTATCT	CGGACTCCGCAAAGTCTAAG
II-6	AGTTGCCTTCTTGGGACTGA	TCCACGATTTCCCAGAGAAC

 Table S3 The qPCR primers. Related to Quantitative RT-PCR in STAR Methods.