Science Immunology

Supplementary Materials for

Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

Paul Bastard et al.

Corresponding authors: Mark S. Anderson, Mark.Anderson@ucsf.edu; Jean-Laurent Casanova, jean-laurent.casanova@rockefeller.edu; Joseph L. DeRisi, jderisi@gmail.com

DOI: 10.1126/sciimmunol.abp8966

The PDF file includes:

Materials and Methods Fig. S1 Table S1

Other Supplementary Material for this manuscript includes the following:

Data file S1

Supplementary Materials for

Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

Paul Bastard^{1-4,*}, Sara Vazquez^{5-7,*}, Jamin Liu^{8,9,*}, Matthew T. Laurie^{8,*}, Chung Yu Wang^{10,*}, Adrian Gervais ^{1,2,*}, Tom Le Voyer ^{1,2,*}, Lucy Bizien^{1,2,\$}, Colin Zamecnik^{11,\$}, Quentin Philippot^{1,2,\$}, Jérémie Rosain^{1,2,\$}, Emilie Catherinot¹², Andrew Willmore¹⁰, Anthea M. Mitchell¹⁰, Rebecca Bair¹¹, Pierre Garçon¹³, Heather Kenney¹⁴, Arnaud Fekkar^{1,2,15}, Maria Salagianni¹⁶, Garyphallia Poulakou¹⁷, Eleni Siouti¹⁶, Sabina Sahanic¹⁸, Ivan Tancevski¹⁸, Günter Weiss¹⁸, Laurenz Nagl¹⁹, Jérémy Manry^{1,2}, Sotirija Duvlis^{20,21}, Daniel Arroyo-Sánchez²², Estela Paz Artal²², Luis Rubio⁸, Cristiano Perani²³, Michela Bezzi²⁴, Alessandra Sottini²⁵, Virginia Quaresima²⁵, Lucie Roussel^{26,27}, Donald C. Vinh^{26,27}, Luis Felipe Reyes^{28,29}, Margaux Garzaro³⁰, Nevin Hatipoglu³¹, David Boutboul³², Yacine Tandjaoui-Lambiotte³³⁻³⁵, Alessandro Borghesi³⁶, Anna Aliberti³⁷, Irene Cassaniti³⁸, Fabienne Venet³⁹⁻⁴¹, Guillaume Monneret^{39,40}, Rabih Halwani^{42,43}, Narjes Saheb Sharif-Askari⁴², Jeffrey Danielson¹⁴, Sonia Burrel⁴⁴, Caroline Morbieu⁴⁵, Yurii Stepanovskyy⁴⁶, Anastasia Bondarenko⁴⁶, Alla Volokha⁴⁶, Oksana Boyarchuk⁴⁷, Alenka Gagro⁴⁸, Mathilde Neuville⁴⁹, Bénédicte Neven⁵⁰, Sevgi Keles⁵¹, Romain Hernu⁵², Antonin Bal⁵³, Antonio Novelli⁵⁴, Giuseppe Novelli⁵⁵, Kahina Saker⁵⁶, Oana Ailioaie⁵⁷, Arnau Antolí⁵⁸, Eric Jeziorski⁵⁹, Gemma Rocamora-Blanch⁵⁸, Carla Teixeira⁶⁰, Clarisse Delaunay⁶¹, Marine Lhuillier⁶², Paul Le Turnier⁶¹, Yu Zhang^{14,63}, Matthieu Mahevas⁶⁴⁻

⁶⁶, Qiang Pan-Hammarström⁶⁷, Hassan Abolhassani⁶⁷, Thierry Bompoil, Ph.D, ⁶⁸, Karim Dorgham⁶⁹, COVID HGE consortium[†], French COVID study group[†], COMET consortium[†], Guy Gorochov^{69,70}, Cédric Laouenan^{33,71,72}, Carlos Rodríguez-Gallego^{,73,74}, Lisa F. P. Ng⁷⁵, Laurent Renia⁷⁵⁻⁷⁷, Aurora Pujol⁷⁸, Alexandre Belot^{56,79}, François Raffi⁶¹, Luis M. Allende²², Javier

Martinez-Picado⁸⁰⁻⁸³, Tayfun Ozcelik⁸⁴, Sevgi Keles⁵¹, Luisa Imberti²⁵, Luigi D. Notarangelo¹⁴, Jesus Troya⁸⁵, Xavier Solanich⁵⁸, Shen-Ying Zhang¹⁻³, Anne Puel¹⁻³, Michael R Wilson¹¹, Sophie Trouillet-Assant⁸⁶, Laurent Abel¹⁻³, Emmanuelle Jouanguy¹⁻³, Chun Jimmie Ye^{10,87-90,§}, Aurélie Cobat^{1-3,§}, Leslie M. Thompson^{91,§}, Evangelos Andreakos^{16,§}, Qian Zhang^{1-3,§}, Mark S. Anderson^{7,92,#,@}, Jean-Laurent Casanova^{1-4,93,#,@} and Joseph L. DeRisi^{8,10,#,@}

*These authors contributed equally to this work. \$These authors contributed equally to this work. \$These authors contributed equally to this work. #These authors contributed equally to this work.

⁺All collaborators and their affiliations appear at the end of this paper.

[@]corresponding authors: <u>Mark.Anderson@ucsf.edu</u>; <u>jean-laurent.casanova@rockefeller.edu</u>; <u>jderisi@gmail.com</u>

This PDF file includes:

Supplementary table S1 and legends to supplementary table (S1) Legends to supplementary figure S1 Supplementary figure S1

Supplementary materials and methods

Subjects and samples

We enrolled, from 6 countries, 48 patients with proven hypoxemic COVID-19 pneumonia, 12 unvaccinated controls, and 11 vaccinated controls in this study. We collected plasma or serum samples for all these individuals to test by immuno-assay for the presence of IgG Abs against SARS-CoV-2 and auto-Abs to type I IFNs. All individuals were recruited according to protocols approved by local Institutional Review Boards (IRBs). For patients were enrolled in the French COVID cohort (clinicaltrials.gov NCT04262921), ethics approval was obtained from the CPP IDF VI (ID RCB: 2020-A00256-33). For patients enrolled at UCSF, IRB number was: 20-30497. All protocols conformed to local ethics recommendations and informed consent was obtained when required.

Table S1: Antibody response to the vaccine

	Spike p-val	RBD p-val
NOVAX vs POSTVAX	8,46E-18	8,98E-15
NOVAX vs all breakthrough (n=40)	1,95E-06	0,000147706
aab+ (n=10) vs aab- breakthrough (n=30)	0,4320157	0,259816689

Figure S1: No neutralizing auto-Abs against IFN- α 2 and IFN- ω in patients with hypoxemic breakthrough COVID-19 and an insufficient serological response or immunodeficiencies. Serological response in auto-Ab positive patients. (A) Spike(S)-protein and receptor binding domain (RBD) serological titers, plotted against each other for breakthrough COVID-19 patients (B) Neutralization of 10 ng/mL IFN- α 2, IFN- ω or IFN- β in the presence of plasma 1/10 patients with hypoxemic breakthrough COVID-19 and previously known from immunodeficiency (N=5) or with low Ab response to the virus (n=1). The patients with low Ab response to the virus is shown with an arrow. Relative luciferase activity is shown (ISRE dual luciferase activity, with normalization against *Renilla* luciferase activity) after stimulation with 10 ng/mL IFN- $\alpha 2$ or IFN- ω in the presence of plasma 1/10. RLA: relative luciferase activity. (C) Neutralization of 100 pg/mL IFN- α 2 or IFN- ω in the presence of plasma 1/10 from patients with hypoxemic breakthrough COVID-19 and previously known immunodeficiency (N=5) or with low Ab response to the virus (n=1). (D) Spike(S)-protein and receptor binding domain (RBD) serological titers of the 10 auto-Ab positive patients. (E) Spike(S)-protein and receptor binding domain (RBD) serological titers of the 10 auto-Ab positive patients, represented individually.

Figure S1

