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1. Theory  
1.1. Derivation of Eq. (6) 

Following Eq. 4 in the main text, we expand every single function described the far-field scattering of the 
perfect orbital vortex beam of vorticity 𝑚, using the Taylor series. Note that the coordinate system is 
described in Fig. S1.  Before proceeding, assume that 𝐴Ј = 𝐸Ј/𝑁 . One can write 
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where 𝑑 denotes the correlation length of randomness, i.e., the number of units which have the same value 
of phase. Considering 𝑘 = 𝑠 − 2𝑞  is a new variable. Since 𝑠 > 𝑞 > 0 and ∞ > 𝑠 > 0, then 𝑘 can be any 
integer in the range [−∞,∞]. For specific value of 𝑘, 𝑞 = (𝑠 − 𝑘)/2. One can write 
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As one can recognize, these three summations are independent of each other. The first part can be written 
as 
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We can also write the equivalent relation for the second part of the coefficient as 
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where the condition 𝑑 ≪ 𝑁  was considered. Replacing the first two terms of the coefficient, 𝐻(𝑘; 𝜌) will 
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Because we want to continue in the general case, we assume that randomness has a probability distribution 
𝑝(𝜓) over the mean phase 𝜓Ј. This way, the meaning of 𝜓 will be the phase disturbance. Therefore, one 
can rewrite the above equation as 
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For proceeding into the next step, we define 𝑃 = (−𝑖)|ֆ|𝑒ք[ֈ−ֆ] Չ+ȯ
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where 𝑁𝐴Ј = 𝐸Ј and therefore  
𝐻(𝑘; 𝜌) = 𝐸Ј (−𝑖)|ֆ| J|ֈ|(𝜇𝜌𝑟Ј) 

𝐻(𝑘 ≠ 𝑚;𝜌) = 0. 
Finally, we have 

𝐸(𝜌, 𝜙) = 𝐸Ј (−𝑖)|ֆ| J|ֈ|(𝜇𝜌𝑟Ј) 𝑒
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Fig. S1.  Conceptual implementation. Fourier transform of a Bessel beam results in "perfect 
optical vortex" beam (POV). The random field caused by POV scattered by random phase screen 
in the far-field regime is considered in this work.   
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1.2. Statistical average of vorticity and OAM modes 

To derive the probability density for 𝐻(𝑘) and thus find the statistical properties of the random field, we 
first need to separate real and imaginary parts, as  

Re{𝐻(𝑘; 𝜌)} = 𝐴 ం  cos(𝜓։
 ) ृRe{𝑃} cosि[𝑚 − 𝑘]𝜃(։−φ)տी − Im{𝑃} sinि[𝑚 − 𝑘]𝜃(։−φ)տीॄ
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One then needs to find the average and variance of both terms sin(𝜓։
 ) and cos(𝜓։

 ).  Taking advantage of 
the normalized Gaussian probability distribution, we have 
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Thus, we can calculate the desired averages and variances (see below table). 
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 )〉 = 1 − 𝐶ϵ 〈cos(𝜓։
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Before proceeding, we need to remind that 𝑃 = (−𝑖)|ֆ|𝑒ք[ֈ−ֆ] Չ+ȯ
Թ  ᇎ𝑒քᇕɱ where 𝜓Ј determines the average 

phase introduced by the randomness (center of the Gaussian distribution). Thus, 𝑃 = 𝑒քᇜԻ  is a pure phase, 
and we can use the argument 𝜑ձ  in the below calculations. Using the values we found in the above table, 
average and variance for both real and imaginary parts of 𝐻(𝑘) can be calculated, 

〈Re{𝐻(𝑘; 𝜌)}〉 = 𝐴 𝐶φ ం ृRe{𝑃} cosि[𝑚 − 𝑘]𝜃(։−φ)տी − Im{𝑃} sinि[𝑚 − 𝑘]𝜃(։−φ)տीॄ
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〈Reϵ{𝐻(𝑘; 𝜌)}〉 = 𝐴ϵ  ం ृRe{𝑃} cosि[𝑚 − 𝑘]𝜃(։−φ)տी − Im{𝑃} sinि[𝑚 − 𝑘]𝜃(։−φ)տीॄ
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կ/տ

։=φ
ঈ

ϵ

+ 𝐴ϵ 〈sinϵ(𝜓։
 )〉 ం ृRe{𝑃} sinि[𝑚 − 𝑘]𝜃(։−φ)տी + Im{𝑃} cosि[𝑚 − 𝑘]𝜃(։−φ)տीॄ

ϵ
կ/տ
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= (𝑁/𝑑)(𝐴ϵ/2){[1 − 𝐶φ
ϵ] + [2𝐶ϵ − 𝐶φ

ϵ − 1] cos(2𝜑ձ )δ(𝑘 − 𝑚)

+ (𝑁/𝑑)[2𝐶φ
ϵ] cosϵ(𝜑ձ )δ(𝑚 − 𝑘)}  

〈Imϵ{𝐻(𝑘; 𝜌)}〉 = 𝐴ϵ  ం ृIm{𝑃} cosि[𝑚 − 𝑘]𝜃(։−φ)տी + Re{𝑃} sinि[𝑚 − 𝑘]𝜃(։−φ)տीॄ
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+ 𝐴ϵ 〈cos(𝜓։
 )〉ϵ ইం Im{𝑃} cosि[𝑚 − 𝑘]𝜃(։−φ)տी + Re{𝑃} sinि[𝑚 − 𝑘]𝜃(։−φ)տी
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 )〉 ం ृ−Im{𝑃} sinि[𝑚 − 𝑘]𝜃(։−φ)տी + Re{𝑃} cosि[𝑚 − 𝑘]𝜃(։−φ)տीॄ
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= (𝑁/𝑑)(𝐴ϵ/2){[1 − 𝐶φ
ϵ] − [2𝐶ϵ − 𝐶φ

ϵ − 1] cos(2𝜑ձ )δ(𝑘 − 𝑚)

+ (𝑁/𝑑)[2𝐶φ
ϵ] sinϵ(𝜑ձ )δ(𝑚 − 𝑘)} 

〈Re{𝐻(𝑘; 𝜌)}Im{𝐻(𝑘; 𝜌)}〉

= (𝑁/𝑑)(𝐴ϵ/2){[2𝐶ϵ − 𝐶φ
ϵ − 1] sin(2𝜑ձ )δ(𝑘 − 𝑚) + (𝑁/𝑑) [𝐶φ

ϵ] sin(2𝜑ձ )δ(𝑚 − 𝑘)}. 
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The correlation coefficient 𝑔ճրӴժֈ which is defined as normalized covariance of real and imaginary parts 

can be found as 𝑔Ϝ΄ӴΦζ = ਗिRe − Re࣓࣒࣒࣒࣒࣒࣑ीिIm − Im࣓࣒࣒࣒࣒࣒࣑ीਘ/𝜎Ϝ΄𝜎Φζ = [Re Im࣓࣒࣒࣒࣒࣒࣒࣒࣒࣒࣒࣒࣒࣒࣒࣑ − Re࣓࣒࣒࣒࣒࣒࣑ Im࣓࣒࣒࣒࣒࣒࣑]/𝜎Ϝ΄𝜎Φζ  where 𝜎Ϝ΄ =

ఉReϵ࣓࣒࣒࣒࣒࣒࣒࣒࣒࣑ − Re࣓࣒࣒࣒࣒࣒࣑ϵ  and 𝜎Φζ = ఉImϵ࣓࣒࣒࣒࣒࣒࣒࣒࣒࣑ − Im࣓࣒࣒࣒࣒࣒࣑ϵ  are standard deviations of real and imaginary parts, respectively. 
Substituting the above calculated values, all required parameters will be achieved. 

Re࣓࣒࣒࣒࣒࣒࣑ = (𝑁/𝑑)𝐴 𝐶φ cos(𝜑ձ ) δ(𝑘 − 𝑚)  Im࣓࣒࣒࣒࣒࣒࣑ = (𝑁/𝑑)𝐴 𝐶φ sin(𝜑ձ ) δ(𝑘 − 𝑚) 

𝜎Ϝ΄
ϵ = (𝑁/𝑑)(𝐴ϵ/2){[1 − 𝐶φ

ϵ] + [2𝐶ϵ − 𝐶φ
ϵ − 1] cos(2𝜑ձ ) δ(𝑘 − 𝑚)} 

𝜎Φζ
ϵ = (𝑁/𝑑)(𝐴ϵ/2){[1 − 𝐶φ

ϵ] − [2𝐶ϵ − 𝐶φ
ϵ − 1] cos(2𝜑ձ ) δ(𝑘 − 𝑚)} 

𝑔Ϝ΄ӴΦζ𝜎Ϝ΄𝜎Φζ = (𝑁/𝑑) (𝐴ϵ/2) [2𝐶ϵ − 𝐶φ
ϵ − 1] sin(2𝜑ձ ) δ(𝑘 − 𝑚) 

When the number of random complex components inside a summation is large enough, one can take 
advantage of Central Limit Theorem, according to which the joint density function of Re and Im has a 
general Gaussian distribution, as below  

𝑝Ϝ΄ӴΦζ =
1

2𝜋𝜎Ϝ΄𝜎Φζఊ1 − 𝑔Ϝ΄ӴΦζ
ϵ

. 𝑒𝑥𝑝

⎣

⎢⎢
⎡

−
ঁRe − Re࣓࣒࣒࣒࣒࣒࣑

𝜎Ϝ΄
ং

ϵ

+ ঁIm − Im࣓࣒࣒࣒࣒࣒࣑
𝜎Φζ

ং
ϵ

− 2𝑔Ϝ΄ӴΦζ ঁRe − Re࣓࣒࣒࣒࣒࣒࣑
𝜎Ϝ΄

ংঁIm − Im࣓࣒࣒࣒࣒࣒࣑
𝜎Φζ

ং

2ॕ1 − 𝑔Ϝ΄Ӵ
ϵ ॖ

⎦

⎥⎥
⎤

. 

One can find the probability distribution for amplitude and phase ५𝐴,̃ 𝜃६̃ of this complex parameter taking 

advantage of the Jacobian transformation 𝑝
բ̃Ӵᇆ̃५𝐴,̃ 𝜃६̃ = 𝑝Ϝ΄ӴΦζ५𝐴c̃os(𝜃),𝐴s̃in(𝜃)६ × ‖𝐽‖  where ‖𝐽‖ is the 

determinant of the Jacobian matrix, which equals to 𝐴 ̃in this case. Thus, we have   

𝑝բ̃Ӵᇆ̃ =
𝐴̃

2𝜋𝜎Ϝ΄𝜎Φζఊ1 − 𝑔Ϝ΄ӴΦζ
ϵ

𝑒𝑥𝑝

⎣

⎢
⎢
⎢
⎡

−

ভ
𝐴c̃os(𝜃)̃ − Re࣓࣒࣒࣒࣒࣒࣑

𝜎Ϝ΄
ম

ϵ

+ ভ
𝐴s̃in(𝜃)̃ − Im࣓࣒࣒࣒࣒࣒࣑

𝜎Φζ
ম

ϵ

− 2𝑔Ϝ΄ӴΦζ ভ
𝐴c̃os(𝜃)̃ − Re࣓࣒࣒࣒࣒࣒࣑

𝜎Ϝ΄
মভ

𝐴s̃in(𝜃)̃ − Im࣓࣒࣒࣒࣒࣒࣑
𝜎Φζ

ম

2ि1 − 𝑔Ϝ΄ӴΦζ
ϵ ी

⎦

⎥
⎥
⎥
⎤

. 

Let us consider two general conditions which can exist and find the probability distribution regarding each 
one. We will use the expressions we found in the above table.  

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1: 𝑘 ≠ 𝑚  

Re࣓࣒࣒࣒࣒࣒࣑ = 0 Im࣓࣒࣒࣒࣒࣒࣑ = 0 

𝜎Ϝ΄
ϵ = (𝑁/𝑑)(𝐴ϵ/2) [1 − 𝐶φ

ϵ] 

𝜎Φζ
ϵ = (𝑁/𝑑)(𝐴ϵ/2) [1 − 𝐶φ

ϵ] 

𝑔Ϝ΄ӴΦζ𝜎Ϝ΄𝜎Φζ = 0 

For this case, the probability distribution will be as below (𝜎Ϝ΄ = 𝜎Φζ = 𝜎) 

𝑝
բ̃Ӵᇆ̃ =

𝐴̃

2𝜋𝜎ϵ
expঢ়−

𝐴ϵ̃

2𝜎ϵ
 →  𝑝

բ̃ = ௷ 𝑝
բ̃Ӵᇆ̃ 𝑑𝜃 ̃

ᇎ

−ᇎ

  → 𝑝
բ̃ =

𝐴̃

𝜎ϵ
expঢ়−

𝐴ϵ̃

2𝜎ϵ
  

→ 𝑝
|թ(ֆ)|

ֆ≠ֈ
=

|𝐻(𝑘)|

(𝑁/𝑑)(𝐴ϵ/2) [1 − 𝐶φ
ϵ]

 expঝ−
|𝐻(𝑘)|ϵ

(𝑁/𝑑)(𝐴ϵ/2) [1 − 𝐶φ
ϵ]

ঞ . 

As it was mentioned in the main text, 𝐴 = 𝐴ЈJ|ֆ|(𝛽) 𝑑 sinc([𝑚 − 𝑘](𝑑/𝑁)𝜋), where 𝛽 = 𝜇𝜌𝑟Ј and 𝜇 = 𝜋/𝜆𝑧. 

By replacing parameter 𝐴 in the above relation, we have 

 𝑝
|𝐻(𝑘;𝜌)|
ֆ≠ֈ

=
|𝐻(𝑘;𝜌)|

(𝑁𝑑/2)[1 − 𝐶φ
ϵ] ॅJ|ֆ|(𝛽) sinc([𝑚 − 𝑘](𝑑/𝑁)𝜋)ॆϵ

 𝑒𝑥𝑝 −
|𝐻(𝑘;𝜌)|ϵ

(𝑁𝑑)[1 − 𝐶φ
ϵ] ॅJ|ֆ|(𝛽) sinc([𝑚 − 𝑘](𝑑/𝑁)𝜋)ॆϵ
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𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2: 𝑘 = 𝑚  

Re࣓࣒࣒࣒࣒࣒࣑ = (𝑁/𝑑)𝐴 𝐶φ cos(𝜑ձ ) Im࣓࣒࣒࣒࣒࣒࣑ = (𝑁/𝑑)𝐴 𝐶φ sin(𝜑ձ ) 

𝜎Ϝ΄
ϵ = (𝑁/𝑑)(𝐴ϵ/2){[1 − 𝐶φ

ϵ] + [2𝐶ϵ − 𝐶φ
ϵ − 1] cos(2𝜑ձ )} 

𝜎Φζ
ϵ = (𝑁/𝑑)(𝐴ϵ/2){[1 − 𝐶φ

ϵ] − [2𝐶ϵ − 𝐶φ
ϵ − 1] cos(2𝜑ձ )} 

𝑔Ϝ΄ӴΦζ𝜎Ϝ΄𝜎Φζ = (𝑁/𝑑)(𝐴ϵ/2) [2𝐶ϵ − 𝐶φ
ϵ − 1] sin(2𝜑ձ ) 

The case of 𝑘 = 𝑚 is more complicated than the previews case because the standard deviations and 
averages are different for real and imaginary parts. That is the reason that we simplify the relation into 
below one 

𝑝|թ(ֆϦᇏ)|
ֆ=ֈ =

|𝐻(𝑘; 𝜌)|

2𝜋𝐴ϵ
√

𝑡
 𝑒−֏ȯ 𝑒−ि֏ɞ/բɞी|թ(ֆϦᇏ)|ɞ  ௷  expॱ(𝑡ϯ/𝐴ϵ)|𝐻(𝑘; 𝜌)|ϵ cos(2(𝜃 ̃− 𝜑ձ )) + (𝑡Κ/𝐴)|𝐻(𝑘; 𝜌)| cos(𝜃 ̃− 𝜑ձ )ॲ 𝑑𝜃 ̃

ᇎ

−ᇎ

 

where parameters 𝑡, 𝑡φ, 𝑡ϵ, 𝑡ϯ, and 𝑡Κ are all non-negative and defined as 

𝑡 = (𝑁/𝑑)ϵ[1 − 𝐶ϵ][𝐶ϵ − 𝐶φ
ϵ] 

𝑡φ =
1

2
(𝑁/𝑑) ঝ

𝐶φ
ϵ

𝐶ϵ − 𝐶φ
ϵ
ঞ 

𝑡ϵ =
1

4

1

(𝑁/𝑑) 
ঝ

[1 − 𝐶φ
ϵ]

[1 − 𝐶ϵ][𝐶ϵ − 𝐶φ
ϵ]

ঞ 

𝑡ϯ =
1

4

1

(𝑁/𝑑) 
ঝ

[2𝐶ϵ − 𝐶φ
ϵ − 1]

[1 − 𝐶ϵ][𝐶ϵ − 𝐶φ
ϵ]

ঞ 

𝑡Κ = ঝ
𝐶φ

𝐶ϵ − 𝐶φ
ϵ
ঞ, 

and 𝐴 = 𝐴ЈJ|ֆ|(𝛽) 𝑑 sinc([𝑚 − 𝑚](𝑑/𝑁)𝜋) = 𝐴Ј J|ֆ|(𝛽) 𝑑. Note that no parameter is function of phase 𝜑ձ . 

Therefore, we find that the phase 𝜑ձ  or any term inside that, especially 𝜓Ј, does not affect the probability 
distributions at all, neither the case 𝑘 ≠ 𝑚 nor 𝑘 = 𝑚. One can take advantage of below integral 

௷ expॱ𝑧 cos(ℓ𝜃)̃ + 𝑦 cos(𝜃)̃ॲ 𝑑𝜃 ̃
ᇎ

−ᇎ

= 2𝜋 [IЈ(±𝑧)IЈ(−𝑦) + 2ం I։(±𝑧)I|ֈ|։(−𝑦)
�

։=φ

] 

where ± belong to even (positive) or odd (negative) value of ℓ, and I։ shows the modified Bessel function 
of order 𝑛. Substituting ℓ = 2, we have 

𝑝|թ(ֆϦᇏ)|
ֆ=ֈ =

|𝐻(𝑘; 𝜌)|

𝐴ϵ
√

𝑡
 𝑒−֏ȯ 𝑒−բɞ֏ɞ |թ(ֆϦᇏ)|ɞ IЈ(𝐴

ϵ𝑡ϯ|𝐻(𝑘; 𝜌)|ϵ) IЈ(−𝐴𝑡Κ|𝐻(𝑘; 𝜌)|) + 2ం I։(𝐴ϵ𝑡ϯ|𝐻(𝑘; 𝜌)|ϵ) Iϵ։(−𝐴𝑡Κ|𝐻(𝑘; 𝜌)|)
�

։=φ

ল  

 

Now that we have found the probability density functions, we can move toward the next step. As it was 
mentioned in the main paper, we want to calculate the weight of each Vorticity (𝑉 ֆ) and OAM (𝐿ֆ) modes 
of order 𝑘, inside a circular contour of the radius of 𝜌Ј, using below relations 

𝑉 ֆ = 〈|𝐻(𝑘; 𝜌)|ϵ〉|ᇏ=ᇏɱ
 

𝐿ֆ = ௷ 〈|𝐻(𝑘; 𝜌)|ϵ〉 𝜌
ᇏɱ

Ј

𝑑𝜌 . 

Following this, one can find the most probable detected vorticity and OAM mode using [1,2]   

〈𝑉 〉 =
∑ 𝑘 𝑉 ֆ�

ֆ=−�

∑ 𝑉 ֆ�

ֆ=−�

 

〈𝐿〉 =
∑ 𝑘 𝐿ֆ�

ֆ=−�

∑ 𝐿ֆ�

ֆ=−�

 . 

Therefore, we need to find the 〈|𝐻(𝑘; 𝜌)|ϵ〉 using the probability distributions which have been found for 
both conditions. For the case of 𝑘 ≠ 𝑚, one can easily show that 

〈|𝐻(𝑘; 𝜌)|ϵ〉 = ௷ |𝐻(𝑘; 𝜌)|ϵ 𝑝
|թ(ֆ)|

ֆ≠ֈ
�

Ј

 𝑑|𝐻(𝑘; 𝜌)|  = (𝑁𝑑)[1 − 𝐶φ
ϵ] ॅJ|ֆ|(𝛽) sinc([𝑚 − 𝑘](𝑑/𝑁)𝜋)ॆϵ. 
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In the case of 𝑘 = 𝑚, the calculation will be a bit complicated. We will show the steps below, and we use 
the valuable integrals in each step.  

〈|𝐻(𝑘; 𝜌)|ϵ〉 = ௷ |𝐻(𝑘; 𝜌)|ϵ 𝑝|թ(ֆϦᇏ)|
ֆ=ֈ

�

Ј

 𝑑|𝐻(𝑘; 𝜌)|  

= ௷ |𝐻(𝑘; 𝜌)|ϵ
�

Ј

 
|𝐻(𝑘; 𝜌)|

2𝜋𝐴ϵ
√

𝑡
 𝑒−֏ȯ 𝑒−բɞ֏ɞ |թ(ֆϦᇏ)|ɞ 𝑑|𝐻(𝑘; 𝜌)| ௷ 𝑒բɞ֏ɘ|թ(ֆϦᇏ)|ɞͩπϣ५ϵᇆ६̃+բ֏ȃ|թ(ֆϦᇏ)|ͩπϣ५ᇆ६̃ 𝑑𝜃 ̃

ᇎ

−ᇎ

 

=
𝑒−֏ȯ

2𝜋𝐴ϵ
√

𝑡
 ௷ |𝐻(𝑘; 𝜌)|ϯ

�

Ј

 𝑒−բɞ֏ɞ |թ(ֆϦᇏ)|ɞ 𝑑|𝐻(𝑘; 𝜌)| ௷ 𝑒բɞ֏ɘ|թ(ֆϦᇏ)|ɞͩπϣ५ϵᇆ६̃+բ֏ȃ|թ(ֆϦᇏ)|ͩπϣ५ᇆ६̃ 𝑑𝜃 ̃
ᇎ

−ᇎ

 

=
𝑒−֏ȯ

2𝜋𝐴ϵ
√

𝑡
 ௷ 𝑑𝜃 ̃

ᇎ

−ᇎ

 ௷ |𝐻(𝑘; 𝜌)|ϯ 𝑒
−բɞঁ֏ɞ−֏ɘͩπϣ५ϵᇆ६̃ং|թ(ֆϦᇏ)|ɞ+բঁ֏ȃͩπϣ५ᇆ६̃ং|թ(ֆϦᇏ)|

 𝑑|𝐻(𝑘; 𝜌)| 
�

Ј

 

Replacing 𝑎 = 𝐴ϵ ঁ𝑡ϵ − 𝑡ϯcos५2𝜃६̃ং and 𝑏 = 𝐴 ঁ𝑡Κcos५𝜃६̃ং, we have  

〈|𝐻(𝑘; 𝜌)|ϵ〉 =
𝑒−֏ȯ

2𝜋𝐴ϵ
√

𝑡
 ௷ 𝑑𝜃 ̃

ᇎ

−ᇎ

 ௷ |𝐻(𝑘; 𝜌)|ϯ 𝑒
−բɞঁ֏ɞ−֏ɘͩπϣ५ϵᇆ६̃ং|թ(ֆϦᇏ)|ɞ+բঁ֏ȃͩπϣ५ᇆ६̃ং|թ(ֆϦᇏ)|

 𝑑|𝐻(𝑘; 𝜌)| 
�

Ј

 

=
𝑒−֏ȯ

2𝜋𝐴ϵ
√

𝑡
 ௷   অ

1

2
𝑎−ϵ +

1

8
𝑎−ϯ𝑏ϵআ +

1

16
ृ6𝑎−Θ/ϵ𝑏 + 𝑎−Ϩ/ϵ𝑏ϯॄ  𝑒𝑥𝑝 গ

𝑏ϵ

4𝑎
ঘ

√
𝜋 ঝ1 + erf গ

𝑏

2
√

𝑎
ঘঞ  𝑑𝜃 ̃

ᇎ

−ᇎ

 

=
𝑒−֏ȯ

2𝜋𝐴ϵ
√

𝑡
 ௷   অ

1

2
𝑎−ϵ +

1

8
𝑎−ϯ𝑏ϵআ𝑑𝜃 ̃

ᇎ

−ᇎ

 

                           +
𝑒−֏ȯ

2𝜋𝐴ϵ
√

𝑡
 ௷  

1

16
ृ6𝑎−Θ/ϵ𝑏 + 𝑎−Ϩ/ϵ𝑏ϯॄ 𝑒𝑥𝑝 গ

𝑏ϵ

4𝑎
ঘ

√
𝜋 ঝ1 + erf গ

𝑏

2
√

𝑎
ঘঞ  𝑑𝜃 ̃

ᇎ

−ᇎ

 

Changing the integration variable from 𝜃 ̃to 𝑢 = 𝑏/2
√

𝑎 for the second integral, we will have     

〈|𝐻(𝑘; 𝜌)|ϵ〉 =
𝑒−֏ȯ

2𝜋
√

𝑡
𝐴ϵ  ௷

1

2(𝑡ϵ − 𝑡ϯ cos(2𝜃)̃)ϵ
 𝑑𝜃 ̃

ᇎ 

−ᇎ

+
𝑒−֏ȯ

2𝜋
√

𝑡
𝐴ϵ  ௷

(𝑡Κ cos(𝜃)̃)ϵ

8(𝑡ϵ − 𝑡ϯ cos(2𝜃)̃)ϯ
 𝑑𝜃 ̃

ᇎ 

−ᇎ

 

             +
𝑒−֏ȯ

2𝜋
√

𝑡
𝐴ϵ 4ℎ௷ erf(𝑢)

φ/ᇃ 

Ј

𝑒ɞ
 (1 − 𝜖ϵ𝑢ϵ)−φ/ϵ {ℎφ𝑢 + ℎϯ𝑢

ϯ + ℎΘ𝑢
Θ} 𝑑𝑢 

where coefficients 𝑢Ј, ℎ, ℎφ, ℎϯ, and ℎΘ are  

ℎφ =
3𝑡Κ
2

,   ℎϯ = 𝑡Κ +
12𝑡ϯ
𝑡Κ

,   ℎΘ =
8𝑡ϯ
𝑡Κ

,   ℎ =

√
𝜋

(𝑡ϵ + 𝑡ϯ)
ϯ/ϵ 𝑡Κ

ϵ
, 𝜖 = 4গ

𝑡ϵ − 𝑡ϯ
𝑡Κ
ϵ

ঘ. 

Finally, one can complete the calculations by defining below functions,  

𝑀φ(𝑡ϵ, 𝑡ϯ) ≡ ௷
1

2(𝑡ϵ − 𝑡ϯ cos(2𝜃)̃)ϵ
 𝑑𝜃 ̃

ᇎ 

−ᇎ

=
𝑡ϵ 𝜋 

(𝑡ϵ
ϵ − 𝑡ϯ

ϵ)ϯ/ϵ
 

𝑀ϵ(𝑡ϵ, 𝑡ϯ, 𝑡Κ) ≡ ௷
(𝑡Κ cos(𝜃)̃)ϵ

8(𝑡ϵ − 𝑡ϯ cos(2𝜃)̃)ϯ
 𝑑𝜃 ̃

ᇎ 

−ᇎ

=
(2𝑡ϵ + 𝑡ϯ)𝑡Κ

ϵ 𝜋 

16(𝑡ϵ − 𝑡ϯ)
Θ/ϵ (𝑡ϵ + 𝑡ϯ)

ϯ/ϵ
 

𝐹φ(𝜖) ≡ ௷ erf(𝑢) 
φ/ᇃ 

Ј

𝑒ɞ
 (1 − 𝜖ϵ𝑢ϵ)−φ/ϵ 𝑢 𝑑𝑢 = ই𝜖−φ 𝑒φ/ᇃɞ

 𝛾 ঁ1,
1

𝜖ϵ
ংঈ 

𝐹ϯ(𝜖) ≡ ௷ erf(𝑢) 
φ/ᇃ 

Ј

𝑒ɞ
 (1 − 𝜖ϵ𝑢ϵ)−φ/ϵ 𝑢ϯ 𝑑𝑢 =

1

3
ই2𝜖−Θ − 𝑒φ/ᇃɞ

 (𝜖−φ − 2𝜖−ϯ) 𝛾 ঁ2,
1

𝜖ϵ
ংঈ 

𝐹Θ(𝜖) ≡ ௷ erf(𝑢)
φ/ᇃ 

Ј

𝑒ɞ
 (1 − 𝜖ϵ𝑢ϵ)−φ/ϵ 𝑢Θ 𝑑𝑢 =

2

15
ই𝜖−ν(𝜖ϵ + 2) + 𝜖−Θ 𝑒φ/ᇃɞ

 (2 − 3𝜖ϵ + 3𝜖Κ) 𝛾 ঁ3,
1

𝜖ϵ
ংঈ 

where 𝛾 is the lower incomplete gamma function. We have reached the expression for 〈|𝐻(𝑘; 𝜌)|ϵ〉 in the 
case of 𝑘 = 𝑚, as below 

〈|𝐻(𝑘; 𝜌)|ϵ〉 =
𝑒−֏ȯ

2𝜋
√

𝑡
𝐴ϵ{𝑀φ(𝑡ϵ, 𝑡ϯ) + 𝑀ϵ(𝑡ϵ, 𝑡ϯ, 𝑡Κ) + 4ℎ [ℎφ𝐹φ(𝜖) + ℎϯ𝐹ϯ(𝜖) + ℎΘ𝐹Θ(𝜖)]}. 

For measuring vorticity orders 𝑉 ֆ, we just need to replace 𝜌 = 𝜌Ј, equivalently, 𝛽 = 𝜇𝜌Ј𝑟Ј. However, to 
find 𝐿𝑘, one needs to operate one more integration over the coordinate 𝜌. 𝐴 is the only parameter that is a 
function of coordinate 𝜌. As we can see above, 〈|𝐻(𝑘; 𝜌)|ϵ〉 for both cases 𝑘 ≠ 𝑚 and 𝑘 = 𝑚 is a function 
of 𝐴ϵ which means that 〈|𝐻(𝑘; 𝜌)|ϵ〉 ∝ J|ֆ|

ϵ (𝛽) = J|ֆ|
ϵ (𝜇𝑟Ј𝜌). Taking advantage of the below integral, 
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௷ J|ֆ|
ϵ (𝜇𝑟Ј𝜌) 𝜌

ᇏɱ

Ј

𝑑𝜌 =
𝜌Ј

ϵ

2
ख़J|ֆ|

ϵ (𝜇𝑟Ј𝜌Ј) − J|ֆ|−φ(𝜇𝑟Ј𝜌Ј)J|ֆ|+φ(𝜇𝑟Ј𝜌Ј)ग़ 

one can find the average of each 𝐿ֆ mode. We have summarized the results in the below table. Note that 
any conclusion we made here is a function of ratio 𝑑/𝑁 , so that each of these numbers is not meaningful 
by itself, and the critical factor is the ratio of these parameters. 

V
or

tic
ity

 𝑘 ≠ 𝑚 𝑉 ֆ = 𝐸Ј
ϵ(𝑑/𝑁)[1 − 𝐶φ

ϵ] sincϵ([𝑚 − 𝑘](𝑑/𝑁)𝜋) J|ֆ|
ϵ (𝜇𝑟Ј𝜌Ј)  

𝑘 = 𝑚 
𝑉 ֈ = 𝐸0

2(𝑑/𝑁)2
𝑒−֏ȯ

2𝜋
√

𝑡
 J|ֆ|

ϵ (𝜇𝑟Ј𝜌Ј) {𝑀φ(𝑡ϵ, 𝑡ϯ) + 𝑀ϵ(𝑡ϵ, 𝑡ϯ, 𝑡Κ)

+ 4ℎ [ℎφ𝐹φ(𝜖) + ℎϯ𝐹ϯ(𝜖) + ℎΘ𝐹Θ(𝜖)]} 

O
A

M
 

𝑘 ≠ 𝑚 𝐿ֆ = 𝐸0
2
(𝑑/𝑁)[1 − 𝐶φ

ϵ] sincϵ([𝑚 − 𝑘](𝑑/𝑁)𝜋) 
𝜌Ј

ϵ

2
ख़J|ֆ|

ϵ
(𝜇𝑟Ј𝜌Ј) − J|ֆ|−φ(𝜇𝑟Ј𝜌Ј)J|ֆ|+φ(𝜇𝑟Ј𝜌Ј)ग़  

𝑘 = 𝑚 
𝐿ֈ = 𝐸Ј

ϵ(𝑑/𝑁)ϵ 𝑒−֏ȯ

2𝜋
√

𝑡
 
𝜌Ј

ϵ

2
ख़J|ֈ|

ϵ (𝜇𝑟Ј𝜌Ј) − J|ֈ|−φ(𝜇𝑟Ј𝜌Ј)J|ֈ|+φ(𝜇𝑟Ј𝜌Ј)ग़ 

             × {𝑀φ(𝑡ϵ, 𝑡ϯ) + 𝑀ϵ(𝑡ϵ, 𝑡ϯ, 𝑡Κ) + 4ℎ [ℎφ𝐹φ(𝜖) + ℎϯ𝐹ϯ(𝜖) + ℎΘ𝐹Θ(𝜖)]} 

 

One important conclusion is the relationship between each vorticity and OAM modes, 

𝐿ֆ/𝑉 ֆ =
𝜌Ј

ϵ

2
ख़1 − J|ֆ|−φ(𝜇𝑟Ј𝜌Ј)J|ֆ|+φ(𝜇𝑟Ј𝜌Ј)/J|ֆ|

ϵ (𝜇𝑟Ј𝜌Ј)ग़. 

The significance of this result is that, irrespective of random medium, by measuring one of these properties 
for a determined circular area, one can find the value of the other one. More precisely, if one performs a 
phase measurement along a circular closed contour and finds the average of a vorticity mode, the above 
relation provides  the information about the OAM  mode, which, in turn, relates to both phase and 
amplitude of the field inside the contour. 
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1.3. Special cases 

In this appendix we investigate some particular cases. First, we want to find the probability distribution 
of |𝐻(𝑘; 𝜌)| in case of no randomness. This case is defined by either of these conditions: (i) 𝑑/𝑁 → 1 or 
(ii) 𝛼 → 0. The first case is not applicable because we assumed 𝑑/𝑁 ≪ 1 to use the central limit theorem. 
However, we can consider the case of no variance in phase, which is the case (ii). Under this assumption, 
for the case of 𝑘 ≠ 𝑚, both the variance and average go to zero. Below function can describe it 

𝛼 → 0   ⇒     𝑝
|թ(ֆ)|

ֆ≠ֈ
= 𝑙𝑖𝑚

ᇐ→Ј

|𝐻(𝑘; 𝜌)|

𝜎ϵ
 exp ঝ−

|𝐻(𝑘; 𝜌)|ϵ

2𝜎ϵ
ঞ = δ(|𝐻(𝑘; 𝜌)|) , 

which is a Dirac delta function centered at zero. Therefore, in the case of 𝛼 → 0, there is no chance for 
vorticity to be any value other than 𝑚. On the other hand, when 𝛼 → 1 and 𝑠 → ∞, then 𝑡φ, 𝑡ϯ, 𝑡Κ → 0, 𝑡 →

(1/4)(𝑁/𝑑)ϵ, and 𝑡ϵ → (𝑁/𝑑)−φ. Thus, the probability distribution will be the same as the case of 𝑘 ≠ 𝑚, 

𝑝|թ(ֆϦᇏ)|
ֆ=ֈ =

|𝐻(𝑚; 𝜌)|

(𝑁𝑑/2)ॅJ|ֆ|(𝛽)ॆϵ
 exp −

|𝐻(𝑚; 𝜌)|ϵ

(𝑁𝑑)ॅJ|ֆ|(𝛽)ॆϵ
 . 

In this case, which is the most potent case of randomness, there should not be any difference between the 
distribution of 𝑚 and −𝑚 vorticities so that the average of total detected vorticity equals zero. Fig. S2 
illustrates an example for the case of 𝑚 = 5. 

 

 

Fig. S2.  A general example of probability distributions of different modes of vorticity, for the 
case of 𝑚 = 5. Here, we just illustrate the modes 0, 1, 2, 3, 4. Increasing and decreasing the 
phase variance makes the distribution of initial vorticity (in this example, 𝑚 = 5) to move 
toward the Rayleigh or Dirac delta distributions, respectively. 
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2. Numerical simulation 

2.1. Details of simulation 

The simulation method is based on the Fourier transformation over a perfect optical vortex beam (POV) 
(see Fig. S3). This beam was generated using a vector (one-dimensional matrix) since POV can be 
approximated as a thin ring. Under the condition of 𝑁 ≫ 𝑑, one can assume that the correlation length is 
invariant along the ring's circumference, just like what we considered in the theoretical model. Therefore, 
after every 𝑑 number of discrete units (which are in total 𝑁), one new random number was generated (see 
Fig. S3. (a)). For all the numerical results presented here we used 500 units for variable 𝑁  while 𝑑 was 
varied in the range of 1 to 50 units.  

After generating the POV, we apply a Fourier transform to find the scatter field in the far-field 
regime. Then, one needs to detect the local optical vortices inside the stochastic field. Two conditions 
were investigated in order to find the optical vortices: (1) being in a local minimum amplitude following 
by (2) phase wrapping as an integer factor of 2𝜋. Calculation over phase has been done using (see Fig. S3. 
(c)) [3] 

𝑀 =
1

2𝜋
ంarg[𝐸։𝐸։+φ

∗ ]
΅

։=φ

. 

The parameter 𝑀  can be any integer. If it is zero, there is no singularity happening in the target pixel, 
while if it takes any other value, that point will be a phase dislocation. Positive or negative values of 𝑀  
determine the handedness of the local vorticity.  
   After finding the position of the vortices and their charge (it is usually a charge of ∓1 because high order 
local vortices are not stable in a random wavefield), one can find the total charge inside any arbitrary 
closed contour. Note that to make sure whether the algorithm works well or not, we calculated the 
superposition of phase gradient over an arbitrary (circular, rectangular, etc.) closed contour in different 
locations across the random field and compared it with the total charge inside the contour. In this way we 
insure that they share the same value.   
 
 

 

Fig. S3. (a) Schematic of modeling the perfect optical vortex beam (POV) (b) the concept of 
correlation length and phase variance of randomness in simulation. We have kept the correlation 
length homogeneous along the ring’s circumference. In this example, the initial vorticity equals 
4 meaning that phase is wrapped four times in range [0,2𝜋] (c) Detection of the local vortices 
was done using the superposition of phase gradient over the neighbors of a pixel where local 
minimum intensity exists. 
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Fig. S4. An example of wandering local vortices which resulted from splitting the initial vorticity 
(points in red). The movement of these vortices, frame by frame, is continues since the same 
realization of randomness (with constant correlation length) has been used. The phase variance, 
however, changes with the same increments at each step. Points in yellow illustrate the local 
vortices appeared after introducing the perturbation. These vortices can be observed even in the 
case of Gaussian beam scattering by random media. These figures have been generated by the 
simulation method described in the previews section. 

 
 

 

Fig. S5. As shown in the previews figure, local vortices wander from each other until the point 
where the field becomes homogenous and isotropic stochastic field will be reached. That is the 
case of fully developed speckle field which is the case of most powerful random distortion. 
Considering any closed contour, with arbitrary shape and size, which contains the optical axis, 
the average vorticity detected inside this contour has a general behavior as above plot. The first 
zone, named "memory area", is the regime of randomness where average vorticity is larger than 
𝑚 − 1. Operating any interferometric measurement, one can observe global phase pattern based 
on which some information regarding initial beam can be recovered. In the second area, filed is 
in transition from an ordered optical field which has experience a weak perturbation toward a 
strong distortion where field turns into the so-called fully-developed speckle field and global 
structure for field is meaningless. In fact, field is homogeneous and it can be described just by 
the distribution of local phase. Note that for above graph, a uniform distribution of randomness 
was considered such that, in the case of unit normalized phase variance, a fully-speckled pattern 
would be observed.   
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2.2. Uniform distribution of randomness 

Below is the data calculated for the case of uniform distribution (𝑠 → ∞) of randomness with phase 
variation in range [−𝜋, 𝜋]. This case corresponding to the strongest randomness, which leads to a fully-
developed speckle pattern and to the shortest extent of vortex memory. All axis ranges are the same as the 
results provides in the main article. 
 

 
Fig. S6. Effect of randomness on beams with different initial vorticities. The plots illustrate the 
detected vorticity inside the circular contour with radius 𝜌Ј = 2𝜆𝑧/𝜋𝑟Ј  as a function of 
correlation length (𝑑) and phase variance (𝛼) of perturbation.   

Panel (a): analytical data for the case of a Gaussian distribution with 𝑠 = 𝛼 × 0.3𝜋.  

Panel (b) analytical data (left column) and numerical data (right column) for the case of uniform 
distribution of randomness (𝑠 → ∞). The simulation results used 𝑁 = 500 and represent the  
average over 25 different realizations of randomness. Color bars range from zero to the value of 
initial vorticity. 
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3. Experiment 

3.1. Tunable phase screen (TPS)  

The TPS has been designed as the following: two 2-inch Thorlabs 120-ground glass diffusers [4] sandwich 
a 1.53 series-A refractive index oil [5], where the polished sides of the diffusers face the air.  The 
temperature of the oil was controlled by two HT10KR ceramic ring-shape heaters [6] placed at the two 
polished sides. 
    We conducted an independent measurement, prior to the main experiment, to illustrate the TPS 
capability to impose controllable distortion to an incident field. For this purpose, we used a regular 
Gaussian beam incident on TPS. We changed the voltage of the heater element and measured the intensity 
contrast of the emerging speckle field as shown in Fig. S7(b). This test insured that field randomness can 
be controlled properly to reach a maximum contrast of approximately 0.7. Note that during all 
experiments, a 10 minutes delay was used to insure that the temperature is homogenous across the glasses.  

 

Fig. S7. (a) Measured temperature at the center of phase screen  versus the voltage. (b) Intensity 
contrast for input Gaussian beam. Behavior of the graphs perfectly show the change in the power 
of randomness of the phase screen. 

To find the properties of the ground glass (GG), we measured the roughness along 5 different direction 
passing through the center and a typical result is illustrated in Fig. S8(a). By evaluating the auto correlation 
and the roughness distribution, one can assign an effective correlation length and a distribution of phase 
created by the GG in the presence of oil with a certain refractive index. In the case of our experiment, 
correlation length was estimated to be 100(𝜇𝑚) (see Fig. S8(c)).  
 

 

Fig. S8. (a) The surface profile along a line passing through the center of the GG. (b) Distribution 
of the roughness evaluated from 5 different scans. (c) Auto correlation function of surface 
fluctuation shown in part (a). based on this plot, we estimated the value of correlation length of 
GG to be approximately 100(𝜇𝑚). 

 
    Because we use two GGs face-to-face to make this device, we need to characterize the properties of 
whole system. The probability density function (PDF) of a combination of two GGs is different from each 
one separately. Indeed, the PDF of the sum of two independent random variables is the convolution of 
their two PDFs. In the case of our device, PDF regarding GGs are the same; a Gaussian distribution with 
standard deviation 𝑠Ј ≅ 0.36𝜋  (see Fig. S8(b)) (this value is under assumption of 𝛼 = 1). Thus, the 
convolution of these two same Gaussian distributions results in a Gaussian distribution with standard 
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deviation 𝑠′ =
√

2𝑠Ј
ϵ ≅ 0.6𝜋. The maximum phase range can also be found using the range of Gaussian 

distribution in Fig. S8(b).  

   Based on this information and variation of refractive index of the oil versus voltage, the phase variance 
for the TPS is found to be around 0.7 . Note thatThe correlation length was measured before as 
approximately 100(𝜇𝑚). Based on this fact that the diameter of POV in the experiment was ≅ 2(𝑚𝑚), 
thus the ratio (which was discussed in first section) is  𝑑/𝑁 ≅ 0.0159. 
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3.2. Details of experiment  

This appendix details the phase measurement using two different arrangements. In the first interferometer 
a spherical wave was used as reference while in the second interferometer the same object wave was used 
as reference (self-interference). The experimental setup for both measurements is illustrated in Fig. S9.   
 

 

Fig. S9. Experimental setup. All components inside the setup are labeled. In order to label the 
items, the view has been rotated in comparison to the one in the main text. Note that the aperture 
at the back of the L2 is an iris diaphragm. 

   A randomly polarized beam from a Nd:YVO4 laser with wavelength 𝜆 = 532(𝑛𝑚) is filtered and 
collimated using an objective, pinhole and lens (L1) with focal distance 𝑓 = 10(𝑐𝑚). The polarization 
state of the collimated beam is rotated by a half-wave-plate (HWP1) and split into two orthogonal 
components by a polarizing beamsplitter (PBS) for the measurement in the first interferometer.  
   The reflected vertically-polarized component travels toward a spatial light modulator (SLM 512 BNS 
non-linear system, 512 × 512 pixels) which works in pure phase mode. By rotating the HWP1, the 
intensity ratio between the horizontally and vertically polarized components was adjusted to be 1:2, 
respectively. The reason was to compensate the energy which is lost in reflection by SLM. The SLM is 
controlled by a computer in real time using MATLAB Software routines to generate the mode-converting 
holograms. The holograms are blazed phase gratings, designed such that they have the maximum of the 
energy is in the first diffraction order. Additionally, the holograms are programmed with an extra 
correction phase factor to ensure the best flatness of the phase in the output Bessel-Gauss beams. The 
resulting Bessel-Gauss beam with a topological charge value 𝑚 passes through an iris diaphragm which 
has been placed to remove the undesired diffraction orders.      
    Then, we need to generate the perfect optical vortex beam (POV). This beam can be created by axicon 
[7], width-pulse approximation of the Bessel function [8], liquid crystal spatial light modulators (SLMs) 
[9], and digital micro-mirror devices (DMDs) [10]. Although the information capacity is inherently 
reduced, their use in free space and underwater communications has been recently demonstrated 
[11,12,13,14]. The Bessel-Gauss beam incidents onto a lens (L2) with focal distance 𝑓 = 150(𝑚𝑚). The 
perfect optical vortex beam (POV) with approximate diameter of 2(𝑚𝑚) is then created on the back focal 
plane of L2 where the TPS is located.  

    The emerging speckle pattern is directed towards the Fourier lens (L3) placed at the focal distance 𝑓 =
150(𝑚𝑚) from the TPS to obtain a non-evolving speckle pattern [15]. The optical field right before the 
BS2 can be written in Cartesian coordinates as  𝑬و(𝑥, 𝑦) = ॅ𝐸ϵ֓, 𝐸ϵ֔ॆ

  = 𝐸Јϵ(𝑥, 𝑦)𝑒քᇓɞ(՝ӱ՞) [0,1] , where 

𝐸Јϵ and 𝜙
ଶ
  are the amplitude and phase of the speckle field, respectively.      
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     The transmitted horizontally-polarized component in the PBS passes a half-wave plate (HWP2) 
orientated at 45 degrees in respect to horizontal, so that it is converted to vertically polarized state of 
polarization. Then, this vertically-polarized wave-plane is transformed into a spherical wave using a 
Plano-convex lens L5 with focal distance 150(𝑚𝑚). The spherical wave passes through a variable liquid 
crystal retarder (LCR) to become 𝑬غ(𝑥, 𝑦) = ॅ𝐸φ֓, 𝐸φ֔ॆ

† = 𝐸Јφ(𝑥, 𝑦) 𝑒𝑥𝑝(𝑖𝜙φ(֓Ӵ֔) + 𝑖𝛿)[0,1]†, where 

𝐸Јφ and 𝜙
ଵ
 are amplitude and phase, respectively, and parameter 𝛿 is an additional phase factor adjusted 

by LCR. Finally, the transmitted speckle field and the reflected spherical beam are recombined into a 
single beam by the beamsplitter BS2. The corresponding optical field can be expressed as 

𝑬۱(ᇂ) = 𝐸Јφ𝑒
ք(ᇓȯ+ᇂ) ঁ

0
1
ং + 𝐸Јϵ𝑒

քᇓɞ(՝ӱ՞) ঁ
0
1
ং. 

When the phase factor introduced in retarder is  𝛿 = 𝜋/2 , intensity of the interference field is given by 

𝐼֏(ᇎ/ϵ) = |𝐸Јφ|
ϵ + |𝐸Јϵ|

ϵ − 2𝐸Јφ𝐸Јϵ 𝑠𝑖𝑛(𝜙ϵ − 𝜙φ). 

However, when this parameter is adjusted to 𝛿 = 0, the intensity can be written as 

𝐼֏(Ј) = |𝐸Јφ|
ϵ + |𝐸Јϵ|

ϵ + 2𝐸Јφ𝐸Јϵ 𝑐𝑜𝑠(𝜙ϵ − 𝜙φ). 

Using the two last equations, one can evaluate the phase as 

𝑡𝑎𝑛(𝜙ϵ − 𝜙φ) = −
|𝐸Јφ|

ϵ + |𝐸Јϵ|
ϵ − 𝐼֏(ᇎ/ϵ)

|𝐸Јφ|
ϵ + |𝐸Јϵ|

ϵ − 𝐼֏(Ј)

 , 

which is actually the phase difference between the scattered field and the reference field. At this point, we 
can ensure that the experimental procedure described above, aside from the separate intensities of two 
arms, |𝐸Јφ|

ϵ and |𝐸Јϵ|
ϵ, only requires two interferometric measurements of the intensity to obtain the 

experimental value of the phase 𝜙 = 𝜙ϵ − 𝜙φ, while the four-measurement phase retrieval technique is 
common. In this way, the phase of optical field is measured fast in a time limited by the modulation 
frequency of LCR (hundreds of 𝑘𝐻𝑧) and the exposure time of camera (50 𝑚𝑠). The lens L4 was used to 
manipulate the size of speckles, and lens L6 was used for magnifying the interference pattern, because the 
field around the optical axis (paraxial regime) is desired.  
   

 

Fig. S10. Interferometric measurements of the intensity pattern with factor 𝛿 = 𝜋/2  and retrieve 
phase of scattering the perfect optical vortices beams with topological charges 𝑚 = 4 (first and 
second rows) and 𝑚 = 1 (third and fourth rows). 

 
Experimental results of the interferometric measurements in the first interferometer of the intensity are 
illustrated in Fig. S10, including the retrieved phase regarding the speckle field of the POV with 
topological charge 𝑚 = 4 (first and second rows) and 𝑚 = 1 (third and fourth rows) for different voltages 
applied to the tunable random phase screen. The measurements show that increasing the voltage is 
equivalent to decreasing the TPS scattering. As a result, the interferometric speckle intensity pattern and 
the speckle retrieved phase tend to the interferometric results of intensity and phase of the POV with a 
spherical wave [16].  

    To quantify the topological charge, we were forced to use the rectangular contours  in the Cartesian 
coordinates. Because of the fact that diffracted POVs have different sizes due to different orders of 
vorticity, we examined the global topological charge by averaging over a couple of square contours 
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centered on the optical axis. Furthermore, this procedure alleviates the noise existing in any regular phase 
measurement.   
    Next, we measure the gradient of the phase around each closed loop contour to quantitatively determine 
the number of singularities with topological charge +1 and -1 over it and measure the topological charge 
as the sum of these singularities. By repeating this process for each rectangular contour from the center to 
the external position in each retrieved phase pattern, we measure the topological charge using the mean 
value over the number of contours. As the contour size increases, the evaluated charge tends to saturate. 
We found that a total of 11 contours over each phase distribution provides an appropriate measurement. 

     To track the global phase, we used the second interferometer where the object wave interferes with a 
replica of itself (self-interference). In this configuration the reflected speckle field by BS2 is used as input 
field for BS3. There, the speckle field is divided into two fields which travel along the upper- and lower-
arm of the Mach-Zehnder interferometer to reach the beamsplitter BS4. A relative phase shift 𝛼 between 
the two speckle fields is introduced by moving, the mirror M6. Finally, the speckle fields are recombined 
at the output of the beamsplitter BS4 where the intensity becomes 

𝐼֏φ = 2|𝐸Јφ|
ϵ(1 − cos𝛼). 

Fig. S11 illustrates and example of measured self-interference intensity of the speckle field for the case 
of the POVs with topological charge 𝑚 = 5, where voltage varies in range 𝑉 = 2(𝑣) to 𝑉 = 7(𝑣). One 
can observe that the interferometric pattern tends to the typical curved-fork shaped when the TPS 
randomness decreases. In both arms of setup the camera used is an Andor CMOS.  

 

Fig. S11. Self-interference intensity pattern. As it can be observed, by increasing the voltage 
(decreasing the phase variance), singularity can be observed in the center. Without any phase 
measurement and with one intensity measurement, one can find the vorticity in the center. That 
is the reason why this measurement is called “global phase measurement”.    
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