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Supplemental Experimental Procedures 

 
Quantification of neurons in post-mortem brain 
Tissue: Adult postmortem brain tissue was obtained from the NICHD Brain and Tissue Bank for Developmental 
Disorders with approval from the University of Wisconsin-Madison Institutional Review Board. Superior temporal 
gyrus or Brodmann’s Area 22 was obtained from four DS individuals and age and gender matched control 
subjects. It should be noted that the post mortem interval (PMI) varied between the samples and, in particular, 
the DS samples had longer PMIs than their matched controls (Controls 14.50 + 1.26, DS 25.00 + 4.5, p=0.11 
calculated using non-parametric Mann-Whitney U test). 
 
Subject and sample information  

UMB 
number 

Diagnosis Age Sex Race Post 
mortem 

(years, 
days) 

interval 
(hours) 

1841 Control 19, 289 Male Caucasian 14 
5277 Ts21 19, 352 Male Caucasian 26 
5654 Control 19, 264 Male Caucasian 18 

M1960M Ts21 19, 311 Male Caucasian 14 
5030 Control 24, 333 Male Afr Amer 14 
5341 Ts21 25, 304 Male Afr Amer 24 
1544 Control 32, 315 Male Caucasian 12 
4273 Ts21 33, 315 Male Caucasian 36 

 
Immunocytochemistry: Tissues were sectioned at 50 microns using a cryostat and processed for 
immunocytochemistry. Antigen-antibodies were visualized with avidin-biotin, horseradish peroxidase (HRP) and 
3, 3’-Diaminobenzidine (DAB) using standard immunohistochemical techniques on floating sections.  
 
Immunocytochemical methods     

MARKER   ANTIBODY 
INFORMATION 

ANTIGEN 
RETRIEVAL 

DILUTION secondary, 
ABC 

DAB 

all neurons NeuN AbCam 
ab104225 

Rabbit 

Vector 
unmasking 
15 minutes 

95°C 

1:500 Visucyte 
HRP 

polymer 

5 
minutes 
ImPACT  

Parvalbumin PV Sigma   Vector 
unmasking 
5 minutes 

95°C 

1:1000 Biotin 2'  
ABC 

5 
minutes P3088  

mouse 

Somatostatin SST Millipore 
MAB354 

Vector 
unmasking 
15 minutes 

95°C 

1:100 Biotin 2'  
ABC 

10 
minutes 

 rat 

Calretinin CR Swant  Vector 
unmasking 
15 minutes 

95°C 

1:2000 Biotin 2'  
ABC 

3 
minutes CR7697  

Rabbit 

 
Quantification of positive cells: Total numbers of NeuN+, PV+, CR+ and SST+ neurons were estimated using 
the Optical Fractionator (OF) workflow in Stereo Investigator software (MBF Bioscience). Six to eight sections at 
an interval of 5-7 were analyzed. Percentages of tissue for sampling were chosen based on the resample 
oversample function in Stereo Investigator (PV: 1%, CR: 1%) to ensure a coefficient of error < 0.1.The total 
positive cell count was estimated using the following equation: 𝑁𝑁 = ∑𝑄𝑄 ∗ 𝑡𝑡

ℎ
∗ 1
𝑎𝑎𝑎𝑎𝑎𝑎

∗ 1
𝑎𝑎𝑎𝑎𝑎𝑎

, where ∑𝑄𝑄is the total 



number of cells counted, t the average section thickness and h the height of the optical dissector, and asf and 
ssf the area sectioning fraction and the section sampling fractions, respectively [10]. 
 
Volume and density calculation: Total volume of tissue sampled and counted was estimated using the Cavalieri 
Estimator probe (Stereo Investigator, MBF Bioscience). The total cell population estimate (from the Optical 
Fractionator Workflow) was divided by the total tissue volume (from the Cavalieri Estimator) to calculate cell 
density.  
 
Human induced pluripotent stem cells (iPSCs) 
iPSCs: We established one new isogenic Ts21 iPSC pair and additional iPSCs from DS individuals and 
unaffected controls (Table S2). Primary dermal fibroblasts were isolated from tissue acquired with approval from 
the University of Wisconsin-Madison Human Subjects Institutional Review Board (protocol #2016–0979). 
Fibroblasts were reprogrammed by electroporation delivery of episomal vectors pCXLE-hOCT3/4-shp53-F 
(Addgene, 27077), pCXLE-hSK (Addgene, 27078) and pCXLE-hUL (Addgene, 27080). After electroporation, 
cells were cultured on mouse embryonic fibroblast (MEF) feeder cells in a low oxygen incubator (5% O2, 5% 
CO2). Cells were fed with hESCM (DMEM-F12 media (Gibco) with 20% knock-out serum replacement (Gibco), 
1X Non-Essential Amino Acids (Life Technologies), 0.5X GlutaMAX (Life Technologies), 0.1 mM 2-
mercaptoethanol (Sigma), and 12 ng/mL bFGF (Waisman Biomanufacturing)). The iPSC colonies were manually 
picked between day 14–28 post-transfection. Following expansion, cells were transferred onto Matrigel (R&D) 
and cultured with mTeSR1 (Stemcell Technologies) for banking. iPSCs on MEF were passaged with dispase 
solution (Gibco) Split ratio is 1 to 6 every 5–7 days., and iPSCs on Matrigel were passaged with 0.5mM EDTA 
or ReLeSR (05872, Stemcell Technologies).  

Cell 
line 

Sex Age 
(years) 

Karyotype Relationship Reprogramming 
method 

WC-
24-B 

Female 25 Normal Isogenic pair Episomal 

WC-
24-M 

Trisomy 21   

DS2U Male 1 Normal Isogenic pair Retroviral 
DS1 Trisomy 21   

603-8 Male 36 Normal Unrelated Retroviral 
WC-
38-01 

Male 35 Trisomy 21 Sendai 

WC-
58-07 

Female Neonate Normal Unrelated Episomal 

WC-
20-02 

Female 3 Trisomy 21 Episomal 

 

Cell culture:  iPSCs were maintained on MEFs in hESC media (DMEM/F-12/KOSR/L-Glut/MEM-NEAA/FGF-2) 
and passaged with collagenase. Differentiation to interneuron progenitors was carried out as described (Liu et 
al., 2013). When ~80% confluent, iPSCs were dissociated from MEFs using dispase to generate embryoid bodies 
(EBs). EBs were maintained in suspension with dual SMAD inhibition for 4 days and then media was changed 
to neural induction media (NIM; DME/F12 media with N2, NEAA and heparin). EBs were plated on Day 7 and 
SHH was added on Day 10. For neurons, EBs were lifted to neurospheres on Day 15 or 16 and maintained in 
NIM with B27 and purmorphamine. For neuronal differentiation, progenitors in neurospheres were dissociated 
with Accutase and plated on polyornithine/laminin-coated coverslips in neural differentiation medium containing 
DMEM/F12, N2(1:50), B27 (1:100), 10 ng/mL brain derived neurotrophic factor (BDNF) (Peprotech), 10 ng/mL 
glial derived neurotrophic factor(GDNF) (R&D Systems), cAMP (Sigma), and ascorbic acid(Sigma). Compound 
E (gamma secretase inhibitor XXI) was added at plating. 
 
Cellular analysis 
Cell proliferation: Cell proliferation was assayed using Click-iT™ EdU Alexa Fluor™ 488 Imaging Kit. A final 
concentration of 10uM EdU was added to cells for 8 hours. Cells were fixed with 4% paraformaldehyde in PBS 



for 15 minutes and processed for immunofluorescence for phospho-histone H3 (pHH3, Cell Signaling 
Technology #9706). 
 
Immunofluorescence: Neural progenitors in neurospheres were dissociated with Accutase and plated onto 
laminin coated 96 well cell culture plates or coverslips at 50-60,000 cells/well/coverslip. The day after plating, 
cells were fixed with 4% paraformaldehyde in PBS for 15 minutes. Cells were rinsed with PBS and incubated 
with a permeabilization/blocking buffer (5% normal goat serum, 0.1% TritonX-100 in PBS) for 30 minutes. Cells 
were incubated with primary antibodies to NKX2.1 and/or COUP-TFII overnight followed by fluorescent 
secondary antibodies, washed with PBS and mounted in Fluoromount.  

Antigen Company and 
catalog number 

NKX2.1/TTF1 abCAM 
ab76013 

COUP-TFII/NRF2 R&D systems 
PP-H7147-00 

Calretinin Swant  
7697 

Somatostatin Millipore 
MAB354 

Phospho-Histone H3 
(Ser10) 

Cell Signaling 
Technology 

9706 
 
High Content Imaging analysis: Imaging and analysis was done using the high content imager Operetta (Perkin 
Elmer) at 20x magnification. 
 
Molecular analysis  
qPCR: RNA was isolated from progenitors using the ZYMO Research Direct-Zol RNA Miniprep plus  kit followed 
by cDNA synthesis using qScript cDNA Supermix. qPCR was done in triplicate on 2-3 batches of differentiation 
(N=3). Data are presented as Fold Change calculated from ddCt values. Error bars indicate fold change of ddCt 
values +/- 1 SD. Statistical significance was determined by one-sample t-test on ddCt values.  
Gene Forward Seq (5’ – 3’) Reverse Seq (5’ – 3’) 
AXIN2 TATCCAGTGATGCGCTGA CGGTGGGTTCTCGGGAAATG 
NR2F2/COUPTFII CTCAAGGCCATAGTCCTGTCC GGTACTGGCTCCTAACGTATTC 
FZD1 ATCTTCTTGTCCGGCTGTTACA GTCCTCGGCGAACTTGTCATT 
GLI1 AACGCTATACAGATCCTAGCTCG GTGCCGTTTGGTCACATGG 
GLI2 CCCCTACCGATTGACATGCG GAAAGCCGGATCAAGGAGATG 
GLI3 GAAGTGCTCCACTCGAACAGA GTGGCTGCATAGTGATTGCG 
LEF1 ATGTCAACTCCAAACAAGGCA CCCGGAGACAAGGGATAAAAAGT 
LRP5 CGACACTGGGACCAACAGAA AGATGTAGCCCTTGGTGGGA 
LRP6 CTGAGAGCGGCCCCTTTGTT GCATCCTCCAAGCCTCCAAC 
NKX 2.1 AGCACACGACTCCGTTCTC GCCCACTTTCTTGTAGCTTTCC 
PTCH1 GGAGCAGATTTCCAAGGGGA CCACAACCAAGAACTTGCCG 
PTCH2 CCGCCAGAGGTGATACAGAT CCACGGTCATGGAGGTAGTC 
SMO ACTTGGATTGCGAGGCTAGG TCGCAAACTTTGGAACCCG 

 
Quantification and Statistical Analysis  
All experiments include at least three biological replicates (batches of differentiation, N=3 or individual cell lines 
N=4) and 3 technical replicates (n=3) for each cell line. Ts21 and control pairs were differentiated together. Data 
were analyzed using GraphPad Prism version 8. All pooled data are presented as mean + standard error of the 
mean (SEM). Details regarding number of technical and biological replicates are provided in the figure legends 
with specific statistical analysis test used. For parametric datasets, data were analyzed using unpaired two-tailed 



Student’s t-test. For non-parametric datasets, an unpaired Mann-Whitney test was performed. ANOVA analyses 
were used for datasets with more than two groups. Kruskal-Wallis analysis of variance, one-way ANOVA 
followed by Dunn’s post hoc or Dunnett’s post hoc analysis or two-way ANOVA followed by post hoc Sidak’s test 
or Tukey’s test (GraphPad Prism 8). Differences were considered statistically significant at p<0.05. 
 
 
Single Cell RNA sequencing analysis:  
 
See R notebook 

 



R Notebook

1 Prepare dataset
Load dataset. There are  single cells and  genes. The dataset contains two experimental groups:

• Control: 2,134 cells.

• Trisomy 21: 2158 cells.

library(dplyr)

library(Seurat)

library(patchwork)

rm(list=ls())

setwd("~/Desktop/Waisman/Anita/filtered_gene_bc_matrices_mex/GRCh38/")

mat = read.csv("./data.csv",header = FALSE)

features = read.table("./genes.tsv",sep='\t')

barcodes = read.table("./barcodes.tsv",sep='\t')

group = read.csv('./group.csv',row.names = 1)

colnames(mat) = features$V2

rownames(mat) = barcodes$V1

seuobj = CreateSeuratObject(t(mat),min.cells = 0)

seuobj <- AddMetaData(object = seuobj, metadata = group, col.name = 'group')

2 QC and selecting cells for further analysis
The three QC metrics shown in the following violin figures are:

• The number of unique genes detected in each cell:

◦ Low-quality cells or empty droplets will often have very few genes;

◦ Cell doublets or multiplets may exhibit an aberrantly high gene count.

• The total number of molecules detected within a cell.

• The percentage of reads that map to the mitochondrial genome:

◦ Low-quality / dying cells often exhibit extensive mitochondrial contamination.

seuobj[["percent.mt"]] <- PercentageFeatureSet(seuobj, pattern = "^MT-")

VlnPlot(seuobj, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

4, 292 33, 694



Filter cells that have detected unique genes less than  or over ; filter cells that have  mitochondrial

counts. After filtering, the dataset remains  cells (control: ; Trisomy 21: ).

seuobj <- subset(seuobj, subset = nFeature_RNA > 20 & nFeature_RNA < 10000 & percent.

mt < 5)

3 Perform integration
The joint analysis of two or more single-cell datasets might be problematic, especially identifying cell

populations. We implement integrated analysis across different datasets to correct for technical differences

between datasets (i.e., batch effect correction) and perform comparative scRNA-seq analysis across

experimental conditions. First, we show the UMAP of all cells before integration, colored by experimental

groups:

UMAP (Dataset before integrating)
seuobj <- NormalizeData(seuobj, verbose = FALSE)

seuobj <- FindVariableFeatures(seuobj, selection.method = "vst", nfeatures = 2000, ve

rbose = FALSE)

seuobj <- ScaleData(seuobj, verbose = FALSE)

seuobj <- RunPCA(seuobj, features = VariableFeatures(seuobj), verbose = FALSE)

seuobj <- RunUMAP(seuobj, reduction = "pca", dims = 1:30, verbose=FALSE)

DimPlot(seuobj, group.by = "group")

20 105 > 5%
4, 025 2, 003 2, 022



Integration
seuobj.list <- SplitObject(seuobj, split.by = "group")

seuobj.list <- lapply(X = seuobj.list, FUN = function(x) {

  x <- NormalizeData(x, verbose = FALSE)

  x <- FindVariableFeatures(x, selection.method = "vst", nfeatures = 2000, verbose = 

FALSE)

})

features <- SelectIntegrationFeatures(object.list = seuobj.list)

seuobj.list <- lapply(X = seuobj.list, FUN = function(x) {

  x <- ScaleData(x, features = features, verbose = FALSE)

  x <- RunPCA(x, features = features, verbose = FALSE)

})

anchors <- FindIntegrationAnchors(object.list = seuobj.list, anchor.features = featur

es, verbose = FALSE)

combined <- IntegrateData(anchorset = anchors, verbose = FALSE)

DefaultAssay(combined) <- "integrated"

combined <- ScaleData(combined, verbose = FALSE)

Then, the following plot shows the UMAP of all cells after integration, colored by experimental groups:

UMAP (Dataset after integrating)
combined <- RunPCA(combined, features = VariableFeatures(combined),verbose = FALSE)

combined <- RunUMAP(combined, reduction = "pca", dims = 1:30, verbose=FALSE)

DimPlot(combined, group.by = "group")



4 Regress out cell cycle genes
Then we mitigate the effects of cell cycle heterogeneity in the dataset by calculating cell cycle phase scores

based on canonical markers, and regressing these out of the data during pre-processing.

Before cell cycle
Running a PCA on cell cycle genes reveals that cells separate entirely by phase.

s.genes <- cc.genes$s.genes

g2m.genes <- cc.genes$g2m.genes

combined <- CellCycleScoring(combined, s.features = s.genes, g2m.features = g2m.gene

s, set.ident = TRUE, verbose = FALSE)

combined <- RunPCA(combined, features = c(s.genes, g2m.genes), verbose = FALSE)

p1=DimPlot(combined,reduction="pca")

p2=DimPlot(combined,reduction="pca",group.by = "group")

p1+p2



After cell cyle
When running a PCA on only cell cycle genes, cells no longer separate by cell-cycle phase.

combined <- ScaleData(combined, vars.to.regress = c("S.Score", "G2M.Score"), features 

= rownames(combined), verbose=FALSE)

combined <- RunPCA(combined, features = c(s.genes, g2m.genes),verbose = FALSE)

DimPlot(combined, reduction="pca")

p1=DimPlot(combined,reduction="pca")

p2=DimPlot(combined,reduction="pca",group.by = "group")

p1+p2



5 Dimensional reduction and clustering
Next, we perform PCA on the scaled data. By default, only the previously determined variable features are

used as input. Then we visualize the dataset using UMAP after integration and mitigating cell cycle effects:

combined <- RunPCA(combined, features = VariableFeatures(combined), verbose = FALSE)

combined <- RunUMAP(combined, reduction = "pca", dims = 1:50, verbose = FALSE)

DimPlot(combined,pt.size = 0.3, group.by = "group")

5.1 Cluster the cells



Visualize by experimental groups (left) and clustering results (right):

combined <- FindNeighbors(combined, reduction = "pca", dims = 1:50, verbose = FALSE)

combined <- FindClusters(combined, resolution = 1, verbose = FALSE)

p1 <- DimPlot(combined, pt.size = 0.3, reduction = "umap", group.by = "group")

p2 <- DimPlot(combined, pt.size = 0.3, reduction = "umap", label = TRUE, repel = TRU

E)

p1 + p2

Visualize the two experimental conditions side-by-side (left: control; right: Trisomy 21):

DimPlot(combined, reduction = "umap", split.by = "group", label = TRUE, repel = TRUE)

Check the number of cells in each cluster:



Next1 2Previous

ncontrol=table(combined@meta.data[["seurat_clusters"]],combined@meta.data[["grou

p"]])[,1]

nTrisomy21=table(combined@meta.data[["seurat_clusters"]],combined@meta.data[["grou

p"]])[,2]

data.frame(`control`=ncontrol, `Trisomy 21`=nTrisomy21)

control

<int>

Trisomy.21

<int>

0 289 223

1 312 187

2 208 210

3 54 289

4 201 130

5 194 120

6 157 139

7 163 106

8 90 175

9 60 115

1-10 of 16 rows

Check the percentage of cells in each cluster:

ncontrol=table(combined@meta.data[["seurat_clusters"]],combined@meta.data[["grou

p"]])[,1]

nTrisomy21=table(combined@meta.data[["seurat_clusters"]],combined@meta.data[["grou

p"]])[,2]

data.frame(`control (%)`=ncontrol/(ncontrol+nTrisomy21)*100, `Trisomy 21 (%)`=nTrisom

y21/(ncontrol+nTrisomy21)*100)

control....

<dbl>

Trisomy.21....

<dbl>

0 56.44531 43.55469

1 62.52505 37.47495

2 49.76077 50.23923

3 15.74344 84.25656

4 60.72508 39.27492

5 61.78344 38.21656



Next1 2Previous

control....

<dbl>

Trisomy.21....

<dbl>

6 53.04054 46.95946

7 60.59480 39.40520

8 33.96226 66.03774

9 34.28571 65.71429

1-10 of 16 rows

barplot(t(table(combined@meta.data[["seurat_clusters"]],combined@meta.data[["grou

p"]])), beside = TRUE, legend = TRUE)

5.2 Fisher’s exact test
We use Fisher’s exact test to see whether the odds  is

greater than 1.

/trisomy 21 cells in cluster 3
trisomy 21 cells in cluster 1

control group cells in cluster 3
control group cells in cluster 1



Testing = matrix(c(312,54,187,289),

                 nrow=2, 

                 byrow=TRUE,

                 dimnames = list(Group = c("Control","Trisomy21"),

                                 Cluster = c("Cluster 1","Cluster 3")))

fisher.test(Testing, alternative = "greater")

## 

##  Fisher's Exact Test for Count Data

## 

## data:  Testing

## p-value < 2.2e-16

## alternative hypothesis: true odds ratio is greater than 1

## 95 percent confidence interval:

##  6.608068      Inf

## sample estimates:

## odds ratio 

##    8.90362

Since -value , under  confidence level, the odds

 is significantly greater than 1.

6 Detect differentially expressed genes
(Positive markers only) for each cluster

6.1 Detect differentially expressed genes
Identify canonical cell type marker genes that are conserved across conditions. We perform differential gene

expression testing for each group and combines the p-values using meta-analysis methods from the MetaDE  R

package. We identify differentially expressed genes in each cluster by choosing genes that combined p-values

are less than .

DefaultAssay(combined) <- "RNA"

markers=list()

top5 = c()

for(i in 0:15){

  name <- paste('cluster', i,sep='')

  markers[[name]] <- FindConservedMarkers(combined, ident.1 = i, grouping.var = "grou

p", only.pos = TRUE, verbose = FALSE)

  markers[[name]] <- markers[[name]][(markers[[name]]$max_pval<0.05 &  markers[[nam

e]]$minimump_p_val<0.05),]

  top5=c(top5,rownames(markers[[i+1]])[1:5])

}

6.2 Feature plot of PAX6

p < 2.2 < 0.05e−16 95%
/trisomy 21 cells in cluster 3

trisomy 21 cells in cluster 1
control group cells in cluster 3
control group cells in cluster 1

0.05



Finally, we visualize the expression of PAX6 which might be of interest.

FeaturePlot(combined, pt.size = 0.3, features = "PAX6", min.cutoff = "q9", split.by = 

"group")

6.3 Additional feature plots
FeaturePlot(combined, pt.size = 0.3, features = c("NR2F2","GLI3","NNAT"), min.cutoff 

= "q8", split.by = "group")



7 Detect differentially expressed genes for
control vs Trisomy 21
dex_genes = FindMarkers(combined,group.by = "group", ident.1 = "control",verbose = FA

LSE)

dex_genes[dex_genes$p_val_adj<0.05,]

p_val

<dbl>

avg_log2FC

<dbl>

pct.1

<dbl>

pct.2

<dbl>

p_val_adj

<dbl>

NNAT 0.000000e+00 3.0307762 0.799 0.001 0.000000e+00

METRN 1.697330e-232 -0.9467797 0.575 0.865 5.718984e-228

MAGEH1 8.006321e-230 0.6742327 0.455 0.018 2.697650e-225

ATP5O 5.622243e-228 -0.6577688 0.966 0.996 1.894359e-223

POU3F4 6.785462e-226 0.8315352 0.471 0.033 2.286294e-221

SOD1 5.711082e-218 -0.7263670 0.946 0.987 1.924292e-213

PCSK1N 2.169855e-188 -1.0027290 0.058 0.469 7.311109e-184

TTC3 3.657587e-150 -0.6901749 0.827 0.941 1.232387e-145



Next1 2 3 4 5 6 ... 21Previous

p_val

<dbl>

avg_log2FC

<dbl>

pct.1

<dbl>

pct.2

<dbl>

p_val_adj

<dbl>

FGFBP3 1.053632e-147 1.1088862 0.928 0.769 3.550106e-143

TMSB4X 5.910802e-137 0.6586441 1.000 1.000 1.991586e-132

1-10 of 206 rows




