SUPPLEMENTARY MATERIAL

Supplementary Methods

1. Neuropsychological test battery

In a subgroup of patients (n = 13) cognitive functions were examined with a 45-min cognitive battery consisting of six standardized neuropsychological tests. The test battery was administered by a trained neuropsychologist in an undisturbed environment in German (native) language. The neuropsychological test battery comprised the Hopkins Verbal Learning Test revised (HVLTR)¹, Digit Span forward/reverse², Trail Making Test part A and B³, Color-Word Interference Test (FWIT)⁴, the Symbol-Digit Modalities Test (SDMT)⁵, and a semantic and letter fluency test⁶. For each test, z-scores were calculated based on the respective mean and standard deviation, stratified by age and education⁷. For the Color-Word Interference Test (FWIT)⁴, which did not provide mean and standard deviation, percentile ranks or T-scores were transformed into z-scores. Results of n = 11 patients were previously reported⁸.

Supplementary Results

1. Results of the Neuropsychological test battery

Detailed results are displayed in the **Supplementary Table 1**. The Digit Span backward was affected most frequently (6/13), followed by semantic fluency (5/12; both representing executive functions). Moreover, deficits were present in the Hopkins Verbal Learning Test revised (HVLTR; 5/12), representing the cognitive domain memory. Tests for attention were less frequently impaired. Overall, these findings confirmed the results from the MoCA.

2. Confirmatory analysis with AMICO-NODDI

To corroborate the results of our Bayesian model, we also extracted diffusivity parameters using the accelerated microstructure imaging via convex optimization (AMICO)-NODDI, a regularized version of NODDI that also allows fast processing times due to the linearization of fitting procedures (https://github.com/daducci/AMICO)⁹. From the parameters provided by the AMICO approach, V_{iso} can be considered as the homologue of V-CSF. In a comparison of whole-brain white matter V_{iso} parameters between COVID-19 patients and controls

(ANCOVAs controlling for "age" and "sex"), a highly significant increase (P < 0.001; df: 51, t =-4.4; Cohen's d: -1.0) was present in COVID-19 similar to our V-CSF data. The distribution of standardized regression coefficients attained by voxel-wise comparisons (COVID-19 vs. controls, nuisance covariates "age", "sex" and "tissue probability value") also confirmed a widespread increase of V_{iso} (see **Supplementary Figure 1**) – although the frontoparietal maxima are a bit less clearly pronounced compared to V-CSF data. Using partial Pearson's correlation approach controlling for sex and age, significant correlations could be detected between V_{iso} and MoCA-performance (r = -0.3; P = 0.042) as well as V_{iso} and the PES (r = 0.59; P = 0.042). For olfactory performance, no significant correlation was present (r = 0.16; P = 0.6). For interleukin-6, a statistically non-significant trend towards a correlation to V-CSF emerged (r = 0.47; P = 0.078).

Supplementary Figures

Supplementary Figure 1. The standardized regression coefficients of the factor V_{iso} were extracted from regression models attained by voxel-wise comparisons between COVID-19 patients and controls (with covariates "age", "sex" and "tissue probability value") and were superimposed onto a T1w MRI template. Color-coding indicates the coefficient values as a measure of effect size of the factor "COVID-19" on V_{iso} (hot colors: large effect size vs. cold colors: small effect size). Please note that all coefficients monodirectionally indicated an increase in V_{iso} . Radiological orientation, i.e. left image side corresponds to patient's right body side; numbers denote the axial (z) position in millimetres.

Supplementary Tables

Supplementary Table 1: Baseline characteristics of COVID-19-patients (n=20)			
Baseline Characteristics	n (%) or mean (SD); range		
Body Mass Index (BMI)	27.8 (4.5); 19.6 to 35.9		
Weight (kg)	81.7 (15.1); 53.7 to 112		
Height (cm)	171.6 (9.2); 150 to 183		
Systolic BP (mmHg) at discharge	131.2 (10.5); 115 to 150		
Diastolic BP (mmHg) at discharge	75.3 (12.7); 55 to 105		
Smoker status (current)	2 (10%)		
Alcohol consumption (> 3days/week)	3 (15%)		

Supplementary Table 2: Characteristics of healthy controls (n=35)				
Demographic data	n (%) or mean (SD); range			
Age (years)	51.8 (17.3); 21 to 81			
Sex (male / female)	18 (51) / 17 (49)			
Baseline Characteristics	n (%) or mean (SD); range			
Body Mass Index (BMI)	24.8 (2.6); 20.8 to 30.6			
Smoker status (current)	1 (3%)			
Alcohol consumption (> 3days/week)	0 (0%)			
Comorbidities	n (%)			
Bronchial asthma	2 (6%)			
Coronary heart disease	1 (3%)			
Deep vein thrombosis	1 (3%)			
Malignancies	4 (12%)			
Clinical readouts	mean (SD); range			
MoCA sum score (corrected for years of education)	28.3 (1.5); 26 to 30			

Supplementary Table 3: Detailed results of the neurocognitive test battery (n = 13); n = 11 are
a subsample of previously published patients ⁸

Test	Domain	Outcome Variable	Mean Z-Score \pm SD	N (%) \leq -1,5 SD
Hopkins Verbal Learning Test revised (HVLTR): learning (n = 12)	Verbal Memory	Scores	-1.01 ± 1.39 [-3.22 – 1.10]	5 (42 %)
HVLTR: delayed recall (n = 12)	Verbal Memory	Scores	$-0.58 \pm 0.94 [-2.01 - 0.58]$	3 (25 %)
HVLTR: recognition discrimination index (n = 12)	Verbal Memory	Scores	-0.17 ± 1.11 [-2.49 – 0.81]	2 (17 %)
Color-Word Interference reading (n = 12)	Processing Speed	Time (s)	-0.57 ± 1.24 [-2.60 - 1.60]	4 (33 %)
Color-Word Interference: naming (n = 12)	Processing Speed	Time (s)	-0.32 ± 1.16 [-1.90 – 1.70]	2 (17 %)
Symbol-Digits-Modalities Test (n = 12)	Processing Speed	Time (s)	$-0.76 \pm 1.14 \ [-2.54 - 0.90]$	3 (25 %)
Trail Making Test A (n = 13)	Attention	Time (s)	$-0.05 \pm 0.93 [-1.57 - 1.30]$	1 (8 %)
Digit Span forward (n = 13)	Attention	Score	$0.07 \pm 1.19 \ \text{[-}1.81 - 2.51\text{]}$	2 (15 %)
Digit Span backward (n = 13)	Executive function	Score	-1.29 ± 1.19 [-1.81 – 2.15]	6 (46 %)
Semantic fluency (n = 12)	Executive function	Score	-0.85 ± 1.27 [-2.79 – 1.05]	5 (42 %)
Phonemic fluency (n = 12)	Executive function	Score	-0.22 ± 1.14 [-1.87 - 1.50]	2 (17 %)
Color-Word Interference: interference (n = 12)	Executive function	Time (s)	-0.21 ± 1.07 [-2.40 - 1.20]	2 (17 %)
Trail Making Test B (n = 13)	Executive function	Time (s)	$-0.29 \pm 1.06 \ [-1.81 - 1.45]$	2 (15 %)

References

- 1. Brandt J, Benedict R. Hopkins verbal learning test Revised. Administration manual. Lutz, FL: Psychological Assessment Resources. Published online 2001.
- 2. Lepach A, Petermann F. Wechsler Memory Scale Revised (WMS-R). Published online 2012.
- 3. Lezak MD. Neuropsychological Assessment. 3rd ed. Oxford University Press; 1995.
- 4. Bäumler, G. Farbe-Wort-Interferenztest (FWIT) nach J.R. Stroop. Published online 1985.
- Langdon DW, Amato MP, Boringa J, et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult Scler. 2012;18(6):891-898. doi:10.1177/1352458511431076
- 6. Aebi C, Monsch AU, Berres M, Brubacher D, Staehelin HB. Validation of the German CERAD-neuropsychological assessment battery. Published online 2002.
- 7. Lazar RM, Pavol MA, Bormann T, et al. Neurocognition and Cerebral Lesion Burden in High-Risk Patients Before Undergoing Transcatheter Aortic Valve Replacement. *JACC: Cardiovascular Interventions*. 2018;11(4):384-392. doi:10.1016/j.jcin.2017.10.041
- 8. Hosp JA, Dressing A, Blazhenets G, et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. *Brain*. Published online April 3, 2021. doi:10.1093/brain/awab009
- Daducci A, Canales-Rodríguez EJ, Zhang H, Dyrby TB, Alexander DC, Thiran JP. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. *NeuroImage*. 2015;105:32-44. doi:10.1016/j.neuroimage.2014.10.026
- Reisert M, Kellner E, Dhital B, Hennig J, Kiselev VG. Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach. Neuroimage. 2017;147:964-975. doi:10.1016/j.neuroimage.2016.09.058