Patterns, Volume 3

Supplemental information

Multi-domain integrative Swin

transformer network for sparse-view

tomographic reconstruction

Jiayi Pan, Heye Zhang, Weifei Wu, Zhifan Gao, and Weiwen Wu

Supplemental Experimental Procedures

Appendix A

More simulated data reconstructions

Figure S1. More simulated data reconstructions from sparse-view data by using different networks. The 1st-7th columns stand for the FBP reconstruction from full-view data, FBPconvNet, HDNet, DDNet, FISTA, LEARN and MIST-net counterparts from 48 views. The display windows for the reconstructed images are [-160 240] HU.

We also do the experiments on numerical datasets with 64 views. The results can be found in Figure S2.

GT	FBPConvNet	HDNet	DDNet	FISTA	LEARN	MIST-net
		N.				
CI S						03
						4
	*				*	<u> </u>
		r in the second s				5
					2	

Figure S2. The simulated data reconstructions from 64 views by using different networks. The 1st-7th columns stand for the FBP reconstruction from full-view data, FBPconvNet, HDNet, DDNet, FISTA, LEARN and MIST-net. The display windows for the reconstructed images are [-160 240] HU.

Appendix B

The statistical quantitative evaluations

The statistical quantitative evaluations result from testing datasets were computed in terms of RMSE, PSNR and SSIM, and their results were summarized in Table S1. It can be seen that our MIST-net can obtain the best quantitative statistical results in terms of mean and standard deviation than other competitors.

Quantitative evaluation of 64 projections reconstruction results from simulated testing datasets						
Views	Methods	RMSE	PSNR SSIM			
	FBPconvNet	25.9083 ± 4.5941	38.6168 ± 1.6026	0.9634 ± 0.0174		
	HDNet	22.8740 ± 4.2488	39.2675 ± 1.2331	0.9670 ± 0.0144		
64	DDNet	24.1746 ± 4.7592	39.7018 ± 1.3685	0.9655 ± 0.0163		
	FISTA	17.4884 ± 3.1788	42.0121 ± 1.2369	0.9769 ± 0.0100		
	LEARN	15.9171 ± 3.6576	42.8622 ± 1.3997	0.9814 ± 0.0123		
	MIST-net	14.5492 ± 3.2807	$\textbf{43.6418} \pm \textbf{1.4070}$	$\textbf{0.9844} \pm \textbf{0.00101}$		

Table S1

In addition to the performance metrics, we also compare the complexity and runtime of all competitors. The test time represents the time taken to predict a total of 391 test datasets. Table S2 shows that our MIST-net train and test much faster than LEARN and FISTA.

Time-consuming comparison of different methods (48 projections)							
Views		FBPconvNet	HDNet	DDNet	FISTA	LEARN	MIST-net
	Epochs	150	150(×2)	100	40	40	40
	Input Size	512×512	48×880	512×512	48×880	48×880	48×880
48	Output Size	512×512	512×512	512×512	512×512	512×512	512×512
	#Param.	9.8M	9.8M(×2)	6.4M	1.3M	3.0M	12.0M
	Train Time	21.3h	37.5h	41.2h	30.1h	83.1h	38.7h
	Test Time	40s	63s	66s	105s	316s	98s

Table S2

Appendix C

More noise experiment results FBPConvNet HDNet DDNet FISTA LEARN MIST-net GT

Figure S3. The generalization of different deep reconstruction networks against noise on simulation datasets. The 1st-7th columns stand for the ground truth, FBPconvNet, HDNet, DDNet, FISTA, LEARN and MIST-net from 48 views. The display window of reconstructed images is [-160 240] HU.

Appendix D

More network details

 Table S3

 Parametric structure for all the layers in the encoder-decoder block

Layers	Parameters	Input Channel	Output Channel	
A0	3×3Conv+BN+ReLU	1	32	
	3×3Conv+BN+ReLU			
A1	2×2 MaxPooling			
	3×3Conv+BN+ReLU	32	64	
	3×3Conv+BN+ReLU			
A2	2×2 MaxPooling		128	
	3×3Conv+BN+ReLU	64		
	3×3Conv+BN+ReLU			
A3	2×2 MaxPooling			
	3×3Conv+BN+ReLU	128	256	
	3×3Conv+BN+ReLU			
A4	2×2 MaxPooling		512	
	3×3Conv+BN+ReLU	256		
	3×3Conv+BN+ReLU			
B0	Upsample+3×3Conv+BN+ReLU		256	
	Concatenation	512		
	3×3Conv+BN+ReLU			
	3×3Conv+BN+ReLU			
B1	Upsample+3×3Conv+BN+ReLU		128	
	Concatenation	256		
	3×3Conv+BN+ReLU			
	3×3Conv+BN+ReLU			
B2	Upsample+3×3Conv+BN+ReLU			
	Concatenation	128	64	
	3×3Conv+BN+ReLU			
	3×3Conv+BN+ReLU			
B3	Upsample+3×3Conv+BN+ReLU			
	Concatenation	64	32	
	3×3Conv+BN+ReLU			
	3×3Conv+BN+ReLU			
B4	1×1 Convolution	32	1	
B5	Residual Connection	1	1	

	,	•	
Layers	Parameters	Input Channel	Output Channel
C0	Sobel Convolution	1	32
	Concatenation		33
C1	3×3Conv+ReLU	33	32
	3×3Conv+ReLU	32	32
	Concatenation		65
C2	3×3Conv+ReLU	65	32
	3×3Conv+ReLU	32	32
	Concatenation		65
C3	3×3Conv+ReLU	65	32
	3×3Conv+ReLU	32	32
	Concatenation		65
C4	3×3Conv+ReLU	65	32
	3×3Conv+ReLU	32	32
	Concatenation		65
C5	3×3Conv+ReLU	65	32
	3×3Conv+ReLU	32	32
	Concatenation		65
C6	3×3Conv+ReLU	65	32
	3×3Conv+ReLU	32	32
	Concatenation		65
C7	3×3Conv+ReLU	65	32
	3×3Conv+ReLU	32	32
	Concatenation		65
C8	3×3Conv+ReLU	65	32
	3×3Conv	32	1
	Residual Connection	1	1

 Table S4

 Parametric structure for all the layers in the edge enhancement Rec-network

Layers	Parameters	Window Size	Head Numbers	Head Numbers		
D0	3×3convolution					
D1	Patch-Embed Block	8×8	6	1×1		
	Swin Transformer Block (×6)					
	Patch-UnEmbed Block					
	3×3convolution+ Residual Connection					
D2	Patch-Embed Block	8×8	6	1×1		
	Swin Transformer Block (×6)					
	Patch-UnEmbed Block					
	3×3convolution+ Residual Connection					
D3	Patch-Embed Block	8×8	6	1×1		
	Swin Transformer Block (×6)					
	Patch-UnEmbed Block					
	3×3convolution+ Residual Connection					
D4	Patch-Embed Block	8×8	6	1×1		
	Swin Transformer Block (×6)					
	Patch-UnEmbed Block					
	3×3convolution+ Residual Connection					
D5	3×3convolution+ Residual Connection					

 Table S5

 Parametric structure for all the layers in the Swin Rec-former