Supporting Information for

Original article

NAMPT-targeting PROTAC promotes antitumor immunity *via* suppressing myeloid-derived suppressor cell expansion

Ying Wu^{a,†}, Congying Pu^{b,†}, Yixian Fu^b, Guoqiang Dong^{a,*}, Min Huang^{b,*}, Chunquan Sheng^{a,*}

^aSchool of Pharmacy, Second Military Medical University, Shanghai 200433, China ^bState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China

Received 28 September 2021; received in revised form 18 November 2021; accepted 29 November 2021

[†]These authors made equal contributions to this work.

*Corresponding authors: dgq-81@163.com (Guoqiang Dong); mhuang@simm.ac.cn (Min Huang); shengcq@smmu.edu.cn (Chunquan Sheng).

Supporting figures (Figure S1–S5) Supporting schemes (Scheme S1–S4) Supporting methods Supporting structure identification spectra Supporting references

Figure S1 NAMPT facilitates the expansion of MDSCs independent of its enzymatic activity. (A) FK866 sensitivity. Cells were treated with FK866 at gradient concentrations for 72 h and cell viability was examined by (sulforhodamine B) SRB assay. (B) Growth of MC38 cells with stable knockdown of NAMPT. Left, MC38 scramble control (shNC) or shNAMPT cell confluency assessed by incuCyte proliferation assay; Right, immunoblot analysis of NAMPT knockdown efficiency. (C) Intracellular NAD⁺ level change in CT26 and MC38 cells with stable knockdown of NAMPT. (D) Tumor growth curve in nude mice. CT26 scramble control or shNAMPT cells were inoculated subcutaneously in BALB/c nude mice (n = 10). (E) MC38 scramble control or shNAMPT cells were analyzed by flow cytometry. The proportion of the indicated immune cells in tumor infiltrating CD45⁺ cells. (F) MDSCs from mouse bone marrow were treated with recombinant NAMPT (200 ng) for 2 h and immunoblot analysis was performed. All data depict the means \pm SEM; **P*<0.05, ***P*<0.01.

Figure S2 The rational design of NAMPT-specific PROTACs. (A–F) Immunoblot analysis of NAMPT in A2780 (A, C, E) or CT26 (B, D, F) cells. Cells were treated with Compound A1–7, B1–5 or C1–5 at 10 nmol/L or 100 nmol/L for 24 h. (G) Semi-quantification of NAMPT expression level versus that of GAPDH based on repeated immunoblot analysis.

Figure S3 PROTAC **A7** is a selective degrader of NAMPT. (A, B) The proteomic analysis of **A7**-caused protein degradation in A2780 cells. Cells were treated with **A7** (10 nM, 24 h) or vehicle control. Proteomic analysis was performed to compare the protein level change between **A7** and the control group. (C) Immunoblot analysis of the indicated proteins in A2780 cells treated with cycloheximide (CHX, 25 μ g/mL) at different timepoints.

Figure S4 The impact of compound **A7** on NAD⁺-relating pathway. (A) Intracellular NAD⁺ levels in A2780 cells. Cells were treated with PROTAC **A7** as indicated for 24 h. (B) RNAseq analysis of CT26 cells treated with **A7** (100 nmol/L, 24 h) using Gene Set Enrichment Analysis (GSEA).

Figure S5 PROTAC **A7** inhibits MDSCs infiltration and revives antitumor immunity. CT26 tumor bearing BALB/c or nude mice were treated with PROTAC **A7** (16 mg/kg, i.p), **MS7** (16 mg/kg, i.p.) or vehicle for 12 consecutive days. (A) Body weight in BALB/c mice (n = 6). (B) Body weight in nude mice (n = 6). (C) The proportion of the indicated immune cells in tumor infiltrating CD45⁺ cells. CT26 tumor-bearing BALB/c mice (n = 7 or 8) were treated as in (A) for 7 consecutive days. Tumor infiltrating immune cells were analyzed by flow cytometry.

Scheme S1 Synthetic routes of target compounds A1-5, B1-5 and C1-5^a.

"Reagents and conditions: (a) *tert*-butyl piperazine-1-carboxylate, Et₃N, CH₂Cl₂, rt, 2 h, 89%; (b) Pd/C, H₂, CH₂Cl₂, rt, overnight, 96%; (c) di(1*H*-imidazol-1-yl)methanethione, CH₂Cl₂, rt, overnight, 85%; (d) pyridin-3-ylmethanamine, CH₂Cl₂, rt, 6 h, 92%; (e) CF₃COOH, CH₂Cl₂, rt, overnight, 90%; (f) (i) substituted methyl (bromomethyl)benzoate, Et₃N, CH₂Cl₂, rt, 4 h; (ii) LiOH, THF/MeOH/H₂O, rt, 2 h, 40%–56%; (g) (i) amino acid esters, HATU, DIPEA, DMF, rt, 4 h; (ii) LiOH, THF/MeOH/H₂O, rt, 4 h, 15%–30%; (h) VHL ligand, HATU, DIPEA, DMF, rt, 5 h, 17%–26%.

Scheme S2 Synthetic routes of target compounds A6 and A7^a.
"Reagents and conditions: (a) VHL ligand, HATU, DIPEA, DMF, rt, 5 h, 21%–28%; (b) Pd/C, H₂, CH₂Cl₂, rt, overnight, 96%; (c) compound 8a, HATU, DIPEA, DMF, rt, 5 h, 23%–29%.

Scheme S3 Synthetic route of target compound D1^a

"Reagents and conditions: (a) VHL ligand analog, HATU, DIPEA, DMF, rt, 5 h, 18%; (b) Pd/C, H₂, CH₂Cl₂, rt, overnight, 95%; (c) compound **8a**, HATU, DIPEA, DMF, rt, 5 h, 31%.

Scheme S4 Synthetic Route of Target Compound E1^a

"Reagents and conditions: (a) phenylmethanamine, CH_2Cl_2 , rt, 6 h, 90%; (b) CF_3COOH , CH_2Cl_2 , rt, overnight, 92%; (c) (i) substituted methyl (bromomethyl)benzoate, Et_3N , CH_2Cl_2 , rt, 4 h; (ii) LiOH, THF/MeOH/H₂O, rt, 2 h, 46%; (d) compound **12b**, HATU, DIPEA, DMF, rt, 5 h, 14%.

Supporting methods

1. Chemistry

General information. The materials used in the experiments were commercially available. Column chromatography was performed on 200–300 mesh silica gel. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE300 or AVANCE600 spectrometer (Bruker Company, Germany) with DMSO- d_6 , CD₃OD or CDCl₃ as the solvents and TMS as the internal standard. Chemical shift (δ) was given in ppm and the coupling constant (J) is reported in hertz (Hz).

The VHL ligand analog was prepared according to the literature¹⁴. Intermediate **13** was obtained through amidation between the VHL ligand analog and compound **10b**. Then, intermediate **13** was reduced under a H₂ atmosphere to afford compound **14**. Target compound **D1** was obtained through amidation between compound **8a** and intermediate **14** (**Scheme S3**). Intermediate **15** was obtained through the reaction between intermediate **5** and phenylmethanamine. After the removal of the Boc protecting group with trifluoroacetic acid, intermediate **16** was obtained. Then, substituted methyl (bromomethyl)benzoate was added to give esters, which were converted to the corresponding acid intermediate **17** under basic conditions. Amidation of compound **17** with intermediate **12b** afforded the negative control compound **E1** (**Scheme S4**).

tert-Butyl-4-((4-nitrophenyl)sulfonyl)piperazine-1-carboxylate (3). The mixture of compound 2 (500 mg, 2.3 mmol), *tert*-butyl piperazine-1-carboxylate (840 mg, 4.6 mmol) and Et₃N (230 mg, 2.3 mmol) was dissolved in CH₂Cl₂ (20 mL) and stirred at room temperature for 2 h. Then, the mixture was washed with 1 mol/L HCl aqueous solution (10 mL) twice. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford the desired compound **3** (760 mg, 89%). ¹H-NMR (DMSO-*d*₆, 600 MHz) δ : 7.78 (d, *J* = 8.78 Hz, 2H), 7.67 (d, *J* = 8.78 Hz, 2H), 3.37–3.40 (m, 4H), 2.85–2.89 (m, 4H), 1.34 (s, 9H).

tert-Butyl-4-((4-aminophenyl)sulfonyl)piperazine-1-carboxylate (4). The intermediate 3 (750 g, 2.0 mmol) was dissolved in CH₂Cl₂ (20 mL) and Pd/C (200 mg, 1.2 mmol, 45% purity) was added. The mixture was stirred at room temperature and maintained overnight under the atmosphere of hydrogen. Then the resulting mixture was filtrated through diatomite and the filtrate was concentrated under reduced pressure to afford the intermediate 4 (650 mg, 96%) as a white solid. ¹H NMR (DMSO-*d*₆, 600 MHz) δ : 7.33 (d, *J* = 8.7 Hz, 2H), 6.64 (d, *J* = 8.9 Hz, 2H), 6.11 (s, 2H), 3.33-3.41 (m, 4H), 2.73 (t, *J* = 4.9 Hz, 4H), 1.34 (s, 9H).

tert-Butyl-4-((4-(1*H*-imidazole-1-carbothioamido)phenyl)sulfonyl)piperazine-1-carboxylate (5). The intermediate 4 (650 mg, 1.9 mmol) was previously dissolved in CH₂Cl₂ and stirred for 5 min at 0 °C. Then, TCDI (462 mg, 2.9 mmol) was added and the solution was allowed to slowly warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the crude product was purified by silica gel flash chromatography (PE:EA = 20: 1) to afford intermediate **5** (730 mg, 85%) as a white solid. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 7.76–7.79 (m, 2H), 7.64–7.66 (m, 2H), 3.38 (t, *J* = 8.7 Hz, 4H), 2.87 (t, *J* = 5.1 Hz, 4H), 1.33 (s, 9H).

tert-Butyl-4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazine-1-carboxylate (6) To a solution of the intermediate **5** (780 mg, 1.59 mmol) in DCM (10 mL) was added 3-aminomethylpyridine (171 mg, 1.59 mmol) and then the mixture was reacted at room temperature for 6 h. The solid is filtered to obtain the intermediate **6** (720 mg, 92%) as a white solid. ¹H NMR (600 MHz, CD₃OD) δ : 8.55–8.56 (m, 1H), 8.43 (m, 1H), 7.86–7.89 (m, 1H), 7.69–7.74 (m, 4H), 7.39–7.42 (m, 1H), 4.88 (s, 2H), 3.48 (s, 4H), 2.94 (t, *J* = 5.03 Hz, 4H), 1.39 (s, 9H).

1-(4-(Piperazin-1-ylsulfonyl)phenyl)-3-(pyridin-3-ylmethyl)thiourea(7) Compound 6 (500 mg, 1.01 mmol) was dissolved in dry CH₂Cl₂ (5 mL) containing 20% TFA, and then the mixture was stirred overnight at room temperature. The reaction solution was washed with saturated brine (20 mL), and the organic The phase was concentrated to obtain intermediate **7** as a white solid (360 mg, 90%).¹H NMR (600 MHz, DMSO- d_6) δ : 10.13 (s, 1H), 8.61(s, 1H), 8.56-8.58 (m, 1H), 8.46–8.49 (m, 1H), 7.82 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 4.79 (d, *J* = 5.3 Hz, 2H), 4.30 (s, 1H), 3.74–3.37 (m, 4H), 2.86–3.03 (m, 4H).

4-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)meth-

yl)benzoic acid (8a) Compound 7 (75 mg, 0.14 mmol) and methyl 4-bromomethylbenzoate (70 mg, 0.31 mmol) were dissolved in dry CH₂Cl₂ (6 mL) containing TEA (100 μ L), then the mixture was stirred at room temperature for 4 h. The solution was concentrated and purified by silica gel column chromatography (CH₂Cl₂/MeOH = 100/1) to obtain a white solid (110 mg). Then it was then dissolved in THF/MeOH/H₂O ($\nu/\nu/\nu = 3/2/1$, 15 mL) containing LiOH (20 mg, 0.84 mmol). The mixture was stirred at room temperature for 2 h, the organic phase is evaporated under vacuum. Then pH was adjusted to about 3 with 1 mol/L HCl. The precipitant was filtered and dried to obtain the intermediate **8a** as a white solid (75 mg, 56%). ¹H NMR (600 MHz, DMSO-*d*₆) δ : 12.82 (s, 1H), 10.17 (s, 1H), 8.63-8.68 (m, 1H), 8.57 (d, *J* = 1.8 Hz, 1H), 8.48 (dd, *J* = 4.7, 1.6 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 2H), 7.81 (d, *J* = 9.1 Hz, 2H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.65 (d, *J* = 9.1 Hz, 2H), 7.34–7.40 (m, 3H), 4.79 (d, *J* = 5.4 Hz, 2H), 3.57 (s, 2H), 2.83–2.95 (m, 4H), 2.39–2.49 (m, 4H).

The synthetic routes of compounds 8b and 8c were similar to 8a.

3-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzoic acid (8b) White solid, 40%. ¹H NMR (600 MHz, DMSO- d_6) δ : 12.91 (s, 1H), 10.13 (s, 1H), 8.64 (s, 1H), 8.55–8.59 (m, 1H), 8.47 (dd, J = 4.6, 1.0 Hz, 1H), 7.80–7.83 (m, 2H), 7.78–7.83 (m, 2H), 7.76–7.78 (m, 1H), 7.65 (d, J = 7.6 Hz, 2H), 7.48 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 15.4, 7.9 Hz, 1H), 7.38 (dd, J = 7.8, 4.7 Hz, 1H), 4.79 (d, J = 5.4 Hz, 2H), 3.54 (s, 2H), 2.89 (s, 4H), 2.45 (s, 4H).

4-((**4**-((**4**-((**3**-(**pyridin-3-ylmethyl**)**thioureido**)**phenyl**)**sulfonyl**)**piperazin-1-yl**)**methyl**)**benzoic** acid (**8**c) White solid, 48%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 10.13 (s, 1H), 8.64 (s, 1H), 8.47–8.57 (m, 1H), 8.47– 8.48 (m, 1H), 7.80–7.82 (m, 2H), 7.76–7.78 (m, 1H), 7.72–7.73 (m, 1H), 7.64–7.66 (m, 2H), 7.45–7.47 (m, 1H), 7.35–7.39 (m, 3H), 4.80 (d, *J* = 5.1 Hz, 2H), 3.82 (s, 2H), 2.79-2.91 (m, 4H), 2.30–2.40 (m, 4H).

4-(4-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl) benzamido)butanoic acid (9a). The compound 8 (75 mg, 0.14 mmol), methyl butyrate (15 mg, 0.14 mmol), HATU (81 mg, 0.22 mmol), DIPEA (28 mg, 0.22 mmol) were dissolved in dry DMF (5 mL) and then the mixture was stirred at room temperature for 4 h. The mixture was poured saturated NaCl solution (20 mL) and then extracted with ethyl acetate (10 mL × 3). The organic phases were combined and washed with of saturated NaCl solution (10 mL). After dried over sodium sulfate, it was concentrated and purified by silica gel column chromatography (dichloromethane/methanol=100/1) to obtain 80 mg of white solid. The obtained product was dissolved in THF/MeOH/H₂O ($\nu/\nu/\nu = 3/2/1$, 10 mL) containing LiOH (15 mg, 0.63 mmol). The mixture was stirred at room temperature for 4 h, the organic phase is evaporated under vacuum. Then pH was adjusted to about 3 with 1 mol/L HCl. The precipitant was filtered and dried to obtain the intermediate **9a** as a white solid (26 mg, 30%). ¹H NMR (600 MHz, DMSO-*d*₆) δ : 12.08 (s, 1H), 10.39 (s, 1H), 8.79 (s, 1H), 8.41–8.61 (m, 2H), 7.85 (d, *J* = 8.1 Hz, 2H), 7.77 (d, *J* = 7.5 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.24–7.46 (m, 5H), 4.78 (d, *J* = 5.2 Hz, 2H), 3.59 (s, 2H), 3.11 (d, *J* = 4.8 Hz, 2H), 2.76–3.01 (m, 4H), 2.27–2.49 (m, 4H), 2.22 (t, *J* = 7.1 Hz, 2H), 1.62 (t, *J* = 6.3 Hz, 2H).

The synthetic routes of **9b–o** were similar to that of **9a**.

amido)pentanoic acid (9b). White solid, 21%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 11.97 (s, 1H), 10.45 (s, 1H), 8.76–8.91 (m, 1H), 8.55 (d, *J* = 1.7 Hz, 1H), 8.46 (dd, *J* = 4.7, 1.3 Hz, 1H), 8.37 (t, *J* = 4.9 Hz, 1H), 7.84 (d, *J* = 7.4 Hz, 2H), 7.72–7.77 (m, 3H), 7.63 (d, *J* = 8.7 Hz, 2H), 7.36 (dd, *J* = 7.7, 4.9 Hz, 1H), 7.31 (d, *J* = 7.3 Hz, 2H), 4.78 (d, *J* = 5.6 Hz, 2H), 3.46–3.69 (m, 4H), 3.20 (q, *J* = 6.4 Hz, 2H), 2.88 (s, 4H), 2.36–2.57 (m, 4H), 1.45–1.49 (m, 4H).

6-(4-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)hexanoic acid(9c). White solid, 26%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 10.27 (s, 1H), 8.71 (s, 1H), 8.55 (s, 1H), 8.46 (d, *J* = 4.4 Hz, 1H), 8.38 (s, 1H), 7.70–7.84 (m, 6H), 7.63 (d, *J* = 1.6 Hz, 2H), 7.37 (dd, *J* = 7.7, 4.7 Hz, 1H), 7.31 (s, 1H), 4.77 (d, *J* = 5.4 Hz, 2H), 3.17–3.22 (m, 3H), 2.86 (s, 4H), 2.35–2.48 (m, 4H), 2.18 (t, *J* = 7.4 Hz, 2H), 1.34–1.52 (m, 5H), 1.25–1.30 (m, 2H).

7-(4-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)heptanoic acid(9d) White solid, 27%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 11.94 (s, 1H), 10.47 (s, 1H), 8.84 (s, 1H), 8.55 (d, *J* = 1.6 Hz, 1H), 8.46 (dd, *J* = 4.9, 1.3 Hz, 1H), 8.37–8.43 (m, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 7.3 Hz, 3H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.32-7.42 (m, 3H), 4.78 (d, *J* = 5.6 Hz, 2H), 3.72 (s, 2H), 3.20 (q, *J* = 6.6 Hz, 2H), 2.93 (s, 4H), 2.65 (s, 4H), 2.17 (t, *J* = 7.1 Hz, 2H), 1.43–1.51 (m, 4H), 1.23-1.31 (m, 4H).

8.53 (s, 1H), 8.43 (d, *J* = 4.2 Hz, 1H), 8.35 (t, *J* = 4.8 Hz, 1H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.67–7.78 (m, 3H), 7.55 (d, *J* = 8.8 Hz, 2H), 7.34 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 2H), 4.76 (s, 2H), 3.45 (s, 2H), 3.17–3.25 (m, 2H), 2.75 (s, 4H), 2.41 (s, 4H), 1.94 (t, *J* = 7.6 Hz, 2H), 1.30–1.53 (m, 4H), 1.18–1.31 (m, 6H).

4-(3-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benz-

amido)butanoic acid (9f) White solid, 28%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 12.08 (s, 1H), 10.13 (s, 1H), 8.64 (s, 1H), 8.57 (d, *J* = 1.5 Hz, 1H), 8.47 (dd, *J* = 4.7, 1.4 Hz, 1H), 8.44 (t, *J* = 5.6 Hz, 1H), 7.75–7.80 (m, 3H), 7.68-7.70 (m, 2H), 7.64 (d, *J* = 8.9 Hz, 2H), 7.35–7.40 (m, 3H), 4.79 (d, *J* = 5.5 Hz, 2H), 3.51 (s, 2H), 3.24 (q, *J* = 6.6 Hz, 2H), 2.89 (s, 4H), 2.45 (s, 4H), 2.26 (t, *J* = 7.5 Hz, 2H), 1.70–1.75 (m, 2H).

5-(3-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl) benz-interval and the second seco

amido)pentanoic acid (9g) White solid, 27%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.28 (s, 1H), 8.77 (s, 1H), 8.54 (d, J = 1.7 Hz, 1H), 8.44 (dd, J = 4.8, 1.4 Hz, 1H), 8.40 (t, J = 5.6 Hz, 1H), 7.77 (d, J = 8.7 Hz, 2H), 7.70–7.76 (m, 1H), 7.63–7.69 (m, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.29–7.38 (m, 3H), 4.76 (d, J = 5.3 Hz, 2H), 3.41–3.55 (m, 4H), 3.21 (q, J = 6.8 Hz, 2H), 2.80–2.93 (m, 4H), 2.39 (s, 4H), 2.21 (t, J = 7.6 Hz, 2H), 1.66–1.75 (m, 2H).

6-(3-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)hexanoic acid (9h) White solid, 22%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 11.99 (s, 1H), 10.37 (s, 1H), 8.81 (s, 1H), 8.57 (s, 1H), 8.47 (d, *J* = 4.1 Hz, 1H), 8.40 (t, *J* = 5.6 Hz, 1H), 7.80–7.85 (m, 2H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.66–7.70 (m, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.34–7.40 (m, 3H), 4.79 (d, *J* = 5.1 Hz, 2H), 3.49 (s, 2H), 3.32 (q, *J* = 6.6 Hz, 2H), 2.88 (s, 4H), 2.43 (s, 4H), 2.19 (t, *J* = 7.5 Hz, 2H), 1.47–1.53 (m, 4H), 1.26– 1.31 (m, 2H).

7-(3-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)heptanoic acid (9i) White solid, 27%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 12.00 (s, 1H), 10.23 (s, 1H), 8.70 (s, 1H), 8.57 (d, *J* = 1.9 Hz, 1H), 8.47 (dd, *J* = 4.7, 1.3 Hz, 1H), 8.38–8.43 (m, 1H), 7.79–7.85 (m, 2H), 7.75–7.79 (m, 1H), 7.71 (s, 2H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.33–7.43 (m, 3H), 4.79 (d, *J* = 5.5 Hz, 2H), 3.55 (s, 2H), 3.21 (q, *J* = 6.8 Hz, 2H), 2.89 (s, 4H), 2.37-2.49 (m, 4H), 2.19 (t, *J* = 7.4 Hz, 2H), 1.46–1.51 (m, 4H), 1.26–1.30 (m, 4H).

8-(3-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)octanoic acid (9j) White solid, 21%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 11.97 (s, 1H), 10.35 (s, 1H), 8.78 (s, 1H), 8.47 (s, 1H), 8.40 (t, *J* = 5.2 Hz, 1H), 7.83 (d, *J* = 8.5 Hz, 2H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.69– 7.75 (m, 2H), 7.65 (d, *J* = 8.7 Hz, 2H), 7.34–7.43 (m, 2H), 7.79 (d, *J* = 5.4 Hz, 2H), 3.60 (s, 2H), 3.32 (q, *J* = 6.3 Hz, 2H), 2.91 (s, 4H), 2.50–2.68 (m, 4H), 2.18 (t, *J* = 7.0 Hz, 2H), 1.43–1.53 (m, 4H), 1.25–1.29 (m, 8H).

4-(2-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)butanoic acid (9k) White solid, 28%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 10.75 (s, 1H), 9.27 (s, 1H), 8.56 (d, *J* = 1.6 Hz, 1H), 8.49 (t, *J* = 11.0, 5.7 Hz, 1H), 8.46 (dd, *J* = 4.6, 1.1 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 2H), 7.25–7.39 (m, 5H), 4.78 (d, *J* = 4.4 Hz, 2H), 3.54 (s, 2H), 3.30 (q, *J* = 6.5 Hz, 2H), 2.84 (s, 4H), 2.39 (s, 4H), 2.16 (t, *J* = 7.3 Hz, 2H), 1.56–1.63 (m, 2H).

5-(2-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)pentanoic acid (9l) White solid, 18%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 12.05 (s, 1H), 10.23 (s, 1H),

8.66 (s, 2H), 8.57 (d, *J* = 1.7 Hz, 1H), 8.44–8.50 (m, 1H), 7.85 (d, *J* = 8.6 Hz, 2H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 8.6 Hz, 2H), 7.33–7.55 (m, 5H), 4.79 (d, *J* = 5.3 Hz, 2H), 3.6–4.15 (m, 2H), 3.16 (s, 3H), 2.60–3.10 (m, 6H), 2.22 (t, *J* = 7.0 Hz, 2H), 1.34–1.60 (m, 5H).

6-(2-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benz-

amido)hexanoic acid (9m) White solid, 29%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 10.20 (s, 1H), 8.67 (s, 1H), 8.54 (d, *J* = 1.5 Hz, 1H), 8.44 (dd, *J* = 4.7, 1.3 Hz, 1H), 7.79 (s, 1H), 7.78 (s, 1H), 7.69–7.76 (m, 2H), 7.62 (s, 1H), 7.61 (s, 1H), 7.43–7.48 (m, 1H), 7.33–7.38 (m, 4H), 4.75 (d, *J* = 5.5 Hz, 2H), 3.88 (s, 4H), 3.02–3.30 (m, 4H), 2.76-3.10 (m, 8H), 2.65 (s, 4H).

7-(2-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)heptanoic acid (9n) White solid, 18%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 12.00 (s, 1H), 10.34 (s, 1H), 8.73 (s, 1H), 8.52–8.60 (m, 2H), 8.47 (dd, *J* = 4.7, 1.3 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.75–7.78 (m, 1H), 7.63 (d, *J* = 8.7 Hz, 2H), 7.27–7.41 (m, 4H), 4.79 (d, *J* = 5.9 Hz, 2H), 3.56 (s, 2H), 3.05 (d, *J* = 4.2 Hz, 2H), 2.84 (s, 4H), 2.43 (s, 4H), 2.19 (t, *J* = 7.4 Hz, 2H), 1.43–1.49 (m, 2H), 1.29–1.38 (m, 2H), 1.17–1.23 (m, 4H).

8-(2-((4-((4-(3-(Pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)octanoic acid (9o) White solid, 29%. ¹H NMR (DMSO-*d*₆, 600MHz) δ: 11.95 (s, 1H), 10.38 (s, 1H), 8.53–8.83 (m, 3H), 8.48 (dd, *J* = 1.2 Hz, 4.6 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.6 Hz, 2H), 7.25–7.54 (m, 5H), 4.79 (d, *J* = 5.6 Hz, 2H), 3.57 (s, 2H), 2.98–3.28 (m, 4H), 2.64–2.96 (m, 4H), 2.28–2.48 (m, 2H), 2.19 (t, *J* = 7.6 Hz, 2H), 1.45–1.51 (m, 2H), 1.37 (s, 2H), 1.19–1.28 (m, 6H).

¹³C NMR (150 MHz, DMSO-*d*₆) δ: 181.22, 172.46, 171.07, 170.07, 166.29, 151.88, 149.39, 148.65, 148.21, 145.08, 144.49, 135.75, 134.61, 134.08, 131.56, 130.15, 129.26, 128.98, 128.86, 127.57, 126.83, 123.88, 121.95, 69.22, 61.31, 59.00, 56.82, 56.68, 51.89, 48.14, 46.29, 45.18, 38.16, 35.60, 35.36, 29.36, 26.89, 26.65, 25.67, 22.84, 16.42; HRMS (ESI, positive) m/z calcd for C₅₂H₆₅N₁₀O₇S₃ (M+H)⁺ 1037.4194, found 1037.4211.

The synthetic routes of A2–5, B1–5 and C1–5 were similar to that of A1.

(2*S*,*4R*)-1-((*S*)-3,3-Dimethyl-2-(5-(4-((4-((4-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfon-yl)piperazin-1-yl)methyl)benzamido)pentanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (A2) White solid, yield 21%, purity 99.0%. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 10.18 (s, 1H), 8.99 (s, 1H), 8.67 (s, 1H), 8.59 (s, 1H), 8.49 (d, *J* = 3.6 Hz, 1H), 8.40 (s, 1H), 8.37 (d, *J* = 7.9 Hz, 1H), 7.74-7.86 (m, 6H), 7.66 (d, *J* = 8.7 Hz, 2H), 7.33-7.45 (m, 7H), 5.10 (s, 1H), 4.93 (t, *J* = 7.6 Hz, 1H), 4.81 (d, *J* = 5.4 Hz, 2H), 4.51 (d, *J* = 9.1 Hz, 1H), 4.43 (t, *J* = 8.0 Hz, 1H), 4.29 (s, 1H), 3.60–3.65 (m, 2H), 3.20–3.27 (m, 3H), 2.76–3.02 (m, 4H), 2.52–2.56 (m, 2H), 2.46 (s, 3H), 2.25–2.31 (m, 1H), 2.12–2.17 (m, 1H), 1.99–2.03 (m, 1H), 1.76–1.82 (m, 1H), 1.43–1.56 (m, 5H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.24–1.26 (m, 2H), 0.93 (s, 9H); ¹³C NMR (150 MHz, CD₃OD) δ :181.84, 174.38, 171.82, 170.93, 168.50, 151.42, 148.11, 147.68, 147.31, 144.22, 143.91, 141.81, 140.66, 136.45, 135.17, 133.59, 131.93, 130.13, 129.09, 129.01, 128.42, 128.03, 126.98, 126.22, 125.92, 125.33, 123.77, 122.20, 117.29, 110.23, 69.57, 61.32, 59.17, 57.73, 56.55, 51.73, 48.74, 45.71, 44.81, 39.10, 37.36, 35.10, 34.76, 28.55, 25.67, 22.97, 20.99, 14.41; HRMS (ESI, positive) *m/z* calcd for C₅₃H₆₇N₁₀O₇S₃ (M+H)⁺ 1051.4351, found 1051.4334.

yl)phenyl)ethyl)pyrrolidine-2-carboxamide (A3) White solid, yield 26%, purity 99.0%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.09 (s, 1H), 8.97 (s, 1H), 8.60 (s, 1H), 8.56 (d, J = 1.9 Hz, 1H), 8.44–8.48 (m, 1H), 8.29–8.36 (m, 2H), 7.72–7.80 (m, 6H), 7.63 (d, J = 8.8 Hz, 2H), 7.41–7.43 (m, 2H), 7.35–7.38 (m, 3H), 7.29 (d, J = 8.1 Hz, 2H), 5.06 (d, J = 3.6 Hz, 1H), 4.88–4.92 (m, 1H), 4.78 (d, J = 5.4 Hz, 2H), 4.49 (d, J = 9.4 Hz, 1H), 4.41 (t, J = 8.1 Hz, 1H), 4.25–4.29 (m, 1H), 3.60–3.56 (m, 2H), 3.49 (s, 2H), 3.17–3.23 (m, 2H), 2.81–2.93 (m, 4H), 2.40 (s, 3H), 2.39–2.43 (m, 4H), 2.20–2.26 (m, 1H), 2.09–2.13 (m, 1H), 1.98–2.01 (m, 1H), 1.76–1.81 (m, 1H), 1.44–1.51 (m, 4H), 1.36 (d, J = 6.9 Hz, 3H), 0.91 (s, 9H), 0.85 (t, J = 7.2 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ :181.21, 172.48, 171.09, 170.08, 166.30, 151.93, 149.38, 148.66, 148.21, 145.11, 144.52, 135.77, 131.57, 130.15, 129.28, 128.89, 127.59, 126.84, 123.91, 121.93, 69.22, 61.29, 59.00, 56.82, 56.71, 51.88, 48.15, 46.29, 45.17, 38.18, 35.62, 35.36, 29.38, 26.90, 26.66, 25.69, 22.88, 16.44; HRMS (ESI, positive) m/z calcd for C₅₄H₆₉N₁₀O₇S₃ (M+H)⁺ 1065.4507, found 1065.4521.

(2*S*,*A*)-1-((*S*)-3,3-dimethyl-2-(7-(4-((4-((4-((4-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfon-yl)piperazin-1-yl)methyl)benzamido)heptanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (A4) White solid, yield 17%, purity 98.9%. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 10.46 (s, 1H), 8.99 (s, 1H), 8.85 (s, 1H), 8.59 (s, 1H), 8.49 (d, *J* = 4.0 Hz, 1H), 8.35–8.40 (m, 2H), 7.83–7.90 (m, 2H), 7.76–7.81 (m, 4H), 7.65 (d, *J* = 8.7 Hz, 2H), 7.43–7.45 (m, 2H), 7.36–7.39 (m, 3H), 7.32 (d, *J* = 7.6 Hz, 2H), 5.10 (d, *J* = 3.0 Hz, 1H), 4.92 (t, *J* = 7.2 Hz, 1H), 4.80 (d, *J* = 5.1 Hz, 2H), 4.51 (d, *J* = 9.4 Hz, 1H), 4.44 (t, *J* = 8.1 Hz, 1H), 4.26–4.31 (m, 1H), 3.60–3.62 (m, 2H), 3.52 (s, 2H), 3.18–3.25 (m, 2H), 3.11–3.15 (s, 1H), 2.74–3.00 (m, 4H), 2.40–2.49 (m, 7H), 2.22–2.27 (m, 1H), 2.07–2.15 (m, 1H), 1.98–2.04 (m, 1H), 1.74–1.83 (m, 1H), 1.45–1.52 (m, 4H), 1.38 (d, *J* = 3.9 Hz, 3H), 1.18 (t, *J* = 7.2 Hz, 1H), 0.94 (s, 9H), 0.85–0.87 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 181.26, 172.49, 171.07, 170.08, 166.13, 151.89, 149.11, 148.41, 148.21, 135.98, 134.76, 131.56, 130.14, 129.26, 128.86, 127.72, 126.83, 124.00, 121.72, 69.20, 58.99, 56.81, 56.68, 53.90, 48.14, 45.00, 38.16, 35.61, 35.31, 29.48, 28.88, 26.90, 26.70, 25.83, 18.49, 17.18, 16.42; HRMS (ESI, positive) *m*/*z* calcd for C₅₆H₇₁N₁₀O₇S₃ (M+H)⁺ 1079.4664, found 1079.4675.

(2S,4R)-1-((S)-3,3-Dimethyl-2-(4-(3-((4-((4-((3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfon-yl)piperazin-1-yl)methyl)benzamido)butanamido)butanoyl)-4-hydroxy-*N*-<math>((S)-1-(4-(4-methylthiazol-5yl)phenyl)ethyl)pyrrolidine-2-carboxamide (B1) White solid, yield 25%, purity 100%. ¹H NMR (600 MHz, $DMSO-<math>d_6$) δ : 10.42 (s, 1H), 8.98 (s, 1H), 8.74–8.86 (m, 1H), 8.57 (s, 1H), 8.47 (d, J = 4.4 Hz, 1H), 8.44 (t, J = 4.5 Hz, 1H), 8.39 (d, J = 7.9 Hz, 1H), 7.89 (d, J = 9.1 Hz, 1H), 7.82-7.86 (m, 2H), 7.77 (d, J = 7.9 Hz, 1H), 7.67–7.73 (m, 2H), 7.63 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.0 Hz, 1H), 7.35–7.40 (m, 5H), 5.12 (d, J =2.9 Hz, 1H), 4.91 (t, J = 6.8 Hz, 1H), 4.79 (d, J = 5.2 Hz, 2H), 4.52 (d, J = 9.1 Hz, 1H), 4.42 (t, J = 8.0 Hz, 1H), 4.25–4.31 (m, 1H), 3.56–3.65 (m, 2H), 3.50 (s, 2H), 3.19–3.24 (m, 2H), 2.88 (s, 4H), 2.45 (s, 3H), 2.37–2.44 (m, 4H), 2.26–2.32 (m, 1H), 2.16–2.21 (m, 1H), 2.00–2.02 (m, 1H), 1.69–1.75 (m, 2H), 1.62 (s, 1H), 1.36 (d, J = 7.0 Hz, 3H), 0.93 (s, 9H); ¹³C NMR (150 MHz, DMSO- d_6) δ :181.22, 172.26, 171.06, 170.01, 166.53, 151.92, 149.36, 148.64, 148.20, 145.10, 144.56, 135.69, 135.04, 134.62, 131.87, 131.56, 130.13, 129.26, 128.84, 128.60, 128.02, 126.82, 126.36, 123.89, 121.75, 69.21, 61.64, 58.99, 56.93, 56.69, 51.92, 48.14, 46.34, 45.05, 38.16, 35.65, 33.10, 26.90, 22.87, 16.42; HRMS (ESI, positive) m/z calcd for C₅₂H₆₅N₁₀O₇S₃ (M+H)⁺ 1037.4194, found 1037.4192.

(2*S*,*4R*)-1-((*S*)-3,3-Dimethyl-2-(5-(3-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfon-yl)piperazin-1-yl)methyl)benzamido)pentanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (B2) White solid, yield 20%, purity 99.4%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.17 (s, 1H), 8.66 (s, 1H), 8.58 (s, 1H), 8.48 (d, *J* = 4.5 Hz, 1H), 8.3-8.41 (m, 2H), 7.81 (d, *J* = 8.7 Hz, 3H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.66 (s, 1H), 7.65 (s, 1H), 7.37–7.45 (m, 5H), 7.30 (d, *J* = 8.1 Hz, 2H), 5.13 (d, *J* = 3.5 Hz, 1H), 4.88–4.95 (m, 1H), 4.80 (d, *J* = 5.2 Hz, 2H), 4.51 (d, *J* = 9.3 Hz, 1H), 4.43 (t, *J* = 8.2 Hz, 1H), 4.26–4.30 (m, 1H), 3.58–3.63 (m, 1H), 3.51 (s, 2H), 3.19–3.24 (m, 2H), 2.82–2.96 (m, 4H), 2.45 (s, 3H), 2.41–2.45 (m, 4H), 2.22–2.28 (m, 1H), 2.09–2.15 (m, 1H), 1.96–2.05 (m, 2H), 1.77–1.83 (m, 1H), 1.47–1.53 (m, 4H), 1.38 (d, 3H), 0.92 (s, 9H), 0.82–0.89 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ :181.20, 172.54, 171.10, 170.08, 166.36, 151.94, 149.38, 148.67, 148.21, 145.10, 144.16, 141.33, 135.76, 134.64, 133.97, 131.58, 130.15, 129.28, 128.93, 127.56, 126.84, 126.72, 123.92, 121.97, 69.22, 61.39, 59.01, 56.84, 56.71, 51.93, 48.16, 46.40, 45.18, 40.48, 38.16, 35.61, 35.36, 26.89, 25.68, 22.87, 16.43; HRMS (ESI, positive) *m*/z calcd for C₅₃H₆₇N₁₀O₇S₃ (M+H)⁺ 1051.4351, found 1051.4346.

(2S,4R)-1-((S)-3,3-Dimethyl-2-(6-(3-((4-((4-((3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)

piperazin-1-yl)methyl)benzamido)hexanamido)butanoyl)-4-hydro-xy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (B3) White solid, yield 21%, purity 97.1%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.29 (s, 1H), 8.98 (s, 1H), 8.73 (s, 1H), 8.58 (s, 1H), 8.47 (d, J = 3.8 Hz, 1H), 8.36–8.40 (m, 2H), 7.71–7.89 (m, 6H), 7.62–7.66 (m, 2H), 7.42–7.44 (m, 2H), 7.35–7.40 (m, 4H), 7.30 (d, J = 8.3 Hz, 2H), 5.10 (s, 1H), 4.89–4.94 (m, 1H), 4.79 (d, J = 5.4 Hz, 2H), 4.50 (d, J = 9.2 Hz, 1H), 4.42 (t, J = 8.3 Hz, 1H), 4.27 (s, 1H), 3.56–3.63 (m, 2H), 3.50 (s, 2H), 3.20–3.24 (m, 2H), 2.79–2.94 (m, 4H), 2.45 (s, 3H), 2.40–2.44 (m, 4H), 2.24–2.30 (m, 1H), 2.11–2.16 (m, 1H), 1.95–2.03 (m, 2H), 1.76–1.82 (m, 1H), 1.45–1.55 (m, 4H), 1.37 (d, J = 7.1 Hz, 3H), 0.93 (s, 9H), 0.84–0.86 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ : 181.23, 172.42, 171.08, 170.07, 166.36, 151.93, 149.41, 148.68, 148.22, 145.11, 144.54, 141.37, 135.73, 134.63, 133.99, 131.57, 130.16, 129.28, 128.92, 127.56, 126.85, 124.23, 123.90, 121.85, 119.22, 110.59, 69.23, 61.40, 59.02, 56.85, 56.71, 55.37, 51.96, 48.15, 46.40, 45.14, 39.38, 38.17, 35.65, 35.13, 29.33, 26.92, 23.53, 22.88, 16.44; HRMS (ESI, positive) m/z calcd for C₅₄H₆₉N₁₀O₇S₃ (M+H)⁺ 1065.4507, found 1065.4492.

(2*S*,*4R*)-1-((*S*)-3,3-Dimethyl-2-(7-(3-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)heptanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (B4) White solid, yield 26%, purity 97.4%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.19 (s, 1H), 8.99 (s, 1H), 8.68 (s, 1H), 8.58 (s, 1H), 8.48 (d, *J* = 4.6 Hz, 1H), 8.36– 8.42 (m, 2H), 7.76–7.82 (m, 4H), 7.64–7.71 (m, 4H), 7.44 (d, *J* = 7.9 Hz, 2H), 7.35–7.41 (m, 5H), 5.12 (d, *J* = 3.2 Hz, 1H), 4.88–4.94 (m, 1H), 4.80 (d, *J* = 5.4 Hz, 2H), 4.52 (d, *J* = 9.4 Hz, 1H), 4.43 (t, *J* = 8.0 Hz, 1H), 4.29 (s, 1H), 3.60–3.63 (m, 2H), 3.50 (s, 3H), 3.18–3.25 (m, 2H), 2.83–2.96 (m, 4H), 2.46 (s, 3H), 2.40–2.45 (m, 4H), 2.22–2.30 (m, 1H), 2.09–2.15 (m, 1H), 1.99–2.03 (m, 1H), 1.77–1.82 (m, 1H), 1.40–1.61 (m, 6H), 1.37 (d, *J* = 7.1 Hz, 3H), 0.94 (s, 9H), 0.86 (s, *J* = 7.1 Hz, 1H); ¹³C NMR (600 MHz, DMSO- d_6) δ :181.19, 172.52, 171.07, 170.07, 166.45, 151.92, 149.38, 148.65, 148.20, 145.10, 144.44, 138.35, 135.73, 135.12, 134.62, 131.81, 131.56, 130.13, 129.26, 128.87, 128.58, 127.99, 126.82, 126.31, 123.88, 121.98, 69.20, 61.65, 58.99, 56.81, 56.69, 51.93, 48.14, 46.38, 45.18, 38.16, 35.61, 35.30, 29.48, 28.86, 26.89, 26.71, 25.84, 22.86, 16.42; HRMS (ESI, positive) *m*/*z* calcd for C₅₅H₇₁N₁₀O₇S₃ (M+H)⁺ 1079.4664, found 1079.4651.

(25,4*R*)-1-((*S*)-3,3-Dimethyl-2-(8-(3-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamido)octanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (B5) White solid, yield 19%, purity 98.9%. ¹H NMR (600 MHz, CD₃OD) δ : 8.88 (s, 1H), 8.59 (d, *J* = 1.7 Hz, 1H), 8.46 (dd, *J* = 4.8, 1.5 Hz, 1H), 7.90–7.92 (m, 1H), 7.76–7.79 (m, 2H), 7.73 (s, 1H), 7.72 (s, 1H), 7.71 (s, 1H), 7.68–7.70 (m, 1H), 7.40–7.46 (m, 7H), 5.34–5.37 (m, 1H), 5.00 (q, *J* = 7.0 Hz, 2H), 4.92 (s, 2H), 4.64 (s, 1H), 4.56–4.58 (m, 2H), 4.42–4.46 (m, 1H), 3.87– 3.90 (m, 1H), 3.75 (dd, *J* = 10.9, 4.4 Hz, 1H), 3.66 (s, 1H), 3.57 (s, 2H), 3.36 (t, *J* = 7.2 Hz, 2H), 3.03 (s, 4H), 2.54 (s, 4H), 2.49 (s, 3H), 2.26–2.31 (m, 2H), 2.20 (t, *J* = 7.4 Hz, 2H), 2.02-2.07 (m, 2H), 1.94–1.98 (m, 1H), 1.58–1.65 (m, 6H), 1.50 (d, *J* = 7.0 Hz, 1H), 1.04 (s, 9H), 1.02 (s, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 172.61, 171.09, 170.08, 166.52, 155.30, 149.13, 148.49, 145.35, 145.07, 138.36, 136.02, 135.47, 135.13, 131.79, 131.49, 130.10, 129.31, 129.26, 128.59, 127.92, 126.82, 126.48, 126.30, 123.93, 117.69, 69.19, 61.62, 58.99, 56.82, 56.67, 51.91, 48.15, 40.94, 38.13, 35.60, 35.55, 35.33, 31.70, 29.50, 29.44, 29.24, 29.16, 29.11, 29.05, 28.99, 28.93, 26.98, 26.87, 25.81, 25.54, 22.82, 22.52, 16.40, 14.37; HRMS (ESI, positive) *m*/*z* calcd for C₅₆H_{73N10}O₇S₃ (M+H)⁺ 1093.4820, found 1093.4827.

(2*R*,4*S*)-1-((*R*)-3,3-Dimethyl-2-(4-(2-((4-((4-((4-((3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfonyl) piperazin-1-yl)methyl)benzamido)butanamido)butanoyl)-4-hydroxy-*N*-((*R*)-1-(4-(4-methylthiazol-5yl)phenyl)ethyl)pyrrolidine-2-carboxamide (C1) White solid, yield 21%, purity 96.7%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.15 (s, 1H), 8.97 (s, 1H), 8.64 (s, 1H), 8.57 (s, 1H), 8.47 (d, *J* = 4.6 Hz, 2H), 8.36 (d,

J = 7.6 Hz, 1H), 7.76–7.90 (m, 4H), 7.64 (d, J = 8.8 Hz, 2H), 7.41–7.44 (m, 2H), 7.30–7.39 (m, 7H), 5.09– 5.15 (m, 1H), 4.92 (t, J = 7.1 Hz, 1H), 4.80 (d, J = 5.0 Hz, 2H), 4.53 (d, J = 9.3 Hz, 1H), 4.44 (t, J = 8.2 Hz, 1H), 4.29 (s, 1H), 3.55–3.65 (m, 4H), 3.07–3.02 (m, 2H), 2.86 (s, 4H), 2.45 (s, 3H), 2.41 (s, 4H), 2.24–2.29 (m, 1H), 2.09–2.15 (m, 1H), 2.00–2.05 (m, 1H), 1.78–1.83 (m, 1H), 1.58–1.64 (m, 2H), 1.37 (d, J = 6.9 Hz, 3H), 0.95 (s, 9H); ¹³C NMR (150 MHz, DMSO- d_6) δ :181.19, 172.15, 171.05, 170.04, 168.99, 151.90, 149.39, 148.66, 148.21, 145.09, 144.44, 137.91, 135.73, 135.46, 134.61, 131.56, 130.47, 130.15, 129.65, 129.27, 128.83, 128.39, 127.52, 126.90, 126.83, 123.88, 121.92, 69.23, 59.33, 59.02, 56.99, 56.70, 51.72, 48.16, 46.32, 45.19, 40.89, 40.52, 39.03, 38.18, 35.68, 33.08, 26.91, 26.14, 22.85, 16.42; HRMS (ESI, positive) m/zcalcd for C₅₂H₆₅N₁₀O₇S₃ (M+H)⁺ 1037.4194, found 1037.4175.

(2*S*,*AR*)-1-((*S*)-3,3-Dimethyl-2-(5-(2-((4-((4-((4-((3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfon-yl)piperazin-1-yl)methyl)benzamido)pentanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (C2) White solid, yield 25%, purity 94.8%. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 10.29 (s, 1H), 8.98 (s, 1H), 8.74 (s, 1H), 8.58 (s, 1H), 8.47 (d, *J* = 3.8 Hz, 1H), 8.36–8.40 (m, 2H), 7.73–7.83 (m, 6H), 7.62–7.66 (m, 2H), 7.42–7.45 (m, 2H), 7.35–7.40 (m, 4H), 7.30 (d, *J* = 8.2 Hz, 2H), 5.10 (s, 1H), 4.91 (q, *J* = 7.1 Hz, 1H), 4.79 (d, *J* = 5.5 Hz, 2H), 4.50(d, *J* = 9.3 Hz, 1H), 4.42 (t, *J* = 8.4 Hz, 1H), 4.27 (s, 1H), 3.56–3.64 (m, 2H), 3.50 (s, 2H), 3.20–3.24 (m, 2H), 2.79–2.94 (m, 4H), 2.45 (s, 3H), 2.40–2.44 (m, 4H), 2.24–2.30 (m, 1H), 2.11–2.17 (m, 1H), 1.94–2.03 (m, 2H), 1.76–1.82 (m, 1H), 1.47–1.50 (m, 2H), 1.37 (d, *J* = 7.0 Hz, 3H), 0.93 (s, 9H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 181.23, 172.42, 171.08, 170.07, 166.36, 151.93, 149.41, 148.68, 148.22, 145.12, 144.54, 141.37, 135.73, 134.63, 133.99, 131.57, 130.16, 129.28, 128.92, 127.58, 126.85, 124.23, 123.90, 121.85, 119.22, 110.59, 69.23, 61.40, 59.02, 56.85, 56.71, 55.37, 51.95, 48.15, 46.40, 39.38, 38.17, 35.65, 35.13, 23.33, 26.92, 23.53, 22.88, 16.44; HRMS (ESI, positive) *m*/*z* calcd for C₅₃H₆₇N₁₀O₇S₃ (M+H)⁺ 1051.4351, found 1051.4346.

(25,4*R*)-1-((*S*)-3,3-Dimethyl-2-(6-(2-(2-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfo-nyl) piperazin-1-yl)methyl)phenyl)acetamido)hexanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4methylthiazol-5-yl)phenyl)ethyl)pyrolidine-2-carboxamide (C3) White solid, yield 23%, purity 97.9%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.71 (s, 1H), 8.99 (s, 1H), 8.97 (s, 1H), 8.52-8.61 (m, 2H), 8.47 (d, *J* = 4.7 Hz, 1H), 8.40 (d, *J* = 7.3 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 9.4 Hz, 1H), 7.77 (d, *J* = 7.3 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.42–7.44 (m, 2H), 7.36–7.39 (m, 2H), 7.26–7.33 (m, 5H), 5.14 (s, 1H), 4.88– 4.96 (m, 1H), 4.80 (d, *J* = 4.9 Hz, 2H), 4.53 (d, *J* = 9.1 Hz, 1H), 4.44 (t, *J* = 8.0 Hz, 1H), 4.3 (s, 1H), 3.61 (s, 4H), 3.06 (s, 2H), 2.85 (s, 4H), 2.29–2.48 (m, 7H), 2.21–2.28 (m, 1H), 2.08–2.15 (m, 1H), 2.00–2.05 (m, 1H), 1.78–1.83 (m, 1H), 1.42–1.49 (m, 2H), 1.36 (d, *J* = 7.0 Hz, 3H),1.17–1.26 (m, 3H), 0.94 (s, 9H), 0.80– 0.87 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ : 181.24, 172.56, 171.07, 170.08, 168.71, 151.90, 149.29, 148.60, 148.20, 145.11, 144.84, 135.70, 134.64, 131.56, 130.13, 129.26, 128.77, 128.56, 126.83, 123.90, 121.35, 69.21, 59.01, 56.88, 56.70, 55.36, 51.51, 48.16, 44.87, 39.31, 38.17, 35.64, 35.36, 29.23, 26.90, 26.63, 25.55, 22.87, 16.43; HRMS (ESI, positive) *m*/*z* calcd for C₅₄H₆₉N₁₀O₇S₃ (M+H)⁺ 1065.4507, found 1065.4508.

(2*S*,4*R*)-1-((*S*)-3,3-Dimethyl-2-(7-(2-((4-((4-((4-((3-(pyridin-3-ylmethyl)thioureido)phe-nyl)sulfonyl)

piperazin-1-yl)methyl)benzamido)heptanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (C4) White solid, yield 18%, purity 98.5%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.17 (s, 1H), 8.99 (s, 1H), 8.63 (s, 1H), 8.53-8.60 (m, 2H), 8.49 (d, *J* = 4.4 Hz, 1H), 8.40 (d, *J* = 7.7 Hz, 1H), 7.80–7.86 (m, 3H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.64 (d, *J* = 8.6 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.29–7.40 (m, 7H), 5.14 (d, *J* = 3.5 Hz, 1H), 4.92 (q, *J* = 7.2 Hz, 1H), 4.80 (d, *J* = 5.3 Hz, 2H), 4.54 (d, *J* = 9.0 Hz, 1H), 4.44 (t, *J* = 8.1 Hz, 1H), 4.27–4.31 (m, 1H), 3.59–3.64 (m, 2H), 3.56 (s, 2H), 3.06 (q, *J* = 6.6 Hz, 2H), 2.85 (s, 4H), 2.46 (s, 3H), 2.43 (s, 4H), 2.22–2.30 (m, 1H), 2.10-2.15 (m, 1H), 1.98–2.05 (m, 2H), 1.76–1.83 (m, 1H), 1.41–1.52 (m, 2H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.30–1.35 (m, 2H), 1.19–1.22 (m, 2H), 0.95 (s, 9H), 0.86 (t, *J* = 6.4 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ :181.15, 172.61, 171.07, 170.07, 168.74, 151.92, 149.37, 148.66, 148.20, 145.07, 144.54, 138.03, 135.73, 135.21, 134.60, 131.55, 130.67, 130.13, 129.21, 129.26, 128.81, 128.54, 127.63, 126.82, 123.89, 121.71, 69.20, 59.47, 59.00, 56.83, 56.69, 51.60, 48.14, 46.36, 45.12, 38.17, 35.64, 35.35, 29.32, 28.784, 26.89, 26.65, 25.83, 22.87, 16.42; HRMS (ESI, positive) *m*/*z* calcd for C₅₅H₇₁N₁₀O₇S₃ (M+H)⁺ 1079.4664, found 1079.4657.

(2*S*,*4R*)-1-((*S*)-3,3-Dimethyl-2-(8-(2-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phenyl)sulfon-yl)piperazin-1-yl)methyl)benzamido)octanamido)butanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (C5) White solid, yield 22%, purity 95.7%. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 10.15 (s, 1H), 8.97 (s, 1H), 8.53-8.64 (m, 3H), 8.48 (d, *J* = 4.5 Hz, 1H), 8.36 (d, *J* = 7.5 Hz, 1H), 7.83 (m, *J* = 8.3 Hz, 2H), 7.74–7.80 (m, 2H), 7.64 (d, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.26–7.41 (m, 7H), 5.10 (s, 1H), 4.86–4.94 (m, 1H), 4.79 (d, *J* = 5.4 Hz, 2H), 4.52 (d, *J* = 9.3 Hz, 1H), 4.42 (t, *J* = 8.0 Hz, 1H), 4.28 (s, 1H), 3.53-3.63 (m, 3H), 3.07 (s, 2H), 2.72–2.95 (m, 4H), 2.36–2.48 (m, 7H), 2.22–2.28 (m, 1H), 2.08–2.13 (m, 1H), 1.99–2.03 (m, 1H), 1.77–1.81 (m, 1H), 1.44–1.52 (m, 2H), 1.37 (d, *J* = 7.0 Hz, 3H), 1.28–1.36 (m, 2H), 1.17–1.23 (m, 6H), 0.93 (s, 9H), 0.92 (s, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ :181.16, 172.57, 171.06, 170.08, 168.70, 151.92, 149.33, 148.62, 148.20, 134.62, 131.55, 130.14, 129.26, 128.82, 128.60, 126.83, 123.90, 121.71, 69.20, 59.44, 59.00, 56.81, 56.68, 51.59, 48.14, 45.11, 40.89, 38.17, 36.64, 35.38, 29.36, 29.08, 28.83, 26.89, 26.81, 25.82, 22.84, 16.42; HRMS (ESI, positive) *m*/*z* calcd for C₅₆H₇₃N₁₀O₇S₃ (M+H)⁺ 1093.4820, found 1093.4809.

(2*S*,*A*)-1-((*S*)-14-Azido-2-(*tert*-butyl)-4-oxo-6,9,12-trioxa-3-azatetradecanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxam-ide (11a) The compound 10a (233 mg, 1 mmol), VHL ligand (444 mg, 1 mmol), HATU (570 mg, 1.5 mmol), DIPEA (194 mg, 1.5mmol) were dissolved in dry DMF (15 mL) and then the mixture was stirred at room temperature for 5 h. The mixture was poured saturated NaCl solution (60 mL) and then extracted with ethyl acetate (20 mL × 3). The organic phases were combined and washed with of saturated NaCl solution (20 mL). After dried over sodium sulfate, it was concentrated and purified by silica gel column chromatography (dichloromethane/methanol=100/2) to obtain the intermediate 11a as a colorless oil (138 mg, yield 21%). ¹H NMR (600 MHz, DMSO-*d*₆) δ : 8.99 (s, 1H), 8.43 (d, *J* = 8.1 Hz, 1H), 8.23 (d, *J* = 9.4 Hz, 1H), 7.42 (dd, *J* = 34.0, 8.0 Hz, 4H), 5.14 (d, *J* = 3.4 Hz, 1H), 4.93 (t, *J* = 7.3 Hz, 1H), 4.53 (d, *J* = 9.0 Hz, 1H), 4.45 (t, *J* = 8.2 Hz, 1H), 4.30 (s, 1H), 4.10 (q, *J* = 5.1 Hz, 2H), 3.53–3.67 (m, 4H), 3.15–3.21 (m, 9H), 2.46 (s, 3H), 1.84–1.76 (m, 1H), 1.39 (d, *J* = 7.1 Hz, 3H), 1.23–1.29 (m, 2H), 0.96 (s, 9H).

The synthetic route of 11b is similar to that of 11a.

(2*S*,4*R*)-1-((*S*)-17-Azido-2-(*tert*-butyl)-4-oxo-6,9,12,15-tetraoxa-3-azahepta-0decan-oyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (11b) Colorless oil, yield 28%. ¹H NMR (600 MHz, CDCl₃) δ: 7.59 (s, 1H), 7.38–7.48 (m, 4H), 7.31 (d, *J* = 7.9 Hz, 1H), 5.07 (t, *J* = 7.0 Hz, 1H), 4.77 (t, *J* = 7.9 Hz, 1H), 4.46–4.52 (m, 2H), 4.17 (d, *J* = 10.6 Hz, 1H), 3.99–4.07 (m, 2H), 3.64–3.71 (m, 16H), 3.38 (t, *J* = 4.8 Hz, 2H), 2.67–2.74 (m, 3H), 1.99–2.11 (m, 2H), 1.47 (d, *J* = 7.1 Hz, 3H), 1.07 (s, 9H).

(2*S*,4*R*)-1-((*S*)-14-amino-2-(*tert*-butyl)-4-oxo-6,9,12-trioxa-3-azatetradecanoyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (12a) The intermediate 11a (100 mg, 0.15

mmol) was dissolved in CH₂Cl₂ (15 mL) and Pd/C (100 mg, 0.6 mmol, 45% purity) was added. The mixture was stirred at room temperature and maintained overnight under the atmosphere of hydrogen. Then the resulting mixture was filtrated through diatomite and the filtrate was concentrated under reduced pressure to afford the intermediate **12a** (96 mg, yield 96%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ : 8.67 (s, 1H), 8.17 (s, 1H), 7.36–7.43 (m, 5H), 5.12 (t, *J* = 7.5 Hz, 1H), 4.82 (t, *J* = 8.3 Hz, 1H), 4.66 (d, *J* = 10.0 Hz, 1H), 4.43 (s, 1H), 4.18 (d, *J* = 15.2 Hz, 1H), 3.99–4.06 (m, 2H), 3.58–3.81 (m, 14H), 3.08–3.20 (m, 2H), 2.53 (s, 3H), 2.14–2.22 (m, 2H), 1.51 (d, *J* = 6.7 Hz, 3H), 1.44–1.49 (m, 1H), 0.95 (s, 9H).

The synthetic route of 12b is similar to that of 12a.

(2*S*,4*R*)-1-((*S*)-17-amino-2-(*tert*-butyl)-4-oxo-6,9,12,15-tetraoxa-3-azaheptadecan-oyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-car-boxamide (12b) Colorless oil, yield 96%. ¹H NMR (600 MHz, CDCl₃) δ: 8.75 (s, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.36–7.44 (m, 6H), 5.08 (t, *J* = 7.3 Hz, 1H), 4.76 (t, *J* = 8.3 Hz, 1H), 4.50–4.54 (m, 2H), 4.17 (s, 1H), 4.13–4.17 (m, 1H), 3.75 (s, 1H), 3.66–3.72 (m, 16H), 3.59 (dd, *J* = 11.5, 3.5 Hz, 1H), 3.39 (q, *J* = 6.3 Hz, 2H), 2.57–2.63 (m, 1H), 2.56 (s, 3H), 2.05– 2.09 (m, 1H), 1.47 (d, *J* = 7.0 Hz, 3H), 1.07 (s, 9H).

The synthetic routes of A6 and A7 is similar to that of A1.

(2*S*,4*R*)-1-((*S*)-15-(*tert*-Butyl)-1,13-dioxo-1-(4-((4-((4-((4-((4-((3-(pyridin-3-ylmethyl)thioureido)phen-yl) sulfonyl)piperazin-1-yl)methyl)phenyl)-5, 8, 11-trioxa-2, 14-diazahexade-can-16-oyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (A6) White solid, yield 29%, purity 99.8%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.14 (s, 1H), 8.98 (s, 1H), 8.63 (s, 1H), 8.58 (s, 1H), 8.48 (d, *J* = 7.1 Hz, 1H), 8.41 (d, *J* = 8.9 Hz, 1H), 8.12 (d, *J* = 9.0 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 2H), 7.74–7.84 (m, 4H), 7.65 (d, *J* = 8.1 Hz, 2H), 7.37–7.44 (m, 7H), 5.12 (s, 1H), 4.67–5.00 (m, 7H), 4.53 (d, *J* = 9.0 Hz, 1H), 4.44 (t, *J* = 7.7 Hz, 1H), 4.28 (s, 1H), 3.48–3.65 (m, 6H), 2.89 (m, 4H), 2.33–2.48 (m, 10H), 2.00–2.08 (m, 1H), 1.74–1.83 (m, 1H), 1.38 (d, *J* = 6.4 Hz, 3H), 1.15–1.35 (m, 3H), 0.95 (s, 9H), 0.79–0.93 (m, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ :181.17, 170.96, 169.48, 166.66, 166.53, 151.86, 149.38, 148.64, 148.17, 145.07, 144.44, 144.34, 135.70, 134.58, 131.53, 130.35, 129.78, 129.29, 128.86, 128.52, 126.79, 123.85, 121.95, 69.19, 62.97, 61.30, 59.03, 56.84, 51.98, 48.15, 46.37, 45.17, 38.14, 36.02, 26.77, 22.83, 16.40; HRMS (ESI, positive) *m*/*z* calcd for C₅₆H₇₃N₁₀O₁₀S₃ (M+H)⁺ 1141.4668, found 1141.4675.

(2*S*,*A*)-1-((*S*)-18-(*tert*-Butyl)-1,16-dioxo-1-(4-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phe-nyl) sulfonyl)piperazin-1-yl)methyl)phenyl)-5, 8, 11, 14-tetraoxa-2, 17-diazanonadecan-19-oyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)-pyroledine-2-carboxamide (A7) White solid, yield 23%, purity 99.7%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.15 (s, 1H), 8.99 (s, 1H), 8.64 (s, 1H), 8.58 (d, *J* = 1.7 Hz, 1H), 8.49 (dd, *J* = 5.0, 1.4 Hz, 1H), 8.41–8.46 (m, 2H), 7.79 (dd, *J* = 24.7, 8.7 Hz, 4H), 7.78–7.79 (m, 1H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.34–7.40 (m, 4H), 7.31 (d, *J* = 8.2 Hz, 2H), 5.13 (d, *J* = 3.5 Hz, 1H), 4.88–4.93 (m, 1H), 4.80 (d, *J* = 5.4 Hz, 2H), 4.55 (d, *J* = 9.6 Hz, 1H), 4.45 (t, *J* = 8.3 Hz, 1H), 4.27–4.31 (m, 1H), 3.96 (s, 2H), 3.51–3.61 (m, 18H), 3.39–3.42 (m, 2H), 2.89 (s, 4H), 2.46 (s, 3H), 2.43 (s, 4H), 2.03–2.08 (m, 1H), 1.75–1.82 (m, 1H), 1.38 (d, *J* = 6.9 Hz, 3H), 0.94 (s, 9H); ¹³C NMR (150 MHz, DMSO- d_6) δ :181.20, 170.90, 169.47, 168.95, 166.51, 151.89, 149.41, 148.67, 148.20, 145.14, 144.45, 141.49, 135.72, 134.60, 133.69, 131.55, 130.14, 129.27, 129.07, 128.91, 127.60, 126.77, 123.87, 70.88, 70.29, 70.21, 70.19, 70.05, 69.35, 69.22, 61.37, 59.01, 56.96, 56.15, 51.94, 48.19, 46.38, 45.19, 38.17, 36.17, 26.67, 22.88, 16.43; HRMS (ESI, positive) *m*/*z* calcd for C₅₈H₇₆N₁₀O₁₁S₃Na (M+Na)⁺ 1207.4749, found 1207.4753.

The synthetic route of the intermediate 13 is similar to that of 11a.

(2R,4S)-1-((S)-17-Azido-2-(tert-butyl)-4-oxo-6,9,12,15-tetraoxa-3-azahepta-decanoyl)-4-hydroxy-*N*-((S)-1- $(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (13) Colorless oil, yield 18%. ¹H NMR (600 MHz, DMSO-<math>d_6$) δ : 8.98 (s, 1H), 8.14 (d, J = 8.1 Hz, 1H), 7.38–7.50 (m, 6H), 4.86–4.94 (m, 1H), 4.49 (d, J = 8.7 Hz, 1H), 4.37–4.43 (m, 1H), 4.30–4.36 (m, 1H), 3.44–3.64 (m, 18H), 3.36 (t, J = 5.2 Hz, 2H), 2.46 (s, 3H), 2.00–2.06 (m, 1H), 1.90–1.96 (m, 1H), 1.32 (d, J = 7.0 Hz, 3H), 0.99 (s, 9H).

The synthetic route of the intermediate 14 is similar to that of 12a.

(2R,4S)-1-((S)-17-amino-2-(tert-butyl)-4-oxo-6,9,12,15-tetraoxa-3-azahepta-decanoyl)-4-hydroxy-*N*-((S)-1- $(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (14) Colorless oil, yield 95%. ¹H NMR (600 MHz, DMSO-<math>d_6$) δ : 8.83–9.01 (m, 1H), 8.12–8.24 (m, 1H), 7.26–7.52 (m, 7H), 5.21 (s, 1H), 4.83 (t, *J* = 6.7 Hz, 1H), 4.20–4.49 (m, 4H), 3.61–3.77 (m, 1H), 3.42–3.57 (m, 18H), 2.36 (s, 3H), 1.82–2.02 (m, 2H), 1.27 (d, *J* = 6.8 Hz, 3H), 0.90 (s, 9H).

The synthetic route of the intermediate D1 is similar to that of A1.

(2*R*,4*S*)-1-((*S*)-18-(*tert*-Butyl)-1,16-dioxo-1-(4-((4-((4-(3-(pyridin-3-ylmethyl)thioureido)phe-nyl) sulfonyl)piperazin-1-yl)methyl)phenyl)-5, 8, 11, 14-tetraoxa-2, 17-diazanonadecan-19-oyl)-4-hydroxy-*N*-((*S*)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)-pyrrolidine-2-carboxamide (D1) White solid, yield 31%, purity 99.3%. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 10.12 (s, 1H), 8.95 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.46 (d, *J* = 4.2 Hz, 1H), 8.40 (t, *J* = 5.4 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.72–7.80 (m, 5H), 7.63 (d, *J* = 8.6 Hz, 2H), 7.35–7.44 (m, 6H), 7.28 (d, 2H), 5.11 (d, *J* = 3.7 Hz, 1H), 4.85-4.91 (m, 1H), 4.78 (d, *J* = 5.1 Hz, 2H), 4.47 (d, *J* = 8.7 Hz, 1H), 4.38 (t, *J* = 6.5 Hz, 1H), 2.86 (s, 4H), 2.43 (s, 3H), 2.38–2.42 (m, 4H), 1.97–2.04 (m, 1H), 1.88–1.95 (m, 1H), 1.37 (s, 1H), 1.30 (d, *J* = 7.0 Hz, 3H), 0.94 (s, 9H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 181.20, 170.99, 169.61, 169.48, 166.51, 151.86, 149.41, 148.67, 148.20, 144.77, 144.46, 141.49, 135.73, 134.60, 133.69, 131.57, 130.10, 129.18, 128.90, 127.59, 127.24, 127.03, 123.87, 121.94, 70.80, 70.22, 70.17, 69.93, 69.34, 68.91, 61.38, 59.17, 56.54, 55.81, 51.94, 47.90, 46.38, 45.19, 38.27, 35.27, 26.77, 22.81, 16.40; HRMS (ESI, positive) *m*/*z* calcd for C₅₈H₇₇N₁₀O₁₁S₃ (M+H)⁺ 1185.4930, found 1185.4927.

The synthetic route of the intermediate 15 is similar to that of 6.

tert-**Butyl 4-((4-(3-benzylthioureido)phenyl)sulfonyl)piperazine-1-carboxylate (15)** White solid, yield 90%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 10.06 (s, 1H), 8.54 (s, 1H), 7.83 (d, *J* = 8.7 Hz, 2H), 7.65 (d, *J* = 8.7 Hz, 2H), 7.35 (d, *J* = 4.4 Hz, 4H), 7.26–7.30 (m, 1H), 4.76 (s, 2H), 3.36–3.41 (m, 4H), 2.83 (t, *J* = 4.8 Hz, 4H), 1.34 (s, 9H).

The synthetic route of the intermediate 17 is similar to that of 8.

4-((**4**-((**4**-((**4**-((**3**-Benzylthioureido)phenyl)sulfonyl)piperazin-1-yl)methyl)benzoic acid (17) White solid, yield 46%. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 12.81 (s, 1H) ,10.07 (s, 1H), 8.57 (s, 1H), 7.83-7.86 (m, 4H), 7.64–7.65 (m, 2H), 7.34–7.36 (m, 6H), 7.26–7.29 (m, 1H), 4.76 (d, *J* = 4.7 Hz, 2H), 3.53 (s, 2H), 2.89 (s, 4H), 2.44 (s, 4H).

The synthetic route of compound E1 is similar to that of A1.

(25,4*R*)-1-((*S*)-1-(4-((4-((4-((4-((4-((3-benzylthioureido)phenyl)sulfonyl)piperazin-1-yl)-methyl)phen-yl)-18-(*tert*-butyl)-1,16-dioxo-5, 8, 11, 14-tetraoxa-2,17-diazanonade-can-19-oyl)-4-hydroxy-*N*-((*S*)-1-(4-(4methylthiazol-5-yl)phenyl)ethyl)pyrrole-dine-2-carboxamide (E1) White solid, yield 14%, purity 95.8%. ¹H NMR (600 MHz, DMSO- d_6) δ : 10.04 (s, 1H), 8.53 (s, 1H), 8.37–8.45 (m, 2H), 7.81 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 7.8 Hz, 2H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.40–7.43 (m, 1H), 7.23–7.38 (m, 10H), 7.06–7.21 (m, 2H), 5.07–5.14 (m, 1H), 4.80–4.93 (m, 1H), 4.75 (d, *J* = 4.4 Hz, 2H), 4.53 (d, *J* = 9.4 Hz, 1H), 4.38–4.45 (m, 1H), 4.26 (s, 1H), 3.86–3.97 (m, 2H), 3.47–3.60 (m, 18H), 3.35–3.41 (m, 2H), 2.86 (s, 4H), 2.43 (s, 1H), 2.41 (s, 4H), 1.98–2.07 (m, 1H), 1.68–1.80 (m, 1H), 1.35 (d, *J* = 6.6 Hz, 3H), 1.18–1.24 (m, 2H), 0.92 (s, 9H); ¹³C NMR (150 MHz, DMSO- d_6) δ : 206.47, 180.98, 170.90, 169.47, 168.96, 166.53, 151.89, 148.20, 145.13, 144.61, 143.62, 141.50, 138.88, 133.69, 133.49, 131.56, 130.15, 129.87, 129.27, 128.80, 127.99, 127.60, 127.50, 126.78, 126.17, 121.70, 70.89, 70.30, 70.22, 70.19, 70.06, 69.35, 69.22, 61.38, 60.19, 59.01, 56.96, 56.15, 51.94, 49.66, 48.20, 48.10, 47.61, 46.39, 38.17, 36.17, 29.91, 29.46, 26.76, 26.68, 23.01, 22.88, 21.20, 16.43, 14.53; HRMS (ESI, positive) *m*/z calcd for C₅₉H₇₈N₉O₁₁S₃ (M+H)⁺ 1184.4977, found 1184.5001.

NMR spectra and HRMS reports

4-4

Data Filename	WL-1644-DOWN.d	Sample Name	
Sample Type	Sample	Position	P1-82
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-POS-WL.m	Acquired Time	11/5/2018 11:16:11 AM
IRM Calibration Status Comment	Success	DA Method	1.m

Sample Group Info.

User Spectra

--- End Of Report ---

str.

Data Filename	WY-46-4-3.d	Sample Name	
Sample Type	Sample	Position	P1-B5
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-POS-WL.m	Acquired Time	12/21/2018 3:20:16 PM
IRM Calibration Status	Success	DA Method	Default.m
Comment		Plotes	

Sample Group Info.

User Spectra

Fragmento 12	or Vo	ltage		Collision Energy 0	Ioniza	esi Esi		
x10 3 +ES	Sca	an (0.	134 min	Frag=120.0V	WY-46-4-3.d	1		
5				1037,4192 (M+H)+			1059.4006	
4							(M+Na)+	
3 -							11	
2								
1				a 111	Г	1.	l la	
0	10	25	1020	1025 10		1050 105		220 1075
	10	25	1030	1035 104	Counts vs. N	lass-to-Charg	e (m/z)	10/5
Peak List	7	Abu	nd	r i				
102.1273	1	7424	8					
130.1591	1	2294	74.8					
239.2359	1	7174	6					
257.2478	1	6153	8.4					
283.2637	1	7110	5.9					
285.2795	1	6057	5.3					
331.285	1	5500	4.6					
346.4795	1	5863	6.2					
369.3524	1	6187	3.1					
437.194	1	6819	6.8					
Formula Calc	ulat	or Ele	ement Lin	nits				
C	Patri	3	80					
н	-	0	120					
0	_	0	30	1				
N	_	0	30	1				
s		1	3	1				
Formula Calc	ulat	or Re	sults		-			
Formula		_	Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C52 H64 N10 (07 S	3	TRUE	1036.412	1036.4122	0.19	C52 H65 N10 07 53	95.59
C64 H52 N12 0			TRUE	1036.4114	1036.4108	-0.61	C67 H60 N3 Na 07 S	84
C67 H60 N2 O	/ 5			1036.4113	1036.4121	0.8	C40 H49 N24 Na 07 5	82.17
C49 H48 N24 0)2 S	-		1036.4116	1036.4113	-0.31	C63 H56 NR Na OS S	80.50
C63 H56 N8 O	55			1036.4114	1036.4094	-1.80	C70 H56 Na S	80.53
C79 H56 S		_		1036.4113	1036.4103	-0.96	C69 H56 N6 Na 03 S	80.19
C68 H56 N6 O	55			1036.4113	1030.4135	2.05	200 110 110 110 00 0	00.10

--- End Of Report ---

de

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment	WY-16-5-2-pos.d Sample Instrument 1 TEST-POS-WL.m Success	Sample Name Position User Name Acquired Time DA Method	P1-B3 11/27/2018 2:16:54 PM 1.m
--	---	--	---------------------------------------

Sample Group Info.

User Spectra

Fragm	ento 15	or Vo	ltage		Collision Energ 0	y Ioniza	tion Mode ESI		
×10 ⁶	+ES	SI So	can (O	.118 mi	n) Frag=150.0V	WY-16-5-2-00	d Subtract		_
2.5-			27	0.5945	,		s.d Subiract		
2-									
1.5-	13	30.16	510						
1-					540.17	86			
0.5-				351.	1525		10	51 4346	
0-	Ļ			<u></u>	<u>h. L </u>	686.1443	(M+H)+	_
Peak List	1	00	200	300	400 500 Coun	600 700 8	00 900 100	00 1100 1200 1300	1
m/z		z	Abu	nd	۵۵۵. ۲	(3 v3. Wa35-(0-(snarge (m/z)		
130.161			1296	849.4	1				
149.0608			3055	81.6	-				
253.5995		2	5463	11.6	-				
262.6044		2	3582	24.1	-1				
270.5946		2	2228	949	-				
271.0954		2	6919	91.6	-1				
271.5918		2	2945	86.2	-				
506.1893		-	3565	74.3	-				
540.1787		1	1027	384.4	-				
541.1792		1	3194	74.6	-				
Formula	Calc	ulat	or Ele	ement L	Imits				
Element		Min		Max	7				
С			0	60	_				
н			0	200	_				
0			0	10	_				
N			0	10	_				
S			0	3					
Formula	Calc	ulat	or Re	sults	Mare	Tot Mars	Diff (nom)	Ton Species	Score
Formula			-	Dest	Mass	1000 4070	0.72	CE2 HEZ NID OZ CZ	97.05
C53 H66 N	10 (57 S	3	TRUE	1050.42	1050.42/8	0.72	C33 H0/ N10 0/ 53	97.05

--- End Of Report ---

.4.

....

5-2

Sample Type Instrument Name Acq Method IRM Calibration Status Comment		i Tafa	Sample Instrument 1 TEST-POS-WL.m Success		Position User Name Acquired Tim DA Method	P1-A1 e 11/14/2018 10:42:17 AM 1.m	1	
sample Gro	υp		Into.					
User Spec	ctra							
Fragme	ntor Vo 120	ltage		Collision Energy 0	Ioniz	ESI		
×10 4 +	ESI S	can (().128 min) Frag=120.0V	wy-16-3-4.d S	ubtract]
					1051.4346			
7					(M+H)+			
6								
5-								
4-					r -			
3-						1073.4153		
1.000					1	(M+Na)+		
2-								
2-						h.		
2- 1- 0-	<u>II</u>					li		,,
2- 1- 0-	990	1000	0 1010	1020 1030 10	40 1050 1060	0 1070 1080	1090 1100 1110 1120 11	30 1140
2- 1- 0-	990	1000	0 1010	1020 1030 10	40 1050 1060 Counts vs. Ma	0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z	990 z	1000	nd	1020 1030 10	40 1050 1066 Counts vs. Ma	0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 162,1321	990 z	1000 Abu	0 1010	1020 1030 10	40 1050 1066 Counts vs. Ma	0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274 2744	990 z 1 1	1000 Abu 1447 1228	0 1010 nd 37 27.8	1020 1030 10	40 1050 1060 Counts vs. Ma	0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274.2744 280.1296	990 z 1 1 1	1000 Abu 1447 1228 1304 1422	0 1010 nd 237 227.8 106.8 190.4	1020 1030 10	40 1050 1060 Counts vs. Ma	0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274.2744 280.1296 338.3419	990 z 1 1 1 1 1	1000 1447 1228 1304 1422 1133	0 1010 nd 37 227.8 106.8 190.4 177.3	1020 1030 10	40 1050 1060 Counts vs. Ma	0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274.2744 280.1296 338.3419 351.1527	990 z 1 1 1 1 1 1 1	1000 Abu 1447 1228 1304 1422 1133 3123	nd 37 27.8 06.8 990.4 77.3 33.9	1020 1030 10	40 1050 106/ Counts vs. Ma	0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274.2744 280.1296 338.3419 351.1527 351.4862	990 z 1 1 1 1 1 1 1 1	1000 1447 1228 1304 1422 1133 3123 1882	0 1010 nd 37 27.8 06.8 90.4 177.3 33.9 228.1	1020 1030 10	40 1050 1066 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274.2744 280.1296 338.3419 351.1527 351.4862 526.2222	990 z 1 1 1 1 1 1 1 1 2	1000 Abu 1447 1228 1304 1422 1133 3123 1882 1369	0 1010 nd 37 27.8 006.8 90.4 177.3 134.9 228.1 149.7	1020 1030 10	40 1050 106 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274.2744 280.1296 338.3419 351.1527 351.4862 526.2222 574.2819	990 2 1 1 1 1 1 1 1 1 2 1	1000 Abu 1447 1228 1304 1422 1133 3123 1882 1365 6970	0 1010 nd 37 27.8 06.8 90.4 177.3 134.9 228.1 149.7 119.6	1020 1030 10	40 1050 106 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 130.1592 133.1392 274.2744 280.1296 338.3419 351.1527 351.4862 256.2222 574.2819 575.282	990 z 1 1 1 1 1 1 1 2 1 1	1000 Abu 1447 1226 1304 1422 1133 3122 1882 1365 6970 2293	0 1010 nd 37 27.8 06.8 90.4 177.3 34.9 28.1 149.7 119.6 115.8	1020 1030 10	40 1050 1064 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1352 163.1552	990 z 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1447 1228 1304 1422 1133 3123 1882 1365 6970 2293 or Ele	0 1010 nd 37 127.8 106.8 190.4 190.4 134.9 128.1 149.7 19.6 115.8 Ement Li Max	1020 1030 10	40 1050 1064 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2-1 1- 0- 130.1592 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1331 163.1321 16	990 z 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1447 1226 1304 1422 1133 3122 1882 1365 6970 2293 or Ele	0 1010 nd 37 127.8 106.8 190.4 177.3 134.9 128.1 149.7 19.6 15.8 ment Li Max 60	1020 1030 10	40 1050 1060 Counts vs. Ma) 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274.2744 280.1296 338.3419 351.1527 351.4662 5526.2222 574.2819 Formula Ca Element C H	II.	1000 1447 1226 1304 1422 1133 3122 1365 6970 2293 or Elo 0 0 0	1010 nd 37 27.8 90.4 177.3 34.9 28.1 19.6 115.8 ment Li Max 60 200	1020 1030 10	40 1050 1060 Counts vs. Ma) 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 163.1331 274.2744 280.1296 338.3419 351.1527 351.4862 526.2222 574.2819 Formula Ca Element C H O	990 z 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1447 1228 1304 1422 133 1882 1365 6970 2299 or Elo 0 0 0 0 0	10100 1010 100 1010 100 1	1020 1030 10	40 1050 106 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/r 130.1592 130.1592 130.1592 130.1592 1331.4862 131.486	990 z 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1447 1228 1304 1422 1332 1365 6970 2293 or Elo 0 0 0 0 0 0 0	10100 1010 100 1010 1000 1000	1020 1030 10	40 1050 106 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 130.1592 130.1592 133.131 274.2744 280.1296 338.3419 351.4862 551.4862 554.2222 574.2819 575.282 Formula California C H O N S	990 z 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1447 1226 1304 1422 1313 1422 1332 1365 6970 2293 or Ele 0 0 0 0 0 0 0 0 0 0 0 0 0	nd 37 27.8 06.8 90.4 177.3 34.9 228.1 19.6 115.8 ment Li Max 60 200 200 10 3 3	1020 1030 10-	40 1050 106 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 130.1592 130.1592 133.1302 274.2744 280.1296 338.3419 351.1527 351.4862 556.2222 574.2819 575.282 Formula Ca Formula Ca Formula Ca	990 z 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1447 1226 130 1422 1312 1323 1382 1385 1385 1385 1385 1385 1385 1385 1385 1385 1385 1395 1	10 1010 nd 37 27.8 06.8 990.4 177.3 34.9 19.6 115.8 ment Li Max 60 200 200 20 10 3 sults Particle	1020 1030 10	40 1050 106 Counts vs. Ma	, 0 1070 1080 ss-to-Charge (1090 1100 1110 1120 11 m/z)	30 1140
2- 1- 0- Peak List m/z 130.1592 130.1592 130.1592 133.131 274.2744 280.1296 338.3419 351.1527 3351.4862 526.2222 574.2819 575.282 Formula Ca Formula Ca For	990 z 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 Abu 1447 1228 1304 1422 133 1882 1365 6970 or El 0 0 0 0 0 0 0 0 0 0 0 0 0	10100 nd 37 27.8 06.8 990.4 177.3 34.9 28.1 19.6 15.8 Ement L Max 60 200 200 200 200 3 sults Best Trute	1020 1030 10	40 1050 1064 Counts vs. Ma	Diff (ppm)	1090 1100 1110 1120 11 m/z) Ton Species	30 1140

--- End Of Report ---

da

.....

5-24

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment	WY-16-5-4.d Sample Instrument 1 TEST-POS-WL.m Success	Sample Name Position User Name Acquired Time DA Method	P1-B6 12/21/2018 3:21:53 PM Default.m	

Sample Group Info.

User Spectra

Frag	ment 1	or Vo 20	ltage		c	ollision Energy 0	Ionization	Mode			
×10 4	+ES	I Sc	an (0	.150 r	nin)	Frag=120.0V V	VY-16-5-4 d				
2			1	105	1.43	34					
3.	1			(M	+H)+	•					
2.5	1										
2	1							1073.4142 (M+Na)+			
15											
1.5	1										
1-						1		L L			
0.5	-										
0-					Ц.						
0	1	10	45	105	0	1055 1060	1065 10	70 1075	1090 1095	1000	1005
Dook Lie	•					Ċ	counts vs. Mass	-to-Charge (m	/z)	1090	1095
m/z		z	Abu	nd							
130.1608	3	1	4527	45.9							
136.0508	3		1100	95.6							
274.2739)	1	9372	21.3							
283.2637	,	1	8690)6							
318.3002	2	1	9470	2.5							
351.1519)	1	2053	352.2							
351.4856	5		1432	253.3							
351.818			7919	7.2							
526.2216	5	2	1137	773.1							
508.2881	L	1	1626	541.5							
Formula	Calc	ulate	or Ele	ement	Lim	its					
lement	-	Min	-	Max	_						
			3	80	_						
1			0	120	-						
			0	30	_						
N			1	30	-						
ormula	Calc	ulate	or Re	sults							
ormula	1			E	Best	Mass	Tgt Mass	Diff (ppm)	Ion Species		Score
50 H58	N20 C) S3				1050.42	59 1050.4265	0.5	C50 H59 N20 O S3		98.5
49 H62	N16 C)5 S3	3			1050.42	59 1050,4251	-0.75	C49 H63 N16 O5 S	3	98.1
59 H70	013 5	2				1050.42	57 1050.4258	0.05	C59 H71 O13 S2		97.7
52 H70	N6 01	1 53	3			1050.42	58 1050.4265	0.61	C52 H71 N6 O11 S	3	97.3
42 H54	N26 C)4 SZ	2			1050.43	1050.4263	0.28	C42 H55 N26 O4 S	2	97.2
44 H66	N12 C	014 5	52			1050.42	59 1050.4263	0.4	C44 H67 N12 O14	S2	97.0
C57 H58	N14 C)3 S2	2			1050.42	58 1050.4258	-0.06	C57 H59 N14 O3 S	2	96.9
56 H62	N10 C)7 SZ	!			1050.42	58 1050.4244	-1.31	C56 H63 N10 O7 S	2	96.4
C51 H74	N2 01	5 S3	1			1050.42	58 1050.4251	-0.63	C51 H75 N2 O15 S	3	96.4
C41 H58	N22 C	08 SZ	!			1050.4	26 1050.4249	-0.97	C41 H59 N22 O8 S	2	96.0
C50 H70	N2 02	20 S			TRU	JE 1050.42	51 1050.4243	-0.83	C50 H70 N2 Na O	20 S	97.6

sde

Data Filen	ame			WY-6-2.d		Sample Nan	1e				
Sample Ty	pe			Sample		Position	P1-A9				
Aca Mothe	it Nan	1e		Instrument 1		User Name					
TRM Calib	ation	Chab		TEST-POS-WL	m	Acquired Tir	ne 11/27/201	8 12:48:08 PM	1		
Comment	auon	Stati	12	SUCCESS	a diam's to the	DA Method	1.m				
Sample Gr	oup		Info.								
User Spe	ctra										
Fragm	entor V 120	oltag	•	Collision Energ 0	y Ioni	zation Mode ESI					
x10 5	+ESI \$	Scan	0.207 mi	n) Frag=120.0V	WY-6-2.d						
1.2-				1	065.4508 (M+H)+						
1-											
0.8-											
0.0											
0.0-											
0.4-					1087.43	17					
0.2-					(M+Na)+					
0-L	· · · ·	1	A		<u>. </u>				_		
	960	980	1000	1020 1040 1 Cou	1060 1080 1 nts vs. Mass-t	1100 1120 1 o-Charge (m/z)	140 1160 1180	0 1200 12	20		
Peak List	7	Abu	nd	۰							
274.277	1	4899	47.3	1							
302.3057	1	1143	93.4	1							
318.3021	1	2732	68.3	1							
55.8262	1	1061	775.9]							
356.1606	1	6968	61.6]							
56.4922	1	3836	40								
56.8243	1	1395	79.8]							
33.2331	2	3578	00.1]							
33.7327	2	2291	01.3]							
34.2308	2	1242	55.8								
ormula Ca	culate	or Ele	ment Li	nits							
iement	Min	_	max								
	-	0	00								
	-	0	200								
	-	1	10								
	-	0	10								
ormula Cal	[0	3								
	culato	ne:	and a				Van Engelan		Score		
ormula			Best	Mass	Igt Mass	Diff (ppm)	ton species		Score		
ormula 54 H68 N10	07 53	-	Best TRUE	Mass 1064.4433	1064.4435	0.12	C54 H69 N10 O7	\$3	97.69		

--- End Of Report ---

·

-....

Data Filename	WY-16-6-3.d	Sample Name	
Sample Type	Sample	Position	P1-A7
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-POS-WL.m	Acquired Time	12/12/2018 10:29:37 AM
IRM Calibration Status	Success	DA Method	1.m
Comment	Record Lands 24 19 414 1985 93 1 4 Lines	CARSA EM	

Sample Group Info.

User Spectra

--- End Of Report ---

de

Data Filename	WY-16-6-4.d	Sample Name	P1-81
Sample Type	Sample	Position	
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-POS-WL m	Acquired Time	
IRM Calibration Status Comment	Success	DA Method	1.m

Sample Group Info.

User Spectra

Fragment 1	or Vo 20	oltage	Č.	Colli	sion Energy 0	Ionization ESI	Mode		
x10 ⁵ +E	SI S	can (0.171	min) Fra	g=120.0V WY	16-6-4.d			
1-					1065 4521	1			
0.8-					(M+H)+				
0.6-									
0.4 -									
0.2 -						1087.4 (M+N	328 a)+		
0-							l		
eak List	10	30	1040	1050	1060 107 Counts	0 1080 1	090 1100	1110 1120 1	130 1140
/z	z	Abu	nd				(iiii2)		
3.1333		8648	80.9						
2.1446	1	2322	74.8						
8.3435	1	2331	86.6						
5.8261	1	4368	72.4	-					
6.1587	1	2896	50.8	_					
6.492	-	1425	58.5	-					
7.6633	2	1228	68 7	-					
3.2321	2	2361	32.2	_					
3.7328	2	1651	29.4	_					
4,2323	2	8701	0.5	-					
ormula Calc	ulate	or Ele	ement	Limits					
ement	Min		Max						
		0	60)					
		0	200	0					
		0	10						
		0	10						
		3	3						
		0	1						
ormula Calc	ulate	or Re	sults						
rmula				Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
4 H68 N10 C	07 S3	1		TRUE	1064.4445	1064.4435	-0.95	C54 H69 N10 O7	S3 97.3
4 H68 N10 C	07 S3	3		TRUE	1064.4429	1064,4435	0.5	C54 H68 N10 Na (07 53 95 85

--- End Of Report ---

de

Data Filename	WY-16-7-2.d	Sample Name	
Sample Type	Sample	Position	P1-B4
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-POS-WL.m	Acquired Time	12/12/2018 10:39:13 AM
IRM Calibration Status	Success	DA Method	1.m
Comment		on-source	

Sample Group Info.

User Spectra

--- End Of Report ---

de

_

Data Filena	me			WY-16-7-3 d		Comula No.					
Sample Typ	e			Sample		Sample Nam	e 01.02				
Instrument	Name	e		Instrument 1			P1-B3	P1-B3			
Acg Method	1		TEST-POS-Will m Acquired Time			- 12/12/201	12/12/2010 10:27:40 44				
IRM Calibration Status Comment			Success DA Method			1.m	12/12/2018 10:37:40 AM 1.m				
Sample Gro	up		Info.								
User Spec	tra										
Fragme	ntor Vo	oltage		Collision Energy	Ionia	ration Mode					
×10 4 +	ESI S	can (C	.112 mi	n) Frag=120.0V	WY-16-7-3.d						
				1070 :00							
8-				(M+H)+					- L		
6											
5						1150					
5-					1101. (M+	4456 Na)+					
3						,					
2				II.		1 I			- 1		
1											
						1					
0-2		1050	1060	1070 1080	1090 110	0 1110 112	0 1130 11	40 1150	1160		
Peak List			10,0000	Cou	nts vs. Mass-	to-Charge (m/z)			0.0000		
m/z	z	Abur	nd	1							
130.1609	1	7791	02.6	4							
163.1331	1	1993	64.8	4							
332.1428	1	1208	73.9	4							
338.3428	1	2544	16.2	4							
360,4972	1	4836	10.3	4							
261 1627	12	3255	70.9	4							
427 1030	1	1000	75	1							
FAD 2201	2	1026		1							
540.2391	2	1204	86.3	1							
540 7405	culat	or Ele	ment Li	mits							
540.7405 Formula Ca	Min		Max	1							
540.7405 Formula Ca Element	_	3	60	1							
540.7405 Formula Ca Element C			120	1							
540.7405 Formula Ca Element C H		0		1							
540.7405 Formula Ca Element C H O		0	10	4							
540.7405 Formula Ca Element C H O N		0	10 10	1							
540.7405 Formula Ca Element C H O N S		0 0 3	10 10 3]							
S40.7405 Formula Ca Element C H O N S Formula Ca Formula Ca	Iculati	0 0 3 or Re:	10 10 3 sults Best	Mass	ot Mass	Diff (ppm)	Ion Species		Score		
S40, 7405 Formula Ca Element C H O N S Formula Ca Formula Ca S Formula Ca S	Iculation 107 ST	0 0 3 or Re:	10 10 3 sults Best TRUF	Mass 1078.4567	1078.4591	Diff (ppm)	Ion Species C55 H70 N10 Na	07 53	Score 92.9		

--- End Of Report --

Data Filename	WY-16-7-4-pos.d	Sample Name	
Sample Type	Sample	Position	P1-B1
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-POS-WL.m	Acquired Time	12/12/2018 12:19:36 PM
IRM Calibration Status	Success	DA Method	1.m
Comment	And a second state of the second s	2002000000	

Sample Group Info.

User Spectra

Fragme	ntor Vo 120	oltage	1	Collision Energy 0	y Ioniz	ation Mode ESI		
×10 5	+ESI S	can (0.140 min) Frag=120.0V	WY-16-7-4-po	s.d		
1.6-			1	079.4675				
1.4 -								
1.2-								
1-								
0.8-								
0.6-						1101.4457		
0.4-						(M+Na)+		
0.2-				111.		1		
0-6	1						biological second	
	106	5 10	070 1075	5 1080 1085 Col	5 1090 1095 unts vs. Mass-1	1100 1105 o-Charge (m/z	1110 1115 1120 112)	25
Peak List		TAbu	nd	1				
130 1611	1	6473	201.1	1				
162 1255	+	1225	275.2	1				
105.1333	+	200/	104 9	{				
332 1437	+	2103	203.7	1				
338 3454	+	6611	68.6	1				
360 4078	+	5081	103.7	1				
360.8317	1	3909	64.1	1				
361 1645	+	2032	232.2	1				
540 2407	17	3818	308.8	1				
540.7409	2	2457	740.7	1				
Formula Ca	alculat	or Ele	ement Lin	nits				
Element	Min		Max	1				
с	_	3	60	1				
н		0	120	1				
0		7	7	1				
N		0	30	1				
S		3	3	J				
Formula Ca	lculat	or Re	Bost	Mace	Tat Mass	Diff (nom)	Ton Species	Score
CEE UZO MI	0.07.5	2	TRUF	1078 4607	1078 4591	-0.99	C55 H71 N10 07 S3	98.12
C55 H/0 N1	0075	2	TRUE	1078 4567	1078 4591	2.24	C55 H70 N10 Na 07 S3	94.33
C35 H/U N1	00/5.		TRUE	10/0.450/	10/0,-1391	2.27	C35 11/0 1120 114 0/ 35	51.55

--- End Of Report ---

ч.......

.........

--- End Of Report ---

St.

2.1

.

_ **_ _** . .

Data Filenam Sample Type Instrument N Acq Method RM Calibrati Comment Sample Grou	le Name Ion St	atus 1	info.	WY-16-8-3.d Sample Instrument 1 TEST-POS-WL.m Success	S U U U	ample Name osition Jser Name Acquired Time DA Method	WY-16-8-3 P1-A4 1/8/2019 10:04:55 AM 00000.m	
User Spect	tra							
Fragment	tor Vol	tage	c	Collision Energy	Ionizat	tion Mode ESI		
1	20							
x10 4 +E	SI Sc	an (0	.168 min)	Frag=120.0V V	WY-16-8-3.d			
4-					1093.48 (M+H)	+		
3.5-					(
3-								
2.5-						1115 4657		
2-						(M+Na)+		
1.5-						(
1-								
0.5-								
Peak List m/z	Z	Abur	nd	C	Counts vs. Mas	s-to-Charge (m	/z)	
274.2761	1	1608	51.9					
318.3028	1	1362	36.2					
338.3439	1	1468	55.2					
365.1713	1	46934	43.8					
365.5042	1	3313	10					
365.837	-	1725	51.3					
366.1694	1	7215	4					
547.2486	2	14/7	98.1					
547.7496	2	1006	24.4					
650.3374	1 1 culate	1459 or Ele	ment Lin	nits				
Element	Min	1	Max					
с		3	60					
н		0	120					
N		0	10					
s		0	3					
		0	10					
0		_	IL					
0 Formula Cal	culate	or Re	suits				Tan Casalan	Ecoro
O Formula Cal Formula	culate	or Re	Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
O Formula Cal Formula C56 H72 N10	o7 S3	or Re	Best TRUE	Mass 1092.4752	Tgt Mass 1092.4748	Diff (ppm) -0.4	Ton Species C56 H73 N10 O7 S3	92.25

--- End Of Report ---

..........

-

1.

						a la Narra			
Data Filenar	ne			wy-8-4.d		Sample Name	P1-A4		
Sample Typ				Sample		User Name			
Instrument	Name			TEST-POS-WL m		Acquired Time	11/14/2018 12	:05:57 PM	
ACQ Method	tion S	tatus	1	Success	i shakara	DA Method	1.m		
Comment	0011 0	cucus			C INCIDENTIALIYUU	•			
Sample Gro	up	1	Info.						
llear Spor	tra								
Fragmer	tor Vol	tage		Collision Energy	Ioni	zation Mode ESI			
	120	0	124 min)	Eran=120.0V w	w-8-4.d				
1.75-	23130	488	2301	ing interior					
1.5-		400	1						
1 25-	1								
1-									
0.75-									
0.70			647						093.4848
0.5-			547.	2415	F 40				(M+H)+
0.5-		.1	547.	2415 647.4	540				(M+H)+
0.5-			547.	647.4	540		. i _ i		(M+H)+
0.5 - 0.25 - 0 - ur 4			547.	647.4 647.4 550 600 65	540 11. 0 700	750 800 850	900 950	1000 105	(M+H)+
0.5- 0.25- 0- 4	0 4	 150	547.		540 11. 0 700 Counts vs. N	750 800 850 lass-to-Charge (m) 900 950 l/z)	1000 105	(M+H)+
0.5- 0.25- 0 4 Peak List			547. 500 5		540 11. 0 700 Counts vs. N	750 800 850 lass-to-Charge (m) 900 950 //2)	1000 105	(M+H)+
0.5- 0.25- 0- 4 Peak List m/z 151 0264		150 Abur 8972	547. 500 5		540 11. 0 700 Counts vs. N	750 800 850 tass-to-Charge (m) 900 950 //z)	1000 105	(M+H)+
0.5- 0.25- 0- 4 Peak List m/z 151.0264 163.1267		50 Abur 8972 9092	547. 500 5 97.8 74.5		540 1 1. 0 700 Counts vs. N	750 800 850 tass-to-Charge (m) 900 950 //z)	1000 105	(M+H)+
0.5- 0.25- 0- 4 Peak List m/z 151.0264 163.1267 185.1085	Z	450 Abur 8972 9092 5258	547. 500 5 97.8 74.5 05.7		540 1 L 0 700 Counts vs. N	750 800 850 tass-to-Charge (m) 900 950 //z)	1000 105	(M+H)+
0.5 - 0.25 - 0 - 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147	Z	Abur 8972 9092 5258 8993	547. 500 5 97.8 74.5 05.7 17.9	2415 647.4	540 11. 0 700 Counts vs. N	750 800 850 lass-to-Charge (m) 900 950 v/z)	1000 105	(M+H)+
0.5- 0.25- 0- 4 Peak List <u>m/z</u> 151.0264 163.1267 185.1085 244.6147 338.3364	Z 2 1	Abur 8972 9092 5258 8993 5349	500 5 500 5 74.5 05.7 17.9 74.9		540 1 L 0 700 Counts vs. N	750 800 850 lass-to-Charge (m) 900 950 //z)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0- 4 Peak List <i>m/z</i> 151.0264 163.1267 185.1085 244.6147 338.3364 416.26	2 1 1	Abur 8972 9092 5258 8993 5349 6178	547. 500 5 97.8 74.5 05.7 17.9 74.9 68.8		540 11. 0 700 Counts vs. N	750 800 850 lass-to-Charge (m) 900 950 (z)	1000 105	(M+H)+ <u>1</u> 0 1100
0.5- 0.25- 0-4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 338.3364 416.26 421.2161	2 1 1 1	Abur 8972 9092 5258 8993 5349 6178 1293	547. 500 5 97.8 74.5 05.7 17.9 74.9 68.8 221		540 0 700 Counts vs. N	750 800 850 tass-to-Charge (m) 900 950 (/z)	1000 105	(M+H)+ <u>1</u> 0 1100
0.5- 0.25- 0- 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 238.3364 416.26 421.2161 479.2211	2 1 1 1	Abui 8972 9092 5258 8993 5349 6178 1293 3571	547. 500 5 97.8 74.5 05.7 17.9 74.9 68.8 221 85.9 485 6		540 0 700 Counts vs. N	750 800 850 tass-to-Charge (m	, t) 900 950 //2)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0- 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 338.3364 416.26 421.2161 479.2211 488.2301	2 1 1 1 1	Abur 8972 9092 5258 8993 5349 6178 1293 3571 1525 4022	547. 500 5 97.8 74.5 05.7 17.9 74.9 68.8 221 85.9 485.6 92.5		540 0 700 Counts vs. N	750 800 850 tass-to-Charge (m	, t t) 900 950 //2)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0- 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 338.3364 416.26 421.2161 479.2211 489.2301 489.2301 489.2332	2 1 1 1 1 1 1 1 1 1	Abur 8972 9092 5258 8993 5349 6178 1293 3571 1525 4022 or Ele	547. 500 5 97.5 05.7 17.9 74.9 68.8 221 85.9 485.6 92.5 sment Lin	2415 647.4 550 600 65 C	540 0 700 Counts vs. N	750 800 850 fass-to-Charge (m	, t t) 900 950 //2)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0- 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 338.3364 416.26 421.2161 479.2211 488.2301 489.2323 Formula C	2 1 1 1 1 1 1 1 1 1 1 1 1	Abur 8972 9092 5258 8993 5349 6178 1293 3571 1525 4022 or Ele	547. 500 5 97.8 74.5 05.7 17.9 74.9 68.8 221 85.9 485.6 92.5 sment Lli Max	2415 647.4 550 600 65 C	540 0 700 Counts vs. N	750 800 850 lass-to-Charge (m	, t) 900 950 //2)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 185.1085 244.6147 416.26 421.2161 479.2211 488.2301 488.2301 488.2321 Element C	2 1 1 1 1 1 1 1 1 1 1 1	Abur 8972 9092 5258 8993 5349 6178 1293 3571 1525 4022 or Ele	547. 500 5 97.8 74.5 05.7 17.9 74.9 68.8 221 85.9 485.6 92.5 Exement Lin Max 60	2415 647.4 550 600 65 C	540 0 700 Counts vs. N	750 800 850 lass-to-Charge (m	, t) 900 950 //z)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 338.3364 416.26 421.2161 479.2211 488.2301 488.2301 Formula Ce Element C H	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abur 8972 9092 5258 8993 5349 6178 1293 3571 1525 4022 or Ele 0 0	547. 500 5 97.8 97.8 74.5 05.7 17.9 74.9 68.8 221 85.9 485.6 92.5 iment Li Max 60 200	2415 647.4 50 600 65 C	540 11, 0 700 Counts vs. N	750 800 850 tass-to-Charge (m	, t t) 900 950 //z)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0- 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 338.3364 416.26 421.2161 479.2211 488.2301 489.2323 Formula Ca Element C C	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abur 8972 9092 5258 8993 5349 6178 1293 3571 1525 4022 or Ele 0 0 0	500 5 500 5 74.5 05.7 17.9 68.8 221 85.9 25 ment Li Max 60 200 200 200	2415 647.4 50 600 65 C	540 11, 0 700 Counts vs. N	750 800 850 tass-to-Charge (m	, t t) 900 950 //2)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0- 0- 4 Peak List m/z 4 163.1267 185.1085 244.6147 338.3364 416.26 421.2161 479.2211 489.2323 Formula Ca Element C H 0 N c	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abur 8972 9092 5258 8993 5349 6178 1293 3571 1525 4022 or Ele 0 0 0 0	547. 500 5 500 5 74.5 05.7 17.9 68.8 221 85.9 92.5 ment Life Max 60 200 200 20 10 3	2415 647.4 550 600 65 C	540 0 700 Counts vs. N	750 800 850 tass-to-Charge (m	, t t) 900 950 //2)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0- 4 Peak List m/z 44.6147 338.3364 416.26 421.2161 479.2211 489.2323 416.26 421.2161 479.2211 489.2323 Element C H O O N S Formula Ca	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abui 8972 9092 5258 8993 5349 6178 1293 3571 1525 4022 or Ele 0 0 0 0 0 0 0 0 0	547. 500 5 74.5 05.7 17.9 74.9 668.8 221 85.9 485.6 92.5 ment Life Max 60 200 200 200 10 3 sults	2415 647.4 550 600 65 C	540 0 700 Counts vs. N	750 800 850 fass-to-Charge (m	900 950 //2)	1000 105	(M+H)+ 0 1100
0.5- 0.25- 0 4 Peak List m/z 151.0264 163.1267 185.1085 244.6147 338.3364 416.26 421.2161 479.2211 488.2301 489.2323 Formula Ca Formula Ca Formula Ca	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abui 8972 9092 5258 8993 5349 6178 4022 or Ele 0 0 0 0 0 0 0 0 0 0 0 0	547. 500 5 97.8 74.5 05.7 74.9 68.8 221 74.9 68.8 221 74.9 68.8 221 85.9 485.6 92.5 imment Life 85.9 485.6 92.5 imment Life 85.9 485.6 200 200 200 200 10 3 3 sults Best	2415 647.4 550 600 65 C	540 1 L 0 700 Counts vs. N	750 800 850 lass-to-Charge (m	10) 900 950 (2) 12)	1000 105	(M+H)+

....

.

de

Data Filename	WY-16-20-4.d	Sample Name	
Sample Type	Sample	Position	P1-A8
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-POS-WL.m	Acquired Time	12/3/2018 9:44:24 AM
IRM Calibration Status	Success	DA Method	1.m
Comment	Not concerning a second s		

Sample Group Info.

User Spectra

Fragn	nentor V 120	olta	ge	Colli	sion Energy 0	Ionization ESI	Mode		
×10 4	+ESI S	can	(0.156	i min) Fra	ag=120.0V WY	-16-20-4.d			
-								1163.44	85
3.5								(M+Na)	,-
3-								1141 4675	
2.5								(M+H)+	
2									
1.5								r 1	
1							112	9 4616	
0.5							112	5.4010	
0	10.17						It	II. UI. III	
0 -		10	20	1040	1060	1080 110	0 1120	1140 1160	1180
look Liet					Co	unts vs. Mass-	to-Charge (m	(2)	
n/z	Z	A	bund	Formula	3	Ion			
21.0509		3	7332.2						
81.1626	1	1	36839						
81.4967	1	9	6133.4						
81.8298		5	5613.7						
71.2387	2	5	3489.7						
76.3386	1	5	7398.8						
98.3209	1	1	08053						
99.3232	1	3	6767.5						
22.0098	1	5	1557.9						
163.4485	5 1	4	1067.9	C56 H72	N10 Na O10 S3	(M+Na)+			
ormula	Calcula	tor	Eleme						
lement			0 1	00					
			0 2	200					
		-	0	20					
v		-	0	20					
			0	10					
ormula	Calcula	tor	Result	5		T-L Harr	Diff (mmm)	Ton Species	Score
ormula			_	Best	Mass	1140 4505	.03	C56 H73 N10 010 S3	98.8
56 H72 M	10 010	53		TRUE	1140.4598	1140.4595	-0.36	C55 H67 N17 05 \$3	98.79
C55 H66 M	17 05	53			1140.459	1140.4595	-0.30	C57 H79 N3 O15 S3	98.48
57 H78 M	N3 015	53			1140.4598	1140.4609	0.24	C57 H69 N14 O6 S3	98.02
C57 H68 M	14 06	53		-	1140.459	1140.4608	0.13	C57 H78 N3 Na 015 53	99.13
C57 H78 M	N3 015	S 3		1	1140.459	1140.4393	5.15		33.13

---- End Of Report ----

d.

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment Sample Group Info.		WY-16-20-4,d Sample Instrument 1 TEST-POS-WL.m Success	Sample Name Position User Name Acquired Time DA Method	P1-A8 12/12/2018 10:31:15 AM 1.m
Sample Gro	up Info.			
User Spec	tra			
Fragmer	ntor Voltage 120	Collision Energy 0	Ionization Mode ESI	
×10 5 +	ESI Scan (0.126 r	nin) Frag=120.0V WY-1	6-20-4.d	
12-		, ,		
		1207 (M+	.4753 Na)+	
1-		(1011)		
0.8-				
0.6-				
0.4-				
0.2				
0.2-				
با-0	1075 1100 1	105 1150 1175 100	1005 1050 1075 100	0 1005 1050 1075 1400
	10/5 1100 1	125 1150 1175 120 Counts v	s. Mass-to-Charge (m/z)	0 1323 1350 1373 1400
Peak List				
m/z	z Abund	Formula	Ion	
130.1607	1 512342.4			
	56035.3			
136.0506	56825.2			
136.0506 185.1167	56825.2 1 469091.8			
136.0506 185.1167 338.3417	56825.2 1 469091.8 83111.6			
136.0506 185.1167 338.3417 353.2664	56825.2 1 469091.8 83111.6 73337.6			
136.0506 185.1167 338.3417 353.2664 381.2971	56825.2 1 469091.8 83111.6 73337.6 73380.1 110740.4			
136.0506 185.1167 338.3417 353.2664 381.2971 395.8374 396.1715	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 93508.4			
136.0506 185.1167 338.3417 353.2664 381.2971 395.8374 396.1715	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4			
136.0506 185.1167 338.3417 353.2664 381.2971 395.8374 396.1715 1207.4753	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043	C58 H76 N10 Na O1	1 S3 (M+Na)+	
136.0506 135.1167 338.3417 353.2664 381.2971 395.8374 396.1715 1207.4753	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043	C58 H76 N10 Na O1	1 S3 (M+Na)+	
136.0506 136.0506 185.1167 338.3417 353.2664 381.2971 395.8374 396.1715 1207.4753 1208.4786	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043 1 57264.1	C58 H76 N10 Na O1	1 53 (M+Na)+ 1 53 (M+Na)+	
136.0506 185.1167 338.3417 353.2664 381.2971 395.8374 396.1715 1207.4753 1208.4786 Formula Cal	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043 1 57264.1 Iculator Element Min IMax	C58 H76 N10 Na O1 C58 H76 N10 Na O1 C58 H76 N10 Na O1 Limits	1 S3 (M+Na)+ 1 S3 (M+Na)+	
136.0506 135.1167 338.3417 353.2664 381.2971 395.8374 396.1715 1207.4753 1208.4786 Formula Cal Element C	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043 1 57264.1 fculator Element Min Max 3 60	C58 H76 N10 Na O1 C58 H76 N10 Na O1 C58 H76 N10 Na O1 Limits	1 S3 (M+Na)+ 1 S3 (M+Na)+	
136.0506 185.1167 338.3417 333.2664 381.2971 395.8374 396.1715 1207.4753 1208.4786 Formula Cal Element C H	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043 1 57264.1 culator Element Min Max 3 60 0 120	C58 H76 N10 Na O1 C58 H76 N10 Na O1 C58 H76 N10 Na O1 Limits	1 S3 (M+Na)+ 1 S3 (M+Na)+	
136.0506 185.1167 338.3417 353.2664 381.2971 395.8374 396.1715 1207.4753 1208.4786 Formula Cal Element C H O	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043 1 57264.1 Culator Element Min Max 3 60 0 120 0 20	C58 H76 N10 Na 01 C58 H76 N10 Na 01 C58 H76 N10 Na 01 Limits	1 S3 (M+Na)+ 1 S3 (M+Na)+	
136.0506 185.1167 338.3417 333.2664 381.2971 395.8374 396.1715 1207.4753 1208.4786 Formula Cal Element C H O N	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043 1 57264.1 Culator Element Min Max 3 0 0 0 0 0 0	C58 H76 N10 Na O1	1 S3 (M+Na)+ 1 S3 (M+Na)+	
136.0506 185.1167 338.3417 353.2664 381.2971 395.8374 396.1715 1207.4753 1208.4786 Formula Cal Element C H O N S	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043 1 57264.1 Culator Element Max 3 0 0 0 0 3 3	C58 H76 N10 Na O1 C58 H76 N10 Na O1 C58 H76 N10 Na O1 Umits	1 S3 (M+Na)+ 1 S3 (M+Na)+	
136.0506 185.1167 338.3417 333.2664 381.2971 395.8374 396.1715 1207.4753 1208.4786 Formula Cal Element C H O N S Formula Cal	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 57264.1 Culator Element Min Max 3 0 0 0 0 0 0 0 0 0 3 Culator Results	C58 H76 N10 Na O1 C58 H76 N10 Na O1 C58 H76 N10 Na O1 Limits	1 S3 (M+Na)+ 1 S3 (M+Na)+	
136.0506 185.1167 338.3417 333.2664 381.2971 395.8374 395.8374 396.1715 1207.4753 1208.4786 Formula Cal Formula Cal Formula Cal Formula Cal	56825.2 1 469091.8 83111.6 73337.6 73380.1 110749.4 82508.4 1 87043 1 57264.1 culator Element Min Max 3 60 0 122 0 20 0 10 3 3 culator Results E	C58 H76 N10 Na 01 C58 H76 N10 Na 01 C58 H76 N10 Na 01 Limits	1 S3 (M+Na)+ 1 S3 (M+Na)+ 1 S3 (M+Na)+	Ion Species Score

--- End Of Report ---

de

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment			WY-PH.d Sample Instrument 1 TEST-POS-WL.1 Success	n	Sample Name Position User Name Acquired Time DA Method	P1-D5 3/28/2019 10:56:58 AM Default.m		
Sample Grou	ιp	I	nfo.					
User Spec	tra							
Fragmen	tor Vol	Itage	c	Collision Energy 0	Ioniz	ESI		_
×10 5 F	ESI	Scar	0.125	min) Frag	=120.0V W	Y-PH.d		
4-			•		120 (M	6.4869 +Na)+		
3-					1184.5001 (M+H)+			
2-								
1-								
0-L	1	112	0 114	10 1160 Counts	1180 120 vs. Mass-t	00 1220 o-Charge (m	1240 1260 1280 (z)	
Peak List	Z	Abun	d	Formula		Ion		
592.7593	2	13663	359.5					
593.2605	2	07740						
	_	9//40	32.8					
593.7596	2	53613	32.8 37.5					
593.7596 594.2572	2	53613 22068	32.8 37.5 35.3					
593.7596 594.2572 603.7471	2 2 2	53613 22068 25130	32.8 37.5 35.3)7					
593.7596 594.2572 603.7471 758.3461	2 2 2 1	53613 22068 25130 42633	32.8 37.5 35.3 07 30.3					
593.7596 594.2572 603.7471 758.3461 759.3453	2 2 1 1	53613 22068 25130 42633 17597	32.8 37.5 35.3 07 30.3 76.6			(44.44)).		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001	2 2 1 1 1	53613 22068 25130 42633 17597 21375	32.8 37.5 35.3 07 30.3 76.6 56.5	C59 H78 N9 O	11 53	(M+H)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869	2 2 1 1 1 1 1	53613 22068 25130 42633 17597 21379 37893	32.8 37.5 35.3 30.3 76.6 56.5 30.3	C59 H78 N9 O C59 H77 N9 N	11 53 a 011 53	(M+H)+ (M+Na)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861	2 2 1 1 1 1 1	53611 22068 25130 42631 17597 21375 37891 25580	32.8 37.5 35.3 57 30.3 76.6 56.5 30.3 94.2 ment Lin	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N C59 H77 N9 N	11 53 a 011 53 a 011 53	(M+H)+ (M+Na)+ (M+Na)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861 Formula Cal Flement	2 2 1 1 1 1 1 1 culate	53613 22068 25130 42633 17593 21375 37893 25589 or Ele	32.8 37.5 35.3 77 30.3 76.6 56.5 30.3 94.2 ment Lin Max	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N C59 H77 N9 N	11 53 a 011 53 a 011 53	(M+H)+ (M+Na)+ (M+Na)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861 Formula Ca Element C	2 2 1 1 1 1 1 1 Culate	53613 22068 25130 42633 17592 21375 37893 25589 or Ele	22.8 37.5 35.3 37.7 30.3 76.6 56.5 30.3 30.3 94.2 ment Lin Max 80	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N C59 H77 N9 N nits	11 53 a 011 53 a 011 53	(M+H)+ (M+Na)+ (M+Na)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861 Formula Ca Element C H	2 2 1 1 1 1 1 Culate	53613 22068 25130 42633 17593 21375 37893 25586 or Ele 0 0	22.8 37.5 35.3 37.7 30.3 76.6 56.5 30.3 30.3 94.2 ment Lin Max 80 120	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N C59 H77 N9 N NIts	11 53 a 011 53 a 011 53	(M+H)+ (M+Na)+ (M+Na)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861 Formula Ca Element C H O	2 2 1 1 1 1 1 culate	53613 22068 25130 42633 17593 21379 21379 37893 25589 or Ele 0 0 0 11	22.8 37.5 35.3 30.3 76.6 56.5 30.3 94.2 ment Lin Max 80 120 11	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N C59 H77 N9 N	11 53 a 011 53 a 011 53	(M+H)+ (M+Na)+ (M+Na)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861 Formula Ca Element C H O N	2 2 1 1 1 1 1 1 Culate	53613 22068 25130 42633 17599 21379 2100 2100 2100 21000 21000000000000000	22.8 37.5 35.3 77 30.3 76.6 56.5 30.3 94.2 ment Lin Max 80 120 11 9	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N C59 H77 N9 N	11 53 a 011 53 a 011 53	(M+H)+ (M+Na)+ (M+Na)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861 Formula Ca Element C H O N S	2 2 1 1 1 1 1 1 Culate	97746 53613 22066 25130 42633 17597 213777 213777 213777 2137777 2137777777777	22.8 37.5 35.3 37.7 30.3 76.6 56.5 30.3 94.2 ment Lin Max 80 120 11 9 3	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N its	11 53 a 011 53 a 011 53	(M+H)+ (M+Na)+ (M+Na)+		
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861 Formula Ca Element C H O N S Formula Ca	2 2 1 1 1 1 1 Culato	97746 53611 22068 2513(4263) 17597 21379 21070 21070 2100 2100 21000 21	32.8 37.5 37.5 38.3 30.3 76.6 56.5 30.3 30.3 30.3 44.2 ment Lin Max 80 120 11 9 3 3 50.5 120 11 9 9 3 80.5 120 120 120 10 10 9 9 3 80.5 120 120 120 120 120 120 120 120 120 120	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N C59 H77 N9 N Hass	11 53 a 011 53 a 011 53	(M+H)+ (M+Na)+ (M+Na)+	Ion Species	Score
593.7596 594.2572 603.7471 758.3461 759.3453 1184.5001 1206.4869 1207.4861 Formula Ca Element C H O N S Formula Ca Formula Ca	2 2 1 1 1 1 1 culate	97746 53611 22068 2513(4263) 1759) 21379 21379 21379 21379 21379 21379 21379 21379 21379 21379 21379 21379 21379 21379 25589 0 0 0 11 9 3 3 0 0 7 8	32.8 37.5 35.3 35.3 30.3 76.6 56.5 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30	C59 H78 N9 O C59 H77 N9 N C59 H77 N9 N its Mass	11 53 a 011 53 a 011 53 Tgt Mass 1183.4905	(M+H)+ (M+Na)+ (M+Na)+ (M+Na)+ Diff (ppm) -1.9	Ion Species C59 H78 N9 O11 53	Score 95.46

--- End Of Report ---

San 1 1 1 1 1 1 1 1

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 10:48 AM on: 10/9/2019

Supporting references

1. Neuhaus JM, Sticher L, Meins F Jr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. *Proc Natl Acad Sci U S A* 1991;**88**:10362-6.

2. van Sebille E, Doblin M. Data from "Drift in ocean currents impacts intergenerational microbial exposure to temperature." Figshare. Available from: <u>https://dx.doi.org/10.6084/m9.figshare.3178534.v2</u>. Deposited 15 April 2016.

3. Hill AVS. HLA associations with malaria in Africa: Some implications for MHC evolution. In: Klein J, Klein D, Editors. *Molecular evolution of the major histocompatibility complex*. 1991; Springer. p. 403–20.