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Supplementary Information22

1. The X-TEC Pipeline23

In this section, we lay down the details of the various steps indicated in the X-TEC flowchart in Fig. 2(a). We provide the24

example of X-TEC analysis of CDW peaks in Sr3Rh4Sn13 (Fig. 2 of main text) for a demonstration of the various steps in the25

pipeline. Users can install the X-TEC package through the PyPI distribution channel or from the GitHub repository:26

github.com/KimGroup/XTEC. For a hands-on experience with X-TEC, readers are encouraged to explore and modify this27

analysis with the tutorial notebooks that we share in the GitHub. For a streamlined presentation, we again show the flowchart28

below where the steps are marked with the corresponding section labels that describe them.29

A. X-ray data

B. Threshold 

Data/Mean -1 Z-scoring

D. Set number of 
clusters k

E.1 X-TEC-d

 Physics 
   

Temp. 
Variance ?

High Low

E.  O.P.  v.s. 
Fluctuations ?

C.  Rescale
 

Fluctuations

O.P.

 E.2 X-TEC-s

Data 
size

Peak 
averaging

Label 
smoothing

Large Small

G. All 
distinct trajectories 

identified?

No

Yes

 F. Visualize 

Increase k

P
re

-p
ro

ce
ss

in
g

X-TEC clustering

 In
te

rp
re

ta
ti

o
n

Fig. S1. The flowchart for X-TEC. The lettered labels indicate the corresponding subsections in S1 that describe them.

A. X-ray data. A schematic of the x-ray measurement scattering geometry is shown in Fig. 1 of the main article. Three-30

dimensional volumes of diffuse X-ray scattering were collected at Advanced Photon Source (APS) and CHESS. The APS31

data were measured on sector 6-ID-D using an incident energy of 87.1 keV and a detector distance of 638 mm, except for32

the high-resolution measurements on Cd2Re2O7, which used an incident energy of 60.0 keV and a distance of 1406 mm. The33

raw images were collected on a Dectris Pilatus 2M with a 1-mm-thick CdTe sensor layer. The data were collected over a34

temperature range of 30 K to 300 K, with samples cooled by flowing He gas below 105 K and N2 gas above 105 K. The CHESS35

data on TiSe2 were measured on beamline A2 using an incident beam energy of 59 keV and a Dectris Pilatus 6M detector with36

a 1-mm-thick Si sensor layer. The data were collected over a temperature range of 90 K to 300 K, with samples cooled by37

flowing N2 gas. During the measurements, the samples were continuously rotated about an axis perpendicular to the beam38

at 1°s−1 over 360°, with images read out every 0.1 s. Three sets of rotation images were collected for each sample at each39

temperature to fill in gaps between the detector chips. The resulting images were stacked into a three-dimensional array,40

oriented using an automated peak search algorithm and transformed in reciprocal space coordinates using the software package41

CCTW (Crystal Coordinate Transformation Workflow), allowing S(Q) to be determined over a range of ∼ ±15 Å−1 in all42

directions (∼ ±6 Å−1 for the high-resolution measurement on Cd2Re2O7). Further details are given in Ref. 1. The XRD data43

for Sr3Rh4Sn13 can be downloaded from dx.doi.org/10.18126/iidy-30e744

B. Threshold background. A signature difficulty in the analysis of X-ray diffraction data is the existence of physics at several45

different intensity scales. This is only further exacerbated when probing low-intensity features where the signal-to-noise ratio46

can be small. If one is to employ thresholding as part of some preprocessing, it is imperative to be careful in order to avoid47

thresholding-out any important physics. Nevertheless, thresholding is extremely useful for mitigating the influence of noise48

and for reducing dataset size since most single crystal x-ray diffraction patterns are sparse. Consequently, we propose a new49

thresholding methodology for isolating the physically relevant regions of k-space.50

A naive way to cluster the type of datasets offered by single crystal x-ray diffraction is to apply an i.i.d. assumption and51

directly try to cluster the associated trajectories, I~qi(T ), so that each q-point is classified according to its functional temperature52

dependence. However, such an attempt is immediately thwarted by the existence of a continuum of trajectories spanning over a53

large intensity range so that getting any meaningful clustering is difficult. The standard way of dealing with this is to use54

feature scaling a.k.a. standardization in which one removes the mean for each trajectory and then normalizes it by dividing by55

its standard deviation. However, the dominant features of x-ray diffraction data are usually relatively well-localized peaks56
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and most trajectories may be attributed to background fluctuations and thermal diffuse scattering. These trajectories have57

small, finite means and variances so that conventional standardization amplifies the underlying experimental error and noise,58

thereby spoiling any immediate attempt at clustering. On the other hand, failing to standardize makes it difficult to cluster59

over different energy scales since low-intensity variations can be washed out by larger ones. Thus some cutoff is needed in order60

to avoid clustering over noise while maintaining the ability to cluster over different energy scales.61

In order to properly threshold our data, we exploit the statistical properties of our trajectories’ average intensities, log I~qi(T ).62

Here, the average is performed over temperature so that a single average intensity is obtained for each ~qi. Several properties63

of our data make it advantageous to examine the statistics of log I~qi(T ) rather than I~qi(T ), most notably its positive semi-64

definiteness and large range. Since the dominant features our data are naturally sparse and the background trajectories are65

characterized by possessing small means and variances, we should expect the distribution of I~qi(T ) to be sharply peaked near66

some relatively small background value. Looking at the logarithm, log I~qi(T ), broadens this peak allowing us to resolve the finer67

structural details of this low-intensity background. To first order, we find the distribution of log I~qi(T ) to be well-characterized68

by a bulk background contribution that is approximately normally distributed at low intensities with sparsely distributed high69

intensity contributions. This can be seen in when looking at the distribution of log I~qi(T ) for the Sr3Rh4Sn13 data in Fig. S2.70

In order to separate these high intensity features from rest of the data, we take advantage of their sparsity relative to the71

background. Specifically, we minimize the Kullback-Leibler divergence DKL, where for probability distributions p(x), q(x):72

DKL(p(x)||q(x)) =
∑
x∈X

p(x) ln p(x)
q(x) [1]73

between the distribution of log
(
I~qi(T )

)
with a high intensity cutoff and a gaussian. Information theoretically, the Kullback-74

Leibler divergence quantifies the information loss associated with approximating the distribution p(x) by q(x). In this context,75

the minimizing DKL optimally chooses a high-intensity cutoff so that the distribution of the remaining log I~qi(T ) looks closest76

to a normal distribution. This is illustrated by applying our procedure to the Sr3Rh4Sn13 data in Fig. S2. Optimization is77

performed via gradient descent. Note that optimizing with this sliding cutoff is necessary and a Gaussian cannot be directly78

fitted because the distribution log I~qi(T ) is heavy tailed. Directly fitting with a Gaussian yields a higher cutoff susceptible to79

missing important low-intensity features.80

The thresholding procedure is the only step in the X-TEC pipeline where we analyse the temperature averaged intensity.81

The rest of the analysis is solely focused on the temperature dependence of these thresholded intensities.82

0 2 4 6 8 10
log( ( )) I T q

0.0

0.5

1.0

1.5

2.0

2.5

D
en

si
ty

 a
t 

lo
g(

(
) )

 
I

T 
q

Raw Data
Background Fit
Background Truncation

Fig. S2. Histogram (blue) of log I~q(T ) for the Sr3Rh4Sn13 data, with the background fit (dashed line) and the truncation point (vertical dotted line) determined from a
Gaussian fit with a sliding high-intensity cutoff. The algorithm selects the non-Gaussian high intensity features above the cutoff, and these are the intensities that contain the
physically relevant signals.

C. Re-scale data. A re-scaling step is necessary to bolster the ability to cluster distinct functional forms of the intensity-83

temperature trajectories rather than the magnitude of intensities. While there are different ways to re-scale the intensities, we84

narrow down the choice to two schemes. The user decides the optimal re-scaling procedure depending on the nature of the data85

and the physics of interest. To focus on trajectories that show high variance in temperature compared to the background (such86

as the CDW order parameters in Sr3Rh4Sn13), one re-scales the intensities {I~qi(Tj); j = 1, . . . , dT } with their mean at each ~qi87

given by,88

Ĩ~qi(Tj) = I~qi(Tj)
µ~qi

− 1, [2]89
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where µ~qi = d−1
T

∑
j
I~qi(Tj) is the mean value of the trajectory at ~qI . On the other hand, if the user decides to focus on the90

low variance trajectories (such as the Goldstone mode fluctuations in Cd2Re2O7), a z-scoring is the more efficient choice for91

rescaling, given by,92

Ĩ~qi(Tj) = I~qi(Tj)− µ~qi
σ~qi

, [3]93

where σ~qi =
√
d−1
T

∑
j

(I~qi(Tj)− µ~qi)
2 is the standard deviation.94

D. Select number of clusters K. Following the preprocessing, the user starts with a guess for the number of clusters K. This95

guess may be physically motivated, such as a prior knowledge on the number of order parameters in the system. The optimal96

number of clusters for the data is later deduced in step G.97

E. X-TEC-detailed (X-TEC-d) and X-TEC-smoothed (X-TEC-s). As discussed in the main text, the user decides between the98

two modalities of X-TEC depending on whether to focus on order parameter like features from the peak intensities or their99

fluctuations in the surrounding diffuse scattering.100

E.1. X-TEC- detailed. X-TEC -d is the straightforward clustering scheme that clusters the intensity trajectories at different ~qi101

independently. This mode is best when provided with high resolution data where resolution limited fluctuations across102

neighbouring pixels are not significant. As it can probe the trajectory of each pixel independently, it provides the most detailed103

clustering assignments from the data. This makes it useful for probing distinct behaviours of the diffuse scattering trajectories104

surrounding the peak centers.105

E.2. X-TEC- smoothed. X-TEC -s implements label smoothing as a first order approach for incorporating correlations between106

nearby momenta and between different Brillouin zones, by allowing labels to diffuse between neighboring points and between unit107

cells. It ultimately results in cleaner, smoother classifications that better align with physicists intuition for order parameters.108

Typical label smoothing is a semi-supervised method in which there exists a ground truth for certain points. These labelings109

are then “clamped" and diffused through the rest of the system. Here, we lack a bona fide ground truth and so instead110

incorporate label smoothing dynamically in between the E and M steps of our EM algorithm. Physically, this adds a diffusive111

“force" to our update scheme that encourages a similar labeling of nearby points and points differing by a reciprocal lattice112

vector. Convergence in this modified EM method occurs when an equilibrium is reached between this diffusion and the GMM113

clustering.114

Fig. S3. Kernel, K(k, 0), showing the similarity between the origin and momenta in a 2D.

Our label smoothing requires us to construct a weighted graph connecting similar momenta in order for diffusion to occur.115

This may be done by computing the following kernel:116
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K(k, k′) = exp

[
−
∑
i

sin2

(
Qi
2 · (k − k

′)

)
/`2

]
[4]117

where the Qi are the reciprocal basis vectors and ` is the relevant length scale for the local correlations. The structure of this118

kernel is shown in Fig. S3 where K(k, 0) is plotted as an intensity for a 2D slice.119

This kernel is really just a weighted adjacency matrix. By incorporating a cutoff in the weights, we may exploit the sparsity120

of our system for fast matrix-vector multiplication. When handling large datasets, this cutoff is essential since the full kernel is121

too large to be stored in any reasonable amount of RAM. Define A to be the matrix associated with this kernel after having122

normalized the rows i.e. it is row stochastic so that
∑
j

Aij = 1. Now define P to be the matrix consisting of cluster probabilities123

calculated by the E-step. Specifically, let the first index correspond to the different momenta and the second to the cluster124

probabilities so that P is also row stochastic. Then the product AP is also row stochastic since
∑
jk

AijPjk =
∑
j

Aij(1) = 1. So125

by multiplying P by A, we generate a new set of diffused cluster probabilities. The strength of this diffusion can be controlled126

by the number of matrix multiplications. However, note that we cannot simply apply A until AnP converges, because the127

largest eigenvector of A is just the constant vector. In practice, we find that even a single application of A between E- and128

M-steps is sufficient for obtaining smooth labelings.129

When the size of the data is large, one can resort to a cheaper version of label smoothing which is peak averaging. With130

peak averaging, the intensity of connected pixels that pass the thresholding are replaced by their pixel averaged intensity.131

This is effective in revealing the order parameters when the intensity of the peaks are much larger than the intensity of the132

surrounding diffuse scattering. For the analysis of Cd2Re2O7, the diffuse scattering intensities are orders of magnitude less133

than the peak centres [see Fig. 3(c)] and this justifies the peak averaging modality of X-TEC -s for that analysis.134

F. Visualization of clustering results. After running the X-TEC -s or X-TEC -d algorithm, the next step is to visualize the135

results, through the cluster mean and variance, and the cluster assignments of the pixels in ~q space. Following this step, the136

user can interpret and eliminate the uninteresting clusters such as those features that correspond to detector artifacts, and137

identify those clusters that are physically interesting.138

(a) (b)

XTEC-d

Fig. S4. X-TEC-d results of Sr3Rh4Sn13 data with K = 3 clusters. (a) The cluster trajectories with clustering assignments color-coded as blue, brown and grey. Ĩ(T ) are
the rescaled intensities by dividing each intensity trajectory with its mean over temperature and subtracting one. The lines represent cluster means and the shaded region
shows one standard deviation. (b) The corresponding cluster assignments in the (h, k, 0) plane, with pixels color coded according to their cluster assignments.

In Fig S4, we show the X-TEC -d results of the Sr3Rh4Sn13 data using K = 3 clusters. The cluster assignments are139

labeled through different colors. The characteristic temperature trajectory of each cluster is given by the cluster mean [lines in140

Fig. S4(a)] and the uncertainty in the clustered trajectories are given by the cluster variance [shaded region in in Fig. S4(a)141

show one standard deviation]. Clusters whose means are well separated from others beyond their standard deviation are robust142

trajectories, as is the order parameter like (blue) cluster in Fig. S4.143

The cluster assignments in ~qi space are shown in Fig. S4(b) where the pixels are assigned the colors according to their144

cluster assignments. We find that without label smoothing, Fig S4(b) shows neighboring pixels within the peak are often145

assigned to different clusters (blue and brown clusters). For the X-TEC -s results in the main text [Fig. 2(c,d)], label smoothing146

is applied after excluding the grey clusters identified from X-TEC -d This step leads to sharper results as we have ensured147

that the label smoothing does not spread far over to the diffuse scattering. Comparing Fig. 2 and Fig S4, we see that label148
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smoothing automatically harmonizes the assignments in the vicinity of blue and brown pixels at the cost of weakening the149

cluster separation.150

G. Determining optimal number of clusters. In order to determine the optimal number of clusters that efficiently reveal the151

distinct trajectories, one has to vary the number of clusters K to a point where further increase in K has no effect in uncovering152

qualitatively different trajectories. For the X-TEC -d analysis of Sr3Rh4Sn13 data, as apparent in Fig. S5, K = 3 is the optimal153

number for resolving the order parameter trajectory robustly. With K = 2, the overlapping trajectories indicate that the154

clusters are not fully resolved. On the other hand K = 4 show more clusters resolved within the noisy trajectories, with nearly155

identical trajectories and overlapping variances indicative of over fitting.156

(a) (b)

XTEC-d

(c)

Fig. S5. X-TEC-d results on Sr3Rh4Sn13 data, showing the mean trajectories (lines) and one standard deviation (shaded region) with (a): K = 2, (b): K = 3, and
(c): K = 4. clusters.

H. Derivation of EM algorithm for GMM and general proof of convergence.. We follow derivations in Refs. 2 and 3. First recall157

Jenson’s inequality: for convex function f and random variable X, E[f(X)] ≥ f(E[X]) where for strictly convex functions,158

equality holds iff X = E[X] almost surely. Let `(θ), denote the model log-likelihood and X be our dataset with xi ∈ X. Then159

`(θ) = log p(X; θ) =
∑
i

log p(xi; θ) =
∑
i

log
∑
zi

p(xi, zi; θ)

=
∑
i

log
∑
zi

qi(zi)
p(xi, zi; θ)
qi(zi)

≥
∑
i,zi

qi(zi) log p(xi, zi; θ)
qi(zi)

≡ ˜̀(q, θ)
[5]

where qi(zi) is some distribution over a random variable zi (in our case this will be the cluster assignment) s.t.
∑
zi

qi(zi) = 1160

and we have used Jenson’s inequality. In order for this bound to be tight, X = E[X] =⇒ qi(zi) = p(zi|xi; θ). Tightness of this161

bound implies that improving ˜̀(q, θ) necessarily improves `(θ) but since theta is unknown, we will have to make a guess, θt,162

and improve it iteratively. This iterative prescription is known as expectation maximization (EM). It consists of an E-step,163

where qti ← p(zi|xi; θt) and an M-step θt+1 ← argmax
θ

˜̀(qt, θ).164

We now derive the EM algorithm for the GMM. The E-step follows directly from the model likelihood and Bayes’ theorem:

wki ≡ p(zi = k|xi;πk, µk,Σk) = πkN (xi|µk,Σk)∑
k

πkN (xi|µk,Σk)

N (xi|µk,Σk) ≡ 1
(2π)n/2

1√
det Σk

e−
1
2 (xi−µk)†Σ−1

k
(xi−µk)

[6]

For the M-step, we must find {π, µ,Σ} that optimizes our lower log-likelihood bound:165

˜̀({wki , πk, µk,Σk}) =
∑
i,k

wki log
[
πkN (xi|µk,Σk)

wki

]
+ λ(1−

∑
k

πk) [7]166

where λ is a Lagrange multiplier constraining the mixing weights to sum to unity.167

Solving for the mixing weights:168
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0 = ∂πj
˜̀=
∑
i,k

wki
1
πk
δjk − λ

∑
k

δjk =⇒ λ = 1
πj

∑
i

wji

λ = λ
∑
k

πk =
∑
i,k

wki =
∑
i

1 ≡ m

=⇒ πj = 1
m

∑
i

wji

[8]

Solving for the mean:169

0 = ∂µl
˜̀= 2

∑
i

wliΣ−1
l (xi − µl)

=⇒ µl = 1∑
i

wli

∑
i

wlixi
[9]

Solving for the covariance is a little trickier. First note the following matrix identities for symmetric invertible matrix A:170

∂
(

log(detA)
)

= Tr(A−1∂A)

∂A−1 = −A−1(∂A)A−1 [10]

Now, when solving for the covariance we promote the covariance cluster index to an upper index so that the lower indices171

refer to the matrix elements:172

0 = ∂Σlmn
˜̀=
∑
i,k

wli∂Σlmn

[
log det Σk + (xi − µk)†(Σk)−1(xi − µk)

]
=
∑
i,k

wli

[
δlk Tr

{
(Σk−1)rsδsmδtn

}
− δlk

∑
ps

(xi − µk)†p
{∑

qr

(Σk−1)pqδmqδnr(Σk−1)rs
}

(xi − µk)s
]

=
∑
i

wli

[
Σl−1
nm −

∑
p,s

(x− µl)†pΣl−1
pm Σl−1

ns (x− µl)s
]

=
∑
i

wli

[
Σl−1 − Σl−1(xi − µl)(xi − µl)†Σl−1

]
0 =

∑
i

wli

[
Σl − (xi − µl)(xi − µl)†

]
=⇒ Σl = 1∑

i

wli

∑
i

wli(xi − µl)(xi − µl)†

[11]

Note that all quantities derived about have the same form as one would expect from standard regression but with each data173

point xi having a cluster weight wki .174
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2. X-TEC-d analysis of TiSe2 CDW ordering175

Fig. S6. X-TEC-d analysis of TiSe2. (a) Two-dimensional slices of intensity of 1T-TiSe2 on the l=3.5 plane at three temperatures. This plane contains super-lattice peaks at
T < Tc = 200K (left) that disappears with the melting of the CDW order (right). (h, k, l) are in reciprocal lattice units (r.l.u.), and the color-map over saturates intensity (arb.
unit.) > 0.5. (b) Thresholding described in SM. 1-B removes the grey clusters in the reciprocal space of the plane shown in (a). Only the blue clusters are tracked using
X-TEC. (c) X-TEC-d two-cluster (K = 2) results assign the colors yellow and teal to the blue pixels of (b). K = 2 is optimal to resolve all distinct trajectories. The locations
of teal pixels identify with the CDW peaks, while yellow pixels identify with the background scattering. (d) Preprocessed intensity-temperature trajectories {Ĩ~qi (T )} at {~qi}s
that passed the thresholding [blue pixels in panel (b)]. The intensities are re-scaled by their mean over T [SM. Eq. (2)]. The temperature T spans over dT = 14 values,
{T1 = 100K, · · · , T14 = 202K}. (e) From {Ĩ~qi (T )}, two distinct temperature trajectories (teal and yellow cluster) are resolved by X-TEC-d. Lines denote cluster means
and shading represents cluster variance (one standard deviation) for the non-trival CDW cluster (teal) and the background cluster (yellow), interpolated between the dT = 14
temperatures measured.
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This section provides another benchmarking example for X-TEC with a well-known CDW material: TiSe2 (4, 5). Fig S6 shows176

the outcome of X-TEC -d applied to XRD data of 1T-TiSe2, collected at the Cornell High Energy Synchrotron Source (CHESS).177

As a test case, we specifically explored intensities I~q(Tj) for {Tj} ≡ {T1 = 100K, · · · , T14 = 202K} in the (h, k, l = 3.5) plane.178

The raw XRD images in Fig. S6(a) show that superlattice peaks are present at T = 100K and disappears between T = 191K179

and 202K. The data undergoes a two-stage preprocessing: thresholding (SM section I-B) and rescaling. Thresholding removes180

low intensity noise and reduces the number of ~q-space points to be canvassed from the full grid to a selection of points {~qi},181

containing meaningful features [see Fig. S6(b)]. Since the CDW peaks undergo a larger variation in temperature compared to182

the background as apparent from the raw images, the mean based rescaling [SM. Eq. (2)] is the right choice for this case. We183

now cluster the resulting collection of preprocessed temperature trajectories, Ĩ(~qi) ≡ {Ĩ~qi(Tj); j = 1, · · · , dT } [see Fig. S6(d)],184

with X-TEC -d to discover qualitatively distinct types of temperature dependencies in the data. Two clusters are sufficient to185

meaningfully separate the distinct temperature trajectories. The clustered trajectories are represented by the cluster mean and186

variance, shown in Fig. S6(e). The contrast between the means of the teal cluster and the yellow cluster makes it evident that187

the teal cluster represents the order parameter and the temperature at which it crashes down is the critical temperature. The188

separation between the means exceeding the individual variance affirms the clustering to be a meaningful result. Interpretation189

of the X-TEC results is immediate upon locating the two clusters in reciprocal space, as shown in Fig S6(c), and inspecting the190

raw data. The locations of the yellow pixels identify the CDW wave vector to be ~QCDW = {(0, π, π), (π, π, π))}, and equivalent191

momenta in the hexagonal basis. X-TEC thus detected the CDW transition with the correct transition temperature Tc = 200192

K and correct ordering wavevector ~QCDW (6) without any prior knowledge.193

3. Cd2Re2O7 Analysis194

Fig. S7. Specific heat of Cd2Re2O7, measured using the scanning method described in the text.

A. Specific Heat Measurements. In the main text, the heat capacity (Cp) of Cd2Re2O7 was displayed in Fig. 3(b). The data195

shown in that figure was processed by a standard method in relaxation calorimetry (“pseudostatic method”) in which the196

heat capacity is assumed to be constant throughout the heating and cooling segments of an applied heat pulse during which197

∆T ≪T. However, in the presence of a 1st order transition, the shape and magnitude of a peak in Cp at the phase transition198

temperature can be modified, while the hysteresis can be lost, when using the pseudostatic method. For this reason, we have199

also used the “scanning method” for which Cp is numerically determined at every point in the warming and cooling segments,200

which yields a more accurate peakshape and hysteresis for a 1st order transition at the cost of noise and absolute accuracy.201

A more detailed description of pseudostatic and scanning analysis can be found in Ref. 7. Fig. S7 shows the temperature202

dependence of Cp in the vicinity of the ∼ 113 K phase transition when analyzed using the scanning method. A small but203

resolvable thermal hysteresis was observed between the peaks in Cp from the heating and cooling curves, which is suggestive of204

a latent heat and hence a first-order character. We do note, however, that the peak height and width of the peak in Cp did not205

differ substantially between these two methods, as would also be anticipated for a first-order transition, and for this reason the206

analysis of Cp alone is not definitive in identifying the order of the transition.207

9 of 15



B. Low resolution Cd2Re2O7 XRD data. This section discuss the X-TEC analysis with a lower resolution XRD data of208

Cd2Re2O7. We first performed scans using an x-ray energy of 87 keV, which contained scattering spanning nearly 15,000209

Brillouin zones, A first pass of X-TEC -s∗ for two clusters (K = 2) readily finds a cluster whose intensity rises sharply below210

Ts1 = 200 K [the purple cluster in Fig. S8(a)]. The crisp clustering results with tight variance around the means reflect211

the amplification of the meaningful trend upon using data from a large number of BZ’s. By examining the X-TEC cluster212

assignments, we find the purple cluster to exclusively consist of peaks with ~Q = (H,K,L), with all indices even, exactly one of213

which is not divisible by four, using the cubic indices of Phase I [see Fig. S8(b)]. Peaks that are equivalent in the cubic phase214

have different temperature dependence in Phase II, implying that the sample is untwinned, something that is confirmed by215

our high-resolution data. This means that the presence of (00L) peaks with L = 4n+ 2 below Ts1 in phase II unambiguously216

rules out all the tetragonal space groups compatible with the pyrochlore structure, apart from I 4̄m2 and I 4̄. According to an217

earlier group theoretical analysis(8), of these two, only the former is compatible with a single second-order phase transition,218

so our data is strong confirmation of previous conclusions that, at Ts1, I 4̄m2 phase is selected out of two-dimensional Eu219

representation(9, 10).220

(a) (b)

Fig. S8. Two-cluster X-TEC-s results on the lower resolution data spanning 15,000 BZ’s of Cd2Re2O7. (a) Cluster mean (lines) and one standard deviation (shaded
areas) for the two clusters are shown in purple and yellow, interpolated between dT = 30 temperature points of measurement. The data is peak averaged prior to the
X-TEC preprocessing to suppress fluctuation signal and isolate the transition at Ts2. Ĩ(T ) denotes the mean rescaled intensity [Eq. (2)]. (b) The cluster assignements of
thresholded ~qi points that belong to the two clusters in (a) in a portion of the h = 0 plane.

C. Preprocessing and clustering setup details. Here we specify different preprocessing steps and clustering choices for the221

analysis of Cd2Re2O7 high resolution data presented in Fig. 3 and 4 of main text, as well as the lower resolution data in Fig S8.222

• X-TEC-s (peak averaged) on cubic forbidden peaks of high resolution data: Fig 3(c), Fig 4(a)223

1. We begin by selecting a 50× 50× 50 region around each known peak center and thresholding as described in SM 1-B.224

2. We then floodfill from the peak centers and average all resulting trajectories to form a single, averaged trajectory225

per peak.226

3. We rescale the data by z-scoring it.227

4. We exclude all the cubic allowed Bragg peaks, and restrict the temperature range to [30 K, 150 K] so that X-TEC228

can focus on better resolving the distinct cluster trajectories across Ts2. See Fig S9 for the same analysis, but229

including all Bragg peaks and over the full temperature range.230

5. We cluster the peak-averaged trajectories using K = 2 clusters. We found two clusters to be the minimum number231

necessary to separate all distinct behaviors and that there was no advantage to using more than two.232

6. The dashed lines in Fig. 3(c) and symbols in Fig 4(a) show the cluster averaged intensity trajectory of the two233

clusters. The cluster averaged trajectory is shown for the full temperature range: [30 K, 300 K], although the234

clustering assignments were obtained from trajectories ≤ 150 K.235

• X-TEC-d (peaks opened) on cubic forbidden peaks of high resolution data: Fig 3(c-d), Fig: 4(c)236

1. We select a 50× 50× 50 window around each known peak center and threshold as described in SM 1-B.237

2. We only include peaks that are forbidden in the cubic phase. The temperature range is restricted to [30 K, 150 K]238

like in the peak averaged X-TEC -s analysis.239

∗here we simply averaged peaks due to the volume of the data.
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3. We rescale the data by z-scoring it.240

4. We cluster the data using K = 3 clusters.241

5. The resulting cluster averaged intensity trajectory for the full temperature range: [30 K, 300 K] is shown as solid242

lines in Fig. 3(c).243

6. Cluster averaging the absolute intensity trajectories washes out the characteristic temperature dependence of the244

diffuse halos. This can be remedied by cluster averaging over z-scored intensities. This is reported in Fig. 4(c).245

• X-TEC-s (peak averaged) on low resolution data: Fig S8246

1. In order to reduce noise, we first construct an average BZ mask by thresholding every BZ as described in SM 1-B247

and then averaging the thresholded BZs together.248

2. We then manually select a cutoff value for the averaged BZ that maintains all the peaks while removing as much249

background as possible, and set each ~q-point in the average BZ with value greater than the cutoff to 1, and the rest250

to 0 to form the mask.251

3. We multiply each BZ by the average BZ mask to remove noise and emphasize the peaks.252

4. Beginning from the known peak centers, we floodfill to pick out all ~q-points belonging to each peak.253

5. We perform peak averaging by averaging the trajectories of all ~q-points belonging to each peak and replacing them254

with the single, averaged trajectory.255

6. We apply the mean based rescaling [Eq. (2)] to the intensities.256

7. Finally we cluster using K = 2 clusters. We subtract the minimum value of the cluster means when plotting to257

emphasize the order-parameter like behavior of the purple cluster in Fig. S8(a). Here X-TEC analyses the data for258

the full temperature range [30 K, 300 K].259

• Processing times for X-TEC The X-TECanalysis of the higher resolution XRD data for Cd2Re2O7 is the most time260

consuming of all the cases studied in this paper, and takes ∼ 10 min in total to run.261

1. The slowest step is to load the data. This step can be made faster by parallelization and eliminating regions in BZ262

that have no interesting physics. For our analysis, the relevant data is contained in the 50× 50× 50 window around263

each Bragg peak, amounting to 17 GB of data. This takes ∼ 3000s to load with a single thread ( ∼ 100s using 24264

threads).265

2. The GMM clustering takes ∼ 500s on a single thread with Intel(R) Xeon(R) CPU @ 2.60GHz.266

Fig. S9. Four-cluster X-TEC-s (peak averaged) results on the high resolution measurements of Cd2Re2O7 retaining all Bragg peaks. Two of these sub-cluster trajectories
(yellow and green symbols) identify with the cubic forbidden trajectories shown in Fig. 3(c) and Fig. 4(a) of main text. The other two sub-cluster trajectories (magenta and brown
lines) arise from peaks that are not forbidden in the high-temperature cubic phase. The temperatures of the two structural phase transitions are shown as dotted lines.
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D. Structure Factor Analysis. Fig 3 and 4 of main text discuss the two-clustering X-TEC -s analysis after excluding the cubic267

allowed peaks. By including all Bragg peaks, four clusters are sufficient for X-TEC -s to identify all the distinct trajectories.268

Fig. S9 shows the cluster means (z-scored intensity trajectories) for all four clusters identified by X-TEC -s (peak averaged)269

analysis. Two of these sub-clusters (yellow and green symbols) can be identified with the behavior of the cubic excluded peaks.270

It should be noted that these clusters represent the average temperature dependence of all the peaks assigned to their respective271

clusters, so there can be large variations within each cluster. However, the ML analysis has identified distinctive behavior272

in each cluster that we have verified by manual inspection of a number of peaks. All four clusters show similar temperature273

dependence close to the transition at Ts1 = 200 K, but strikingly different behavior at the lower transition at Ts2 = 113 K. The274

yellow cluster trajectory show a sudden drop while the green cluster peaks show a sudden increase in intensity across Ts2. The275

magenta and brown lines show a sharp spike in intensity at Ts2, before falling back to their values just above the transition.276

We do not currently have an explanation for this remarkable behavior.277

The structural phase transition at Ts1 is from the cubic pyrochlore structure, with space group Fd3̄m, to a distorted278

tetragonal structure, with space group I 4̄m2. This space group allows distortions of the cadmium and rhenium cations along279

the z direction and either the x or y direction depending on the Wyckoff positions, using the I 4̄m2 unit cell, which is rotated280

by 45° from the cubic unit cell, i.e., x is parallel to the (110) direction of the high-temperature cubic structure. There are281

associated displacements of the oxygen ions, but the x-ray measurements are not sensitive to them.282

Analytic calculations of the structure factors for the Bragg peaks in terms of the allowed x and z distortions fall into four283

groups that correspond well to the four ML clusters. For example, the two groups whose intensities are forbidden in the284

high-temperature cubic phase (yellow and green) have the following form (H,K,L in following equations are in tetragonal285

indices):286

F1(H,K,L) ∝ (−1)n3
∑

M=Cd,Re

{
fM
[
(−1)n1cos(2πHδxM )e−2πiLδzM − (−1)n2cos(2πKδxM )e2πiLδzM

]}
[12]287

where n1 = 1
2H, n2 = 1

2K, and n3 = 1
4 (L− 2).288

F2(H,K,L) ∝ (−1)n3
∑

M=Cd,Re

{
fM
[
(−1)n1sin(2πHδxM )e−2πiLδzM + (−1)n2sin(2πKδxM )e2πiLδzM

]}
[13]289

where n1 = 1
2 (H − 1), n2 = 1

2 (K − 1), and n3 = 1
4L.290

It can be seen that, for small values of H and K, F1(H,K,L) are mostly sensitive to distortions along the z-axis, whereas291

for small values of L, F2(H,K,L) is mostly sensitive to in-plane distortions along x or y (where δx = δy). The assignments of292

individual peaks in the X-TEC analysis show that the (H,K,L) values of the green cluster are indeed dominated by in-plane293

distortions whereas the yellow cluster peaks are dominated by z-axis distortions. This suggests that the distinctive temperature294

dependences of peaks in the green and yellow clusters can be used to derive information about the relative distortions along295

x and z. If we assume that the temperature dependence of δx and δz follows that expected for an order parameter with a296

common critical exponent, β, from 200K down to 120K, the peak intensities would vary as (T − Tc)2β .297

Fig. S10. Temperature dependence of the 006 (yellow) and 600 (green) Bragg peaks using cubic indices (006 and 3-30 using tetragonal indices). The green and yellow solid
lines are fits between 120 K and 300 K to the structure factors in equations 10 and 11, respectively, assuming that the distortions, δx and δz for the Cd and Re ions, vary as
(T − Tc)β , with β = 0.25 and Tc = 200 K.
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As an example, Figure S10 compares the 006 and 060 Bragg peaks using the indices of the cubic phase. These are the peaks298

that have been assigned to the yellow and green clusters of X-TEC -s shown in Fig. 4(a). Equations 10 and 11 show that the299

006 (yellow) peak is only sensitive to δzCd and δzRe, whereas the 060 (green) peak is only sensitive to in-plane distortions.300

The fit to the 006 peak yields relative z-axis distortions that are equal and opposite, i.e, δzRe = −δzCd, illustrated in Fig.301

4(b). The out-of-phase distortions are the reason for the flattening of the peak intensity of the 006 peak between 180 K and302

120 K, confirming the conclusions based on the fits to the cluster means in Fig. 4(a). On the other hand, the 060 peak follows303

the scaling law from 200 K to 120 K, showing either that δxRe has the same sign as δxCd or that one of the distortions is304

much larger than the other. This is an example where the temperature dependence of the peak intensities below a structural305

phase transition yields information on the relative internal distortions, which have proved to be too subtle for conventional306

crystallographic refinement until now.307

E. Mode energies and intensities from Landau theory. The Landau free energy in an Eu model for Cd2Re2O7 is (8)308

F = a1Q
2 + a2Q

4 + a3Q
6 + a4Q

8 +Q6[b1 + cQ2] 12 [1 + cos(6φ)] [14]309

with Q the order parameter amplitude and φ the phase angle. For I 4̄m2, φ = 30(2n+1) and for I4122, φ = 60n (the different310

angles represent different domains). F vanishes at Ts1 and the anisotropy (last term) would vanish at Ts2 if it were not for the311

first-order jump in Q. The Goldstone (phase) mode energy is given by (11)312

ω2
G = χ−1

G /M [15]313

where the inverse Goldstone susceptibility is314

χ−1
G = 1

Q2
∂2F

∂φ2 = 18Q4|b1 + cQ2| [16]315

with M some ion effective mass, where in the second expression we have taken into account the value of φ in the two phases316

(which leads to the modulus). The Higgs mode energy is given by317

ω2
H = χ−1

H /M [17]318

where319

χ−1
H = ∂2F

∂Q2 = 2a1 + 12a2Q
2 + 30a3Q

4 + 56a4Q
6 + 30Q4[b1 + 28

15cQ
2] 12 [1 + cos(6φ)] [18]320

The first-order transition from I 4̄m2 (phase II) to I4122 (phase III) is given by the condition (8)321

a1 = 2a2(b1/c)− 3a3(b1/c)2 + (4a4 + c/2)(b1/c)3 [19]322

Q2 is given by the cubic equation ( ∂F
∂Q

= 0)323

− 2a1 = 4a2Q
2 + 6a3Q

4 + 8a4Q
6 + 6Q4[b1 + 4

3cQ
2] 12 [1 + cos(6φ)] [20]324

Finally, the soft mode energy above Ts1 (ωs) is gotten by setting Q=0 in χ−1
H . In practice, the effectiveM is unknown (involving325

Cd, Nb and O masses), so all mode energies will be multiplied by the same constant in order to agree with Raman data (12)326

for the Higgs energy at T=0 (85 cm−1).327

We now have all we need to calculate the order parameter, the phase boundary, and mode energies. What about the328

mode intensities? The basic idea can be seen from the work of Fleury (13) and Shapiro (14). The energy integrated intensity329

(appropriate for the diffuse scattering collected from high energy x-rays) is given by (14)330

Iq = 1
π

∫
[n(ω) + 1]=[ω2

q − ω2 − iωΓq]−1dω [21]331

where n(ω) is the Bose factor, ωq is the mode energy for a given q, and Γq is the lifetime broadening. Assuming we can replace332

n(ω) by T/ω, this integral reduces to333

Iq = T/ω2
q [22]334

This expression is obviously divergent for q=0 at Ts1. To correct for this, we recognize that the data are collected over a small335

range in q. We assume the q dependence of the mode energy goes like336

ω2
q = ω2

0 + α2q2 [23]337

where α results from the gradient terms in the Landau energy. Integrating over q, we obtain338

T

∫
q2dq

ω2
q
∝ T [1− ω̃0 tan−1 1

ω̃0
] [24]339
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where ω̃0 = ω0
αqc

with qc the momentum cut-off. Since α is unknown (no mode dispersions have been measured for this material),340

we set αqc to the lower bound of the Raman data (6 cm−1 (12)) for all modes.341

Now for the matrix elements. That is, how do the x-rays couple to the modes? We assume unit coupling to the Higgs and342

soft modes, the Higgs mode below Ts1 being the analog of the soft mode above Ts1. But for the Goldstone mode, which only343

exists below Ts1, we set the coupling constant to Q2 (13). So, above Ts1 we have344

T [1− ω̃s tan−1 1
ω̃s

] [25]345

and below Ts1 we have346

T [1− ω̃H tan−1 1
ω̃H

+Q2(1− ω̃G tan−1 1
ω̃G

)] [26]347

To evaluate, we choose parameters as in Fig. 3b of (8), with b1=0.3. We then do the following normalizations. a1 is some348

constant times T −Ts1. This constant is adjusted so that Ts1 is 200 K and Ts2 is 113 K. Then the mode energies are normalized349

as stated above (so that the Higgs mode energy is equal to 85 cm−1 at T=0 as observed by Raman (12)). Finally, the intensities350

are normalized by Ts1. In Fig. S11, the resulting mode energies and intensities are shown. Note the small jump in the Higgs351

energy and the dip in the Goldstone energy at Ts2. Also that the Goldstone intensity completely dominates outside the critical352

region associated with Ts1. As an aside, the Raman data cut-off at about 6 cm−1 as noted above. The prediction is that353

the Goldstone mode energy should rise above this value at low T . We suggest then that the Raman mode seen at 30 cm−1
354

below Ts2 could be the Goldstone mode. This in turn implies that the central peak in the intensity from Raman has more355

contributions to it than the Goldstone one, and this would presumably be due to elastic scattering from impurities and static356

short-range structural disorder.357
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Fig. S11. (a) Landau mode energies as a function of T for Cd2Re2O7. Note the first order jump in the Higgs energy and the dip in the Goldstone energy at Ts2 (113 K). (b)
Landau mode intensities as a function of T . Outside of the critical region near Ts1 (200 K), the intensity is dominated by the Goldstone intensity. Note the resemblance of the
calculated intensity to the XRD diffuse scattering intensity presented in this paper (Fig. 4(c)).

Finally, some caveats. First, the behavior well below Ts2 cannot be taken too seriously since Landau theory is not valid358

at low T where Q(T ) flattens as a function of T (as observed for the Higgs mode by Raman). Nor for the intensities where359

the T/ω approximation for n(ω) is not valid. Second, the theory is for a pure Eu model. In reality, the secondary mode A2u360

(corresponding to distortions along the < 111 > trigonal axis orthogonal to Eu distortions) will play some role, and its coupling361

to Eu is also an anisotropy term in the Landau energy (it does not exist for I4122) (8). Finally, the critical exponent near Ts1362

is the mean field one. In reality, experiment finds β=1/4, not 1/2. Despite these caveats, Fig. S11 is remarkably similar to363

the Raman data, and the XRD data reported in this paper. This brings into question the interpretation of the pump-probe364

measurements in Ref. (15) which claims that a structural soft mode does not exist for Cd2Re2O7.365
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