

Supplementary Information for

The M₁ muscarinic receptor is present *in situ* as a ligand-regulated mixture of monomers and oligomeric complexes

Sara Marsango¹, Laura Jenkins¹, John D. Pediani¹, Sophie J. Bradley^{1,3}, Richard J. Ward¹, Sarah Hesse¹, Gabriel Biener², Michael R. Stoneman², Andrew B. Tobin¹,

Valerica Raicu² and Graeme Milligan^{1*}

- 1. Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
- 2. Physics Department, University of Wisconsin-Milwaukee, WI, USA
- 3. Current address: SoseiHeptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG U.K.

Address correspondence to Graeme Milligan, Centre for Translational Pharmacology, Wolfson Link Building 253 , University of Glasgow, Glasgow G12 8QQ, Scotland, U.K. (+44 141 330 5557) (<u>Graeme.Milligan@glasgow.ac.uk</u>) This file includes: Figures S1 to S4

Supporting information 1

SI 1: Genotyping identifies mice both homozygous and heterozygous for expression of M₁-mEGFP

Transgenic M₁-mEGFP expressing knock-in mice were generated as illustrated (**A**). Primers (sequences in Methods) designed to amplify mouse M₁ receptor (223bp) or M₁-mEGFP (332bp) were used to PCR amplify cDNA isolated from the various mice used in these studies (**B**). WT = wild type, Het = heterozygote, Homo = homozygote M₁-mEGFP knock-in.

Supporting information 2

SI 2: Locomotor activity of M₁-mEGFP expressing mice is not different from wild type

Representative motion plots of wild type, homozygous M₁-mEGFP knock-in or M₁-knock-out (M₁-KO) mice in open field tests (**A**). **B**. Average distance traveled by such animals over a 10 min period in the open field test (** P < 0.01, *** P < 0.001). Data for individual animals (n = 9-10) are shown.

Supporting information 3

ZX view

SI 3: M₁-mEGFP is present at both the cell surface and at internal locations within neurons in culture

Cultures of combined hippocampal and cortical neurons maintained for 7 days were stained with MemBrite 640^{TM} to label cell boundaries/plasma membrane (**red**) and with Hoechst 33342 (**blue**) to identify cell nuclei. Imaging of such cultures showed that whilst some of the M₁-mEGFP (**green**) construct was present at the cell surface a significant proportion was intracellular. **A.** pseudo-3-dimensional representations. **B**. A ZX view of the same merged image as in **A.** Scale bar = 20 µm **Supporting information 4**

SI 4: M₁-mEGFP is phosphorylated at serine²²⁸ following carbachol stimulation

Flp-In TREx 293 cells harboring M₁-mEGFP (- Dox) or induced to express the receptor construct (+ Dox) were treated with 1 mM carbachol (+ Dox + Cch) for 5 min. Following enrichment of the receptor construct via GFP-trap immunoprecipitated proteins were resolved by SDS-PAGE. Immunoblot was performed with an anti-pSer²²⁸ M₁ antiserum (22). A representative experiment is shown.