SUPPLEMENTARY MATERIALS

Allostatic load scoring using item response theory

Shelley H. Liu¹, Robert-Paul Juster², Kristen Dams-O'Connor³, & Julie Spicer⁴

¹Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai ²Department of Psychiatry and Addiction, University of Montreal

³Department of Rehabilitation Medicine, Department of Neurology, Icahn School of Medicine at Mount Sinai

⁴Department of Psychiatry, Icahn School of Medicine at Mount Sinai

Corresponding author: Shelley H. Liu Email: <u>shelley.liu@mountsinai.org</u>

I. Supplementary Figure 1. Distribution of the allostatic load sum-score in adults aged 20-59 in NHANES 2015-2016.

II. Supplementary Figure 2. Correlation between dichotomized (high/low risk) allostatic load biomarkers and the allostatic load sum-score and IRT score.

4

III. Supplementary Figure 3. Test information curve. The scale for the IRT score in the dataset remains between approximately -1 to 2. However, the test information curve provides a larger range, as it shows the information supplied by the model at different theta scores (but in our dataset, we only have theta scores ranging from -1 to 2).

IV. Supplementary Figure 4. Distribution of the allostatic load IRT score in adults aged 20-59 in NHANES 2015-2016.

Supplementary Materials: Liu et al., Allostatic load scoring using IRT

V. Supplementary Table 1. Associations of family income to poverty ratio and allostatic load.

	AL IRT score			AL Sum score		
Predictors	β	95% CI	р	β	95% CI	р
(Intercept)	0.1	0.05 - 0.15	<0.001	3.11	2.96 - 3.26	<0.001
Family income to poverty ratio	-0.04	-0.050.02	<0.001	-0.07	-0.120.02	0.008
Observations	3391			2835		

Socio-economic status was measured using family income to poverty ratio. The models have different sample sizes, as IRT does not require complete data on all AL biomarkers in order to calculate scores, unlike the sum-score approach.

VI. Simulated data and reproducible IRT code in R.

Here, we simulate data for n=500 participants. There are four correlated binary variables (e.g. four biomarkers, each classified as high/low risk).

Load packages library(MultiRNG) library(lavaan) library(ltm)

set.seed(123) # For reproducibility of these simulation results

Simulate some data for n=500, with 4 correlated binary indicators

cmat<-matrix(c(1,0.4,0.3,0.25, 0.4,1,0.4,0.4, 0.3,0.4,1,0.2, 0.25,0.4,0.2,1), nrow=4, ncol=4) propvec=c(0.4,0.4,0.3, 0.2)

mydata=draw.correlated.binary(no.row=500,d=4,prop.vec=propvec,corr.mat=cmat) colnames(mydata) = c("V1", "V2", "V3", "V4")

head(mydata) # print first six roles of mydata

<pre>> head(mydata)</pre>							
	ν1	v2	V3	V4			
[1,]	0	0	0	0			
[2,]	0	0	0	0			
Ī3.Ī	0	0	0	0			
Ī4.1	0	0	0	0			
Ī5.Ī	1	1	1	0			
[6,]	0	1	0	1			

Check for sufficient uni-dimensionality

CFA.model <- 'Construct =~ V1 + V2 + V3 + V4' fit <- cfa(CFA.model, data=mydata) summary(fit, fit.measures=TRUE)

```
> summary(fit, fit.measures=TRUE)
lavaan 0.6-5 ended normally after 24 iterations
```

Estimator	ML
Optimization method	NLMINB
Number of free parameters	8
Number of observations	500
Model Test User Model:	
Test statistic	14.862
Degrees of freedom	2
P-value (Chi-square)	0.001
Model Test Baseline Model:	
Test statistic	309.707
Degrees of freedom	6
P-value	0.000
User Model versus Baseline Model:	
Comparative Fit Index (CFI)	0.958
Tucker-Lewis Index (TLI)	0.873
Loglikelihood and Information Criteria:	
Loglikelihood user model (HO)	-1073.791
Loglikelihood unrestricted model (H1)	-1066.360
Akaike (AIC)	2163.582
Bayesian (BIC)	2197.298
Sample-size adjusted Bayesian (BIC)	2171.906

Root Mean Square Error of Approximation: 0.113 RMSEA 90 Percent confidence interval - lower 0.064 90 Percent confidence interval - upper 0.170 P-value RMSEA <= 0.05 0.019 Standardized Root Mean Square Residual: 0.037 SRMR Parameter Estimates: Information Expected Information saturated (h1) model Structured Standard errors Standard Latent Variables: Estimate Std.Err z-value P(>|z|)Construct =~ 1.000 ٧1 0.165 V2 1.418 8.575 0.000 0.109 V3 0.873 8.015 0.000 V4 0.686 0.087 7.876 0.000 Variances: Estimate Std.Err z-value P(>|z|)0.165 0.013 12.771 0.000 .v1 6.159 .v2 0.093 0.015 0.000 0.151 13.359 0.000 .v3 0.011 0.000 0.101 13.555 .v4 0.007 Construct 0.072 0.013 5.435 0.000

Run IRT

irt.dat = ltm(mydata ~ z1, IRT.param = TRUE)
coef(irt.dat)

plot(irt.dat, pch = c(1:4), lty = 1, type = "ICC", legend = TRUE, xlab = "Theta", main = "Item characteristic curves", ylab = "Probability of endorsing")

plot(irt.dat, pch = c(1:4), item = 1:4, lty = 1, type = "IIC", legend = TRUE, xlab = "Theta", main = "Item information curves", ylab = "Information")

plot(irt.dat, pch = c(1:4), item = 0, type = "IIC", legend = TRUE, xlab = "Theta", main = "Test information curve", ylab = "Information")

Theta = factor.scores(irt.dat, method = "EAP", resp.patterns = mydata)\$score.dat\$z1 sum.score = apply(mydata, 1, sum) plot(sum.score ~ Theta, xlab = "Theta", ylab = "Sum score")

mydata2 = cbind(mydata, Theta, sum.score) cor(sum.score, Theta) # Correlation = 0.98