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1 Construction of rescaled in-
teraction networks

This section describes how the interaction networks
for densities that were not observed in experiments
were constructed. Briefly said, we

• first rescaled the position data,

• then approximated each individual fish by an
ellipse,

• used an active particle simulation to ensure
that when placed at the rescaled positions
using the original orientations, the ellipses
would relax into a non-overlapping configu-
ration,

• then calculated the visual field of each ellipse
using an analytically derived formula and af-
terwards accounting for occlusions using an
algorithm based on the analytic results to de-
termine the angle which one ellipse occupies
in the visual field of another ellipse,

• before finally generating the interaction net-
work based on the calculated values of log
metric distance and ranked angular area.

We conclude this section with a comparison of the
properties of the thus constructed networks with

the networks previous studies [27,28] constructed
based on bodyshape reconstruction from tracking
software and raycasting. A comparison of the two
types of networks based on their ability to describe
the observed cascade size distributions when used
together with the behavioral contagion process can
be found in the next section.

1.1 Rescaling position data

The position data was rescaled with the following
range of factors: λ ∈ [0.3, 0.4, . . . , 2.8, 2.9] setting

xrescaled =λ · xexp
yrescaled =λ · yexp .

(S1)

This yields positions with a range of median near-
est distances. Figure S1 depicts histograms of the
number of networks per interval of median nearest
neighbor distance (of width 0.11 BL, as used in Fig-
ure 2b of the main text) for both the ’Baseline’ and
the ’Alarmed’ dataset as well as the larger groups
from [27] (see section 3.8).

1.2 Ellipse approximation

To approximate a single fish we used an ellipse with
its center at (x0, y0), semi-major axis of length a
and semi-minor axis of length b. The semi-major



axis is rotated by the fish’s orientation, φ, from the
x-axis. We call w = b/a the aspect ratio of the
ellipse. The ellipse has a single eye that is posi-
tioned on the semi-major axis at a distance l from
the center of the ellipse, where l = 1 refers to the
front, l = 0 the center and l = −1 to the back of
the ellipse (see Fig. S2). We chose w = 0.14 and
l = 0.9 for all fish in agreement with the average
value obtained from tracking software data where
we used the ratio of detected inter eye distance and
bodylength of a fish as w and the position of the eye
along the detected midline to determine l, see Fig.
S3. Because the tracking software saved the edge
of the head of the fish as its position (xexp, yexp) we
positioned the ellipse at

x0 = xexp −
a

2
cosφ ,

y0 = yexp −
a

2
sinφ .

(S2)

1.3 Active particle simulation to
eliminate overlaps

Since we assume our school of fish to be 2 dimen-
sional there is an upper limit to the density we can
achieve by rescaling (see also section 3.2 of the SI).
We acknowledge this by ensuring that no two fish
overlap in the rescaled position data using an ac-
tive particle simulation based on the code provided
within [71] Ellipses are placed at the rescaled po-
sitions at t = 0 with velocities vi(t = 0) = 0.
Their velocities vi(t) change based on their posi-
tions xi(t) = (xi(t), yi(t))

T according to

dvi(t)

dt
=

1

µi

−αvi(t) +

j∑
j 6=i

xi − xj
|xi(t)− xj(t)|

Fij(t)


Fij = λAij(t)

(S3)
where Aij(t) is the overlap area of the ellipse i and
ellipse j at time t, µi = µ = 1 is the mass of the
ellipse, α the damping parameter and λ a constant
model parameter. We use α = 0.2 and λ = 0.05
and stop the simulation as soon as no more over-
laps are detected. To speed up the relaxation into
a non-overlapping state, we used a second larger
ellipse (factor 1.1) to determine the repulsion area
Aij and stopped when the original size ellipses were
no longer overlapping, see Fig. S4.

1.4 Analytical calculation of visual
field of ellipse

In order to determine the interaction network of the
ellipses we need a matrix of ranked angular areas
and distances for all pairs of ellipses (see eq. S11).
The ranked angular areas were determined based on
the analytical calculation of the angular area that
an ellipse at a relative position (x0, y0), semi-major
axis of length a rotated by φ from the x-axis and
semi-minor axis of length b has for an observer sit-
ting at the origin. We assume the observer has 360◦

vision. The observed ellipse is given by:(
x
y

)
=

(
x0 + a cosψ cosφ+ b sinψ sinφ
y0 + a cosψ sinφ− b sinψ cosφ

)
with 0 ≤ ψ < 2π .

(S4)
To describe the fish we use the aspect ratio w and
polar coordinates r, θ

a = 1/2

b = w/2

x0 = r cos θ

y0 = r sin θ .

(S5)

We can then calculate the gradient of the ellipse as

dy

dx
=

sinφ sinψ + w cosφ cosψ

cosφ sinψ − w sinφ cosψ
. (S6)

A tangent line to the ellipse is given by

y =
dy

dx

∣∣∣∣
s

(x− xs) + ys (S7)

where (xs, ys) is the tangent point on the ellipse
(see Fig. S2).

Since we place our observer at the origin, the
tangents we need in order to determine the visual
field have to pass through this point and thus it
needs to hold that

0 =
dy

dx

∣∣∣∣
s

(0− xs) + ys

0 = − dy/dψ

dx/dψ

∣∣∣∣
s

xs + ys

0 = −(dy/dψ)|sxs + (dx/dψ)|sys

(S8)



which can be written as

0 =

∣∣∣∣ xs dx/dψ|s
ys dy/dψ|s

∣∣∣∣
xs = r cos θ +

cosφ cosψ + w sinφ sinψ

2
dx

dψ
|s =

− cosφ sinψ + w sinφ cosψ

2

ys = r sin θ +
sinφ cosψ − w cosφ sinψ

2
dy

dψ
|s = − sinφ sinψ − w cosφ cosψ

2

(S9)

where || is the determinant. Solving for ψ yields

ψ± =± 2 tan−1
(
γ ∓ r sin(θ − φ)

β

)
β =w(2r cos(θ − φ)− 1)

γ =
(
−w2 + 2r2

(
(1 + w2)

+(w2 − 1) cos(2(θ − φ))
))1/2

.

(S10)

Inserting (S10) into (S4) returns the tangent points
(xx1, ys1) and (xx2, ys2) whose polar angles, θs1
and θs1, determine the angular area of the ellipse,
α = min(|θ1s − θ2s + nπ|, n ∈ N) (here we use the
fact that the angular area needs to be smaller than
π because the ellipses aren’t allowed to overlap).

Occlusions of individual j in the visual field of i
by all other individuals k 6= j are then determined
by an algorithm using intersections of rays originat-
ing from the eye of the focal individual i and going
through the tangent points (as perceived by i) on j
with the outlines of ellipses k. To determine if j or
k is visible to i in the occluded area, intersection of
ellipse outlines with the angle bisectors of the rays
described above are also considered.

1.5 Network construction

As described in the methods section of the main
paper, the weight of a link (from i to j) is given by:

wij = (1 + exp(−β1 − β2LMD − β3RAA))−1 .
(S11)

LMD is the log of the metric distance between
ellipse i and j and RAA is the ranked angular area

of j in the visual field of ellipse i. Coefficients βi
were obtained from a logistic regression of experi-
mental observations of first responders and can be
found in table S2. Data from before and after ex-
posure to Schreckstoff were fitted with one set of
coefficients in accordance with [28] who did not find
any significant change from ‘Baseline’ to ‘Alarmed’
state.

1.6 Density dependence of network
measures

Fig. S5 shows different network properties plotted
against median nearest neighbor distance (NND) in
body lengths. For more details refer to the figure
caption.

2 Model Calibration

As described in the methods section of the main pa-
per, the behavioral contagion model has one free pa-
rameter, the response threshold, that corresponds
to an individual responsiveness to social cues. We
calibrate the model separately for each dataset us-
ing the experimentally observed cascade sizes fol-
lowing a maximum likelihood approach as in [28].
This allows us to determine which value of the pa-
rameter response threshold best describes the ob-
served data.

Each startle cascade observed in the experi-
ments corresponds to one interaction network based
on the positions and visual fields of all individuals
at the time just before the initial startle. In our
model we artificially initiate a startling cascade on
this network by setting the node corresponding to
the experimentally observed initial startler to the
active state at t = 0 and recording the resulting
cascade size (i.e. the number of individuals, includ-
ing the initial startler, changing their state to active
before the cascade dies out and no active individuals
remain). This is done 10000 times for each interac-
tion network and for a range of response threshold
values to build a distribution of cascade sizes for
each response threshold and network. These prob-
ability distributions combined with the correspond-
ing experimentally observed cascade size allow us
to determine which response threshold is most likely
given our observed data (i.e. has the maximum like-
lihood). The result can be seen in Fig. S6 for both



the networks constructed using ellipses to approx-
imate body shape and visual field (solid lines) as
well as networks based on the tracking software de-
scribed in [27,28].

Fig. S7 shows the calibrated model and the ex-
perimental data it describes.

3 Model assumptions and lim-
itations

3.1 Assessing the quality of ellipse
based networks

To see the effects of our approximation of
bodyshape and field of view using ellipses and an-
alytical calculation we first compare the resulting
networks via their link weight distribution, as well
as their (weighted and binary) degree distribution.
Then, to see the influence our approximation may
have on the dynamics of the complex contagion pro-
cess and the model’s ability to describe the observed
data, we fit the single free parameter of the model,
the response threshold, once for the (original scale)
ellipse networks and once for the networks con-
structed using the ranked angular area determined
through ray casting.

The distributions of network properties for both
types of networks are shown in Fig. S8 where
the ellipse networks are drawn as a line and the
ray casting networks as a shaded area. The his-
tograms show (from left to right): weighted degree,
binary degree, link weights, link distance (metric
distance between two fish connected by a link).
Each row corresponds to one of the datasets, top:
40 fish ‘Baseline’, middle: 40 fish ‘Alarmed’, bot-
tom: 150 fish. Overall, the distributions are gener-
ally in good agreement. The remaining differences
between them are due to the fact, that for the el-
lipse networks all overlaps of individuals were elim-
inated to ensure a completely 2 dimensional school
whereas in the experiments the shallow water still
allowed the fish to occasionally cross path and ap-
pear stacked on top of each other in the data. The
elimination of these overlaps by shifting the individ-
uals apart leads to on average larger inter-individual
distances in the ellipse networks, as seen in the right
column of Fig. S8. Additionally, putting these orig-
inally stacked individuals next to each other in 2 di-
mension now means that they occlude each other’s

field of view, on average leading to fewer visible
neighbors and thus fewer links per individual. This
results in a shift in the weighted and binary degree
distributions (two left columns, fig. S8) while the
distribution of link weights does not change (second
right column). The effect is especially prominent
for the high density case (40 fish ‘Alarmed’, second
row) in which overlaps where most frequent.

The results of the maximum likelihood fitting of
the response threshold for both network construc-
tions can be found in Fig. S6. A plot of the ex-
perimental data with the cascade size distribution
produced by the fitted models is shown in Fig. S7.

3.2 Density limit

The regulation of group density has a naturally oc-
curring limit towards high density because of the
physical bodies of the fish. We need to consider
this as a limit to the group’s ability to modulate re-
sponsiveness solely via group density. When taken
to the extreme this limit becomes the problem of
closely packing ellipses of aspect ratio 0.14, but this
limit certainly is not of biological relevance, espe-
cially in our model which is based on visual inter-
actions. Instead we take a look at all the configu-
rations we find in our original data (no rescaling)
after ensuring that all overlaps have been resolved
via the active particle simulation. The lower limit
of density (measured by median nearest neighbor
distance of the group) occurring in our experiments
gives us an indication to what densities are possible
as a group median, namely (40 fish: 0.44, 150 fish:
0.48), while individual fish can get closer (40 fish:
0.16, 150 fish: 0.15). Additionally, we constructed
the density dependence of average number of phys-
ical contacts per individual from all the rescaled
and original data we have (Fig. S9). When a large
fraction of the ellipses start touching the limit of
our vision based model is most likely reached as in-
teraction can no longer be viewed as purely visual
but become governed by physical forces and other
sensory inputs.

3.3 Two dimensional schools

As in [27] and [28] we assume schools to be ap-
proximately 2 dimensional. As pointed out in the
previous section, this yields a lower limit for the
nearest neighbor distance (NND) of a school and



by this an upper limit for the branching ratio that
can be reached without an additional change in in-
dividual response threshold. In the main text and
Fig. S14 we find that this density limitation does
not allow the schools to cross the critical manifold
by a change of NND alone. Here, we make a simple
argument to explain why we expect the maximum
branching ratio that could be reached in a 3 dimen-
sional school via a change of NND to be similar to
that in 2 dimensions.

As described in the methods section of the main
paper, the branching ratio is calculated as

bj =
τact
θmax

∑
i

wij
Ki

. (S12)

The branching ratio of an individual is thus maxi-
mized when the ratio of the weight of its incoming
networks links, wj =

∑
i wij and the absolute num-

ber of its incoming network links Kj is maximized.
This is the case, when the average strength of a link
in the network is largest, which is the case for small
NND because of the functional dependence of wij
on interindividual distance.

Thus because of the fractional contagion process
and the resulting Ki in the denominator of equa-
tion (S12), it is the average link strength determin-
ing the maximal branching ratio at high densities
and not the total weight of incoming networks links.
For a densely packed configuration of ellipses, we
expect the average link strength (corresponding to
the links to the nearest neighbors) to be similar in
2 or 3 dimensions and thus the average branching
ratio should be similar. A more detailed analysis
would require the reconstruction of visual fields in
3 dimensions and is beyond the scope of this paper.

3.4 Visual threshold

Because of limitations of the visual sensory percep-
tion and cognitive limitations it seems reasonable
to assume that the angular area an individual i oc-
cupies in the visual field of individual j, αij must
be larger than a certain value, αij > αmin in or-
der for individual i to be seen by and influence the
behavior of individual j. In the main text we use
αmin = 0.02. Here, we explore further values. We
construct networks and fit the individual response
threshold of the model for each threshold value. Ta-
ble S3 gives these fitted individual threshold pa-
rameters. When larger visual thresholds are used,

the average response threshold best describing the
experimental data increases. The increased visual
threshold lowers the average degree of a node, Ki,
and thus because received cues are weighted with
1/Ki (see methods section of main text), received
cue intensity becomes larger on average. To com-
pensate for this effect, the average response thresh-
old must be increased. Fig. S10 shows the depen-
dence of the average branching ratio for the differ-
ent visual thresholds. At high densities networks
are similar for all thresholds because basically all
neighbors are very close by and occupy a large an-
gular area in the visual field and smaller (further
away) individuals are blocked from view. The in-
creased average response thresholds for larger visual
thresholds then lead to a smaller branching ratio
at high densities. Our main finding that observed
schools are subcritical is not changed by this and
neither is the general form of the relative individ-
ual payoff.

3.5 Choosing initiators

As seen in Fig. S11 our results do not change qual-
itatively when choosing casacade initiators as net-
work neighbors instead of randomly as in the main
text.

3.6 Choice of agent memory

For our study we have differed from [28] in our
choice of agent memory by choosing τm = 1 instead
of τm = 2. Fig. S12 shows that our results do not
critically depend on this choice.

3.7 Influence of polarization

It has to be acknowledged that while median near-
est neighbor distance appears to be capturing the
most relevant feature of the spatial structure of the
group, there are of course other measures that could
be considered. A commonly used measure in collec-
tive behavior is the group polarization (degree of
orientation order), defined as the normalized abso-
lute sum of the orientation unit vectors of all indi-
viduals, ζi = (cos(φi), sin(φi))

T
, as

Φ =
1

N

∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣ . (S13)



It can take values between 0 and 1, where 1 rep-
resents perfect alignment of individuals and large
systems of individuals with completely uncorrelated
orientations tend towards a polarization of 0. Fig-
ure S13 shows the polarization of the schools at the
beginning of each observed startle cascade and the
corresponding cascade size. While the data sets are
not large enough for a quantitative analysis, there
could be positive correlation between polarization
and cascade size. Especially, a high polarization
could explain the observed deviation of the largest
two cascades in the dataset of larger group size ( 150
fish) from the model prediction (see Figure S7).

3.8 Larger group size

The dataset used in [27] of groups of approxi-
mately 150 fish shows a distribution of median near-
est neighbor distances which resembles that of the
’Alarmed’ state of the smaller groups of 40 indi-
viduals (see Figure S1) and contains n = 134 ob-
served startle cascades. Figures S6 and S7 show
the observed relative frequency of cascade sizes and
the fitted model. The fitted value of the average
response threshold for this dataset is significantly
smaller than those of the other two datasets. The
model may visually appear to underestimate large
cascades (see the deviation of the two largest ob-
served cascade sizes). However, when accounting
for the variation of model predictions for the dif-
ferent networks (shaded green area) and the sam-
pling error of the small number of observed cascades
(error bars on experimentally observed relative fre-
quencies of cascade sizes), the deviation appears less
drastic. In addition, the two data points show a
high polarization value (see Figure S13) which may
introduce some aspects into the collective behav-
ior that are not adequately captured by the model
due to a lack of data to systematically analyze this
effect.

The coefficients of the logistic regression for the
first responder probability are taken from the origi-
nal study and given in table S2. They deviate from
the ones for the smaller data set as well.

Fig. S15 shows the branching ratio for this
dataset. The majority of the observed schools
(green dots in subplot A) are subcritical. How-
ever, some of the networks with the lowest median
NND show a supercritical branching ratio, b > 1.
Even though the smallest median NND values mea-

sured in the larger groups are comparable to that of
the ’Alarmed’ dataset, the lower average response
threshold yields a higher branching ratio at com-
parable NNDs (see equation (6) in the main text,
where b ∝ θ−1max). In addition, the deviation in the
logistic regression coefficients, which enter the cal-
culation of link weights from spatial positions, affect
the dependence of the average branching ratio on
the median NND. Overall it seems that the larger
groups are overall closer to the critical point than
the smaller groups.

It is however important to note that the two
datasets (small/large groups), while using the same
species, differ not only in group size (40 vs. 150± 4
fish), but also in experimental procedure and setup
(i.e. handling of the fish prior to being placed in
the tank, recording time, size- and age-matching,
size of the tank and tank area per fish). All of these
factors could cause the difference in average individ-
ual response threshold, the observed median near-
est neighbor distances and coefficients of the logistic
regression (see Table S2) between the datasets. It
is therefore not possible to attribute the decreased
distance to criticality to the increased group size.
However, the hypothesis that increased group size
decreases distance to criticality should certainly be
addressed in future studies.

3.9 Discussion of model limitations
and further experimental studies

There are a number of limitations of the behavioral
contagion model that could be addressed by more
experimental data to improve and refine statistical
analysis. Currently, interaction networks are built
on pair-wise interactions fitted to first responder
data. This assumes that interactions do not change
during the cascade and that higher order interac-
tions do not play a significant role. Additionally,
with more experimental observations we could de-
termine the features predictive of startle response
and their relative importance for data confined to
small density ranges and thus test if interaction
rules depend on density. This would potentially
show other types of interactions (acoustic, senso-
motor) playing a role at higher densities. This de-
tailed data for different (naturally occurring) den-
sities could also provide a direct observation of the
increase in average cascade size with increasing den-



sity. In an experimental setup that allows us to
startle 1 or 2 initial startlers a detailed analysis of
resulting cascade size distribution could potentially
even show the increase in sensitivity with density
as in Figure 3B and D of the main text or Fig. S11.

The relative payoff measure is simplistic in the
sense that it focuses solely on information process-
ing which is only a single aspect of a wider range of
important factors and lacks experimental evidence
for the assumed reaction to a predator. Experi-
ments with a real predator are needed to determine
the number of initial startlers and potentially even
see the density dependence of predator detection.
Providing a stimulus in empty tank at different
densities that occur via natural fluctuations may
present another possibility test if density indeed has
an effect on the detection ability. This lends itself
to investigate another aspect: In our model we as-
sume that the detection of the predator happens
exclusively at the beginning of the cascade and the
information then spreads only socially. In reality
there will always be a direct detection of the preda-
tor happening along side the behavioral contagion
process that reinforces the spreading and might be
the reason that we observe such high false negatives
in our model, which does not have this mechanism.
In experiments with an artificial stimulus one could
potentially change the duration for which a stimu-
lus is shown to quantify this effect.

4 Sensitivity and branching
ratio

4.1 Variation within original scale
data

Figure S16 shows the model predictions for the orig-
inal scale networks for both measures of criticality,
the collective sensitivity and the branching ratio,
as scattered data points (each point represents one
network which corresponds to an experimental ob-
servation). One observes that due to the variance
in observed spatial configurations some of the net-
works in the ’Alarmed’ dataset can be considered
critical when using the branching ratio as an esti-
mate while their collective sensitivity remains below
the maximum.

4.2 Alternative definitions of collec-
tive sensitivity

Fig. S11 depicts differences between average cas-
cade sizes initiated by m and m + 1 or 1 and m
initial startlers as a generalization of the definition
in the main text. These sensitivities, while not di-
rectly motivated by the underlying theory of criti-
cality, may be biologically relevant. We find, that
independent of the used definition, we observe a
maximum in collective sensitivity close to critical-
ity. We note that the schools are most sensitive to
differences for small numbers of initial startles.

4.3 Branching ratio

The dependence of the branching ratio on median
nearest neighbor distance and the maximum re-
sponse threshold is shown in Fig. S14 and S15 as
well as the averages over original scale networks,
characterizing the experimentally observed schools
as on average subcritical.

4.4 Estimating the branching ratio
from first responder times

While in our manuscript we base the calculation of
the branching ratio on the inferred interaction net-
works and knowledge about the contagion process,
a different approach is to try and directly measure it
from the observed cascades. Here, the quantity one
aims to measure is the average number of fish that
startle in response to a single startle. This raises
the need to assign causality between startles, e.g.
by defining a typical time interval and assuming
that all startles in the current interval were caused
by startles in the last interval. Without the de-
tailed model including the reconstructed interaction
networks, it is however not easily possible to as-
sign causality for startle cascades, because response
times of fish to an observed startle vary largely and
because any startle after the first responder (i.e.
the second startle) is potentially influenced by all
other startles before due to the high speed of the
cascade propagation. Figure S17A depicts the first
responder times, i.e. the time between the first and
the second startle in a cascade, where causality is
most clear. It is not clear how to define a typically
time step based on the wide distribution of response
times. Figure S17B therefore depicts the number of



fish startled within a time interval ∆t after the ini-
tial startle averaged over all observed cascades in
each of the datasets as a function of the time inter-
val ∆t (solid lines). The estimate strongly depends
on the choice of the time interval and therefore can
only be estimated with large uncertainty. However,
for a choice of ∆t larger than 50 to 75% of the ob-
served first responder times (0.1 s ≤ ∆ ≤ 0.2 st as
indicated by vertical lines), both estimates roughly
agree.

4.5 Cascade size distributions near
criticality

Figure S18 depicts cascade size distribution for the
combined networks of 40 individual as well as the
larger group sizes for a maximum response thresh-
old of θmax = 0.016 (comparable to that of the 150
fish data) near the critical point. Each distribution
is the result of combining the simulations runs (1000
per network) of all networks within a bin of me-
dian NND (bin width approximately 0.05 BL). Bins
typically contain about 200 networks for the small
group size and 50 for the larger groups. For the
yellow distribution the bin is centered around the
critical median NND resulting in b = 1, while the
dark blue distribution is centered around the me-
dian NND that yields the maximal collective (1v2)
sensitivity. Using the average branching ratio, a
critical median NND of 0.74 BL for the 40 fish and
0.65 BL for the 150 fish data is estimated. Using
the maximum in sensitivity, the estimated critical
median NND are 0.50 and 0.45 for the 40 and 150
fish data respectively. The distributions show that
the estimated critical median NNDs give a good
upper and lower bound of the critical point, which
is indicated by a power law distribution of relative
cascade sizes.

5 Relative payoff measure

We find in the main text that the relative payoff
shows two local maxima. One is a result of the
maximal visual detection of the predator by group
members (as seen in Fig. S20 where that maximum
increases with increasing the fraction of individuals
responding to their personal visual predator detec-
tion by startling). The other is due to the peak in
sensitivity (as seen in the main text or Fig. S11) to

the number of initial startlers at the critical point
(see Fig. S21, where the initial response to predator
and noise cue is assumed to be identical and there
is no maximum at criticality). The position of the
maximum payoff depends on the relative noise cost
but also on the parameters of the visual predator
detection as we will explain here before giving a
more detailed derivation of the payoff measure.

5.1 Parameters of visual predator
detection

Our model of visual predator detection depends on
three parameters, namely the distance of the preda-
tor from the group boundary, dpred, the maximal
distance at which a predator is still visible dmax

and the response probability of an individual pdetect
(probability to startle given that the individual has
visual access to the predator). Figures S20 and S24
show the influence of pdetect on the relative payoff.
Fig. S22 illustrates how dmax and dpred influence
the number of individuals that can see the preda-
tor, Fig. S23 how they influence the relative payoff.
In Fig. S23A one does not observed curves with
two separate maxima but just one maximum shift-
ing from a density optimizing individual access to
visual information of the predator to the critical
density, optimizing sensitivity to number of initial
startlers. The observed median NNDs of the ‘Base-
line’ and the ‘Alarmed’ dataset are optimal for a
relative noise cost of ξ ≈ 3 and ξ ≈ 1 respectively.

5.2 Construction of the relative pay-
off measure

Here, we start by considering all possible behavior-
environment combinations (false and true positives
and false and true negatives, marked fp, tp, fn and
tn respectively), their costs κ and the rates with
which they occur ρ. All of them are added up into
a payoff rate defined as

ψ̃ = ρfp κfp + ρfn κfn + ρtp κtp + ρtn κtn (S14)

We assume that a predator causes Ninit = n(NND)
initial startlers while a noise cue causes just one,
Ninit = 1, and cues indicating predators appear at
a rate ρpred while cues indicating no predator ap-
pear at rate ρnoise. Then, each individual has the



following rates of

false pos.: ρfp = ρnoise p(startle|Ninit = 1),

false neg.: ρfn = ρpred

[
1− p

(
startle|Ninit = n(NND)

)]
,

true pos.: ρtp = ρpred − ρfn,
true neg.: ρtn = ρnoise − ρfp,

(S15)

where p(startle|Ninit) means the probability to star-
tle (as part of the cascade) given Ninit initial
startlers and can be obtained from simulations. In-
serting (S15) into (S14) yields

ψ̃ =ρpredκtp + ρnoiseκtn+

ρfp(κfp − κtn) + ρfn(κfn − κtp).
(S16)

Since we are interested in the relative payoff of dif-
ferent school densities for a fixed environment and
do not want to compare payoff rates between differ-
ent environments, we can choose the baseline freely.
We set it to ρpredκtp + ρnoiseκtn, the rate at which
an individual on average gains benefits by making
correct decisions. By rescaling the payoff rate in
units of ρpred(κfn−κtp) (the average payoff rate as-
sociated to a predator cue) we can define a relative

payoff as

ψ =
ψ̃ − (ρpredκtp + ρnoiseκtn)

ρpred(κfn − κtp)

=
ρfp
ρpred

(
κfp − κtn
κfn − κtp

)
+

ρfn
ρpred

(S17)

Inserting S15 then yields

ψ = ξ p(startle|Ninit = 1)

+ [1− p(startle|Ninit = n(NND))]
(S18)

with

ξ =
ρnoise
ρpred

(
κfp − κtn
κfn − κtp

)
(S19)

Here, ρnoise/ρpred is the relative prevalence of
noise cues compared to the predator cues. If
ρnoise/ρpred � 1 the environment is very noisy, if
ρnoise/ρpred � 1 there is a lot of predation. In the

cost-based term
κfp−κtn

κfn−κtp
the numerator measures

the costs associated to startling behavior, the de-
nominator quantifies the costs of an attack that are
due to injury or risk of death. This term can be
thought of as the relative costs of noise. The com-
bination of both terms, ξ, can best be described as
the relative noise cost.



0.4 2.0 3.6 5.2
median NND [BL]

0

200

400

600

nu
m

be
r o

f n
et

wo
rk

s

Baseline
Alarmed

0.4 2.0 3.6 5.2
median NND [BL]

0

100

200

nu
m

be
r o

f n
et

wo
rk

s

~150 fish
~150 fish 
(original scale only)

Figure S1: Histograms of median nearest neighbor distance in the rescaled position data for the different
datasets. Rescaling position data (see equation (S1)) yields a wider distribution of median nearest
neighbor distance in each dataset (compare distribution without rescaling, included here for 150 fish and
depicted in Figure 1 in the main text for small groups).

dataset visual field method max. response thresh. CI max. LL

40 fish ‘Baseline’ ray casting 0.021 [0.018,0.033] -175

40 fish ‘Baseline’ ellipses 0.028 [0.023,0.034] -166

40 fish ‘Alarmed’ ray casting 0.032 [0.030 0.034] -387

40 fish ‘Alarmed’ ellipses 0.031 [0.028,0.035] -360

150 fish ray casting 0.016 [0.014,0.018] -305

150 fish ellipses 0.019 [0.018,0.022] -297

Table S1: Fitting the response threshold for networks constructed from the different methods of visual
field construction. Credible intervals overlap for both methods and maximum likelihood is comparable.
Fitting is based on 10000 simulations per network with the initial startler set in accordance with the
experimentally observed cascade initiator.

dataset β1 (Intercept) β2 (LMD coefficient) β3 (RAA coefficient)
40 fish joined -0.271 -2.737 -0.097

150 fish 0.302 -3.272 (-1.421) -0.126

Table S2: Coefficient values to equation (S11) as determined by the logistic regression of first response
rates. The base of the logarithm is 10 as in [28]. The values for 150 fish were taken from [27] which was
using a natural log (coefficient value in bracket) and was transferred to log base 10.
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Figure S2: Illustration of the ellipses used to approximate an individual fish and variables used in the
analytical calculation of the ellipse’s visual field. The visual angle, α, of ellipse B in the visual field
of ellipse A, is colored red and given by the angle between the two tangent lines (dashed, red) which
intersect ellipse B in a single point (red) each.
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Figure S3: Determining aspect ratio w and eye position l used to approximate fish by ellipses from
tracking data. This histogram is based on a video from the experiments performed in [27].
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Figure S4: Illustration of the ellipse interactions in the active particle simulation. Ellipses repel each
other based on their overlap area (hatched). To speed up the simulation and avoid very small forces
towards the end we use a larger ellipse (rescaled by a factor 1.1, black lines) to calculate overlap area and
stopped the simulation when the original sized ellipses (colored areas) do not overlap anymore.
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Figure S5: Network properties as a function of median nearest neighbor distance (NND) for the different
datasets (lines represent averages over networks obtained from different experimental trials, shaded areas
the standard deviation between networks). Dots with error bars represent averages ± one standard
deviation of the mean over the original scale experimental trials. Average link weight (A) and average
weighted degree (C) decrease with NND. Average number of network neighbors (B) peaks at intermediate
densities. At low NND occlusions limit the number of neighbors, at high NND the visual threshold leads
to a decrease in neighbors. The clustering coefficient (D), which was shown to predict cascade sizes [27],
decreases with NND.

vis max.

dataset thresh. response thresh. CI max. LL

40 fish ‘Baseline’ 0.00 0.027 [0.022, 0.033] -164

0.02 0.028 [0.023, 0.034] -166

0.10 0.049 [0.041, 0.055] -159

0.20 0.080 [0.056, 0.100] -173

40 fish ‘Alarmed’ 0.00 0.031 [0.029, 0.035] -360

0.02 0.031 [0.028, 0.035] -360

0.10 0.039 [0.036, 0.044] -355

0.20 0.048 [0.041, 0.054] -367

Table S3: Influence of a visual threshold (minimal angle required for visibility) on fitting the maximum
response threshold based on 10000 simulation runs for each network. These values of the maximum
response threshold are used to calculate the branching ratio, see fig. S10 and equation (S12).
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Figure S6: Calibration of the model: the maximum response threshold is chosen to maximize the rel.
log-likelihood. Left: rel. log-likelihood, right: credible intervals for the best fit parameter. For details
refer to table S1. While in agreement with [28] the thresholds for the two experimental conditions of the
groups of 40 fish have overlapping credible intervals, the group of 150 fish is best described by a lower
threshold. This difference can be due to any of the differences in experimental setup and procedure and
is in need of further research exploring this systematically. The ellipse based (dashed line) and the ray
casting based (solid line) networks perform comparably well in describing the experimental data.
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Figure S7: Best model fits (black lines) of the observed cascade size distributions. The models are using
networks based on ray casting (dashed, black lines) or the ellipse approximation (solid lines) and lines
represent the average over all networks. The colored (purple/orange/green) shaded areas represent +/-
one standard deviation over the set of networks and therefore capture the variation in network topology
and median NND. Grey shaded areas correspond to credible intervals for the model fit based on the CI
of the response threshold, see Fig. S6). Dots represent relative frequencies of the different cascade sizes
observed in the data as estimates of the cascade size probabilities. The error bars capture the sampling
error and represent all probabilities for which the observed number of cascades lies within the 95% of a
binomial distribution with this success probability. Note that the deviation of the largest two cascades
in the case of large schools (right) may be due to high group polarization (see Figure S13).
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Figure S8: Comparison of networks constructed from original scale experimental data using the ellipse
approximation with networks constructed from body pose estimation and ray casting (as in [28] and [27])
via distributions of different network properties. Filled area: Networks using ray casting. Line: Networks
using ellipses. Histograms show (from left to right): strength (sum of all weighted network links of a
node), degree (number of links per node), link weights, link distance (metric distance between two fish
connected by a link). Each row corresponds to one of the datasets, top: 40 fish ‘Baseline’, bottom: 40 fish
‘Alarmed’. Overall the approximation works well with only minor differences between the distributions.
The elimination of overlaps in the ellipse networks also eliminates very small distances present in the
school as seen in the right column of plots. This weakens some short and strong links by making them
a bit longer (see link weight distribution). Additionally, the number of visible neighbors is decreased by
this elimination of overlaps because fish that before were stacked on top of each other and not occluding
each other’s view now become close neighbors in the same plane and thus block a large part of each
other’s field of view. Especially in the case of the high density dataset (40 fish ‘Alarmed’) this difference
is notable in the shift of the degree and strength distribution.
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Figure S9: Investigating physical limit of density modulation: Estimation of average number of physical
contacts an individual has with its neighbors at a certain density (given by the group’s median nearest
neighbor distance). Shaded areas indicate one standard deviation above and below the average. To
estimate the number of contacts we identify ellipses that intersect when scaled up to 105% of the original
size.
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Figure S10: Average branching ratio as function of median nearest neighbor distance (NND) for different
visual thresholds (minimal angle of individual i in the visual field of individual j required for existence
of network link between them). We observe a shift of the estimated critical point (b = 1) to lower NND
for increasing visual threshold, making it impossible to reach criticality without an additional change of
individual responsiveness. This does not change our finding, that experimentally observed schools are
subcritical, nor the general form of the relative individual payoff.
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Figure S11: Alternative definitions of collective sensitivity as difference in average cascade size between
m and m+1 (left) or 1 and m (right) initial startlers all exhibit a peak near criticality. A) Initial startlers
are chosen randomly from the school. B) Initial startlers are randomly chosen network neighbors of the
same (randomly chosen) individual. Results are qualitatively similar for both choices of initialization.
The dashed vertical line indicates where b = 1. For all measures, the location of peak sensitivity is near
this line and its distance to it decreases with increasing m.
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Figure S13: Observed cascade sizes plotted against group polarization (see equation (S13)) at the begin-
ning of the cascade for the three different datasets.
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Figure S14: The average branching ratio, an analytical estimate of criticality, as a function of A) median
nearest neighbor distance (NND) and B) median NND and maximum response threshold. Lines in A)
are averages over simulations for all rescaled networks binned by median NND. Shaded areas indicate
the uncertainty of the model fit (average response threshold fit, see Table S1). The dotted line in A)
and dashed line in B) marks b = 1 which is also include in Fig. 3C of the main text. For the optimal
response threshold both datasets indicate a critical median NND of 0.52 BL. Data points are averages
over original scale networks and represent the experimentally observed schools. In A) both horizontal
and vertical error bars indicate one standard deviation of the average over networks in B) the vertical
errorbars are the credible intervals for the model fit of the average response threshold, see table S1. For
version of A) including the scattered data points of original scale networks instead of their average, refer
to Figure S25.
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Figure S15: Branching ratio for dataset of approximately 150 fish from [27]. Analytical estimation
averaged over small bins of median NND using the full set including rescaled networks (lines in A,
colormap in B) and averages over only original scale networks characterizing experimental observations
(errobars, as in S14). For the optimal response threshold (θmax = 0.19) the critical median NND is
approximately 0.6 BL (dotted vertical line in A). The observed schools are on average subcritical, like
the observed schools of 40 fish discussed in the main paper, but some single observed schools are have
b > 1. Shaded grey areas indicate the branching ratio resulting from using the upper and lower limit
of the credible interval of the average response threshold. The average nearest neighbor distance of
0.75±0.15 BL) is comparable to that of the ’Alarmed’ dataset of 40 fish, but the lower fitted average
response threshold for this dataset yields larger branching ratios in comparison.
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Figure S16: Variation of criticality measures within the model prediction for the experimentally observed
schools. Each point represents one of the original scale networks from either the ’Alarmed’ (red) or the
’Baseline’ dataset (grey). The ’Alarmed’ dataset contains a few networks with a critical branching ratio
but collective sensitivity below the maximal value.
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Figure S17: Estimation of average branching ratio directly from data of observed cascades. (A) Distri-
bution of first responder times (time between first and second observed startle) across all three datasets.
Vertical lines indicate quartiles of the distribution. (B) Branching ratio estimates based on the average
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text (dashed lines). Shaded areas indicate one standard deviation of the average over networks for the
network-based branching ratio estimate.
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Figure S18: Cascade size distributions for θmax = 0.016. The two estimates of criticality, the critical
branching ratio, b = 1, and the maximum sensitivity, provide an upper and lower bound for the median
nearest neighbor distance at which the cascade size distribution most resembles a truncated power law,
both for the smaller (N=40, A) and the larger system (N ≈ 150, B). Lines represent distributions of
simulation runs for networks (1000 runs per network) within an (approx.) 0.05 BL interval centered
around estimated critical median NNDs (yellow: b = 1, NNDcrit = 0.65 BL for N = 40 and NNDcrit =
0.74 BL for N ≈ 150, dark blue: max. sensitivity, NNDcrit = 0.50 BL for N = 40 and NNDcrit = 0.45 BL
for N ≈ 150 ) and equidistant NND values inbetween the two estimates.
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Figure S19: Likelihood of the different decision outcomes for the individual as a function of median
nearest neighbor distance (NND). Close to the critical point false negatives decrease and false positives
increase, and thus there remains a trade-off between two types of errors that can be managed according
to the environment by choosing the appropriate distance to criticality. Inset shows the number of initial
startlers used to trigger cascades assumed to be initiated by a predator cue (red) or noise (black).
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Figure S20: Relative payoff for different reactive fractions, pdetect, in the individuals that can see the
predator. Increasing this fraction increases the maximum at intermediate densities but does not change
the qualitative results. The left panel is as in the main paper.
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Figure S21: Relative payoff, assuming that both noise and predator cue trigger just one initial startle.
The divergence at small NND remains, while the maximum at intermediate densities and the one at the
critical point disappear.
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Figure S22: Influence of distance of group boundary to predator (dpred, right) and maximal detection
distance of the individual (dmax, left) on the number of individuals that have visual access to a predator
plotted against median nearest neighbor distance. As long as there is an upper limit to the distance at
which an individual can perceive a predator, the qualitative shape of the curve remains unchanged. The
exact position of the maximum changes.
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Figure S23: Relative individual payoff for varying parameter dmax (maximum detection limit) of the visual
detection for dmax = 20 BL (left), dmax = 40 BL (middle, as in main text) and dmax = 70 BL (right). All
plots use dpred = 10 BL. Due to the shift in the position of the maximum of visual access (see Fig. S22,
left plot) the position of the second maximum of the relative payoff also shifts. For dmax = 20 BL (left)
both maxima (the criticality-based one and the visual-access-based one) merge into a single maximum.
For this case, the average median NND of the ’Baseline’ dataset is optimal for high relative noise costs
(ξ ≈ 3) and the ’Alarmed’ dataset is on average optimal for a relative noise cost of ξ ≈ 1.
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Figure S24: Payoff for an maximum response threshold of θmax = 0.009 and reactive fraction pdetect = 0.1
(left) or pdetect = 0.3 (right). Because at low NND the number of initial startlers goes below 1 for
pdetect = 0.1, the supercritical state (very low NND), is not optimal. Even though every initial startle
yields a global response in this regime, the likelihood of a predator being detected is lower than one
and thus no cascade may be initiated at all. This decrease in payoff for very low NND and very low
relative noise cost (red curves) disappears as soon as we assume that at least one individual will respond
to a predator (see right plots). The existence of a maximum at criticality for intermediate relative noise
cost is unchanged by this. Unlike for θmax ≈ 0.03 as used in the main text, here the second maximum
disappears because the critical point has shifted to higher NND and thus closer to the maximum of the
visual detection (bottom plots).
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Figure S25: Average branching ratio plotted against three measures of density: median nearest neighbor
distance (left, as used in main text), third nearest neighbor distance (middle) and density (right, cal-
culated as ratio of group size and area of the group’s convex hull). Data points represent results using
the networks obtained from experimental observations without rescaling of inter-individual distances.
Independent of the density measure the observed schools are on average subcritical with single networks
having a critical branching ratio, b = 1.
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