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Material and Methods. 
Description of the population data 
As a proxy for germline mutations, we used SNVs from TOPMed freeze 5 (WHI_GeneSTAR 
cohort was excluded, due to lack of access to it) (9) or gnomAD version r2.0.2 (10). The resulting 
number of individuals in TOPMed was 42,813, and in gnomAD - 15,063, and the corresponding 
numbers of SNVs are 292,382,053 and 182,057,341. These datasets have high average 
sequencing depth, above 30x. We did not have access to ethnicity of individuals in the TOPMed 
project, and did not apply any SNV stratification by ethnicity or phenotype of the carrier in both 
datasets. Only variants with allelic frequency below 10-4 were considered in further analysis, in 
order to minimize the effects of selection or biased gene conversion, in agreement with prior 
literature (4, 29). 82% of TOPMed SNVs were below this threshold (Fig. S1B). The resulting set 
of SNVs included singletons, as no minimal frequency threshold was applied.  
 
Preparation of the mutational matrix 
To explore the uniformity of the base calling/sequencing quality, we examined the distribution 
of the number of mutations within 1 kb windows across the genome. This distribution was 
bimodal, with the first mode found at 0 SNVs per region (Fig. S3A). This mode clearly 
corresponded to regions of low quality. Therefore, we excluded 1kb loci with the abnormally 
low mutation counts (less than 50 mutations) from all the subsequent analyses.  
 
Distribution of rare SNVs may provide a biased estimation for the mutation rates because some 
SNVs may have resulted from several independent recurrent mutational events. Such recurrent 
mutations would be more common among hypermutable sites, leading to underestimation of 
mutation rate. We developed a novel statistical approach to address this issue (see methods 
below) and adjusted the mutational matrix for potential recurrence. 
 
For downstream analyses, the genome was binned into non-overlapping windows of 2, 5, 10, 
30, 100 or 1000 kilobases in size, and mutation rate within each window was estimated as a 
ratio between the number of each of the 192 mutation types and the number of corresponding 
trinucleotide sites for each mutation type.  
 
Accounting for recurrent mutations   
We estimate the expected recurrence fractions of each mutation count by comparing the 
site frequency spectrum of different mutational contexts to a reference SFS in a designated low 
mutation rate context. This approach estimates properties of the distribution of mutation rates 
in order to predict recurrence fractions. 
 
Conditional on the genealogy and mutation rate at a site, the number of mutations at count i 
in a sample is assumed to be Poisson. 

𝑌𝑌𝑖𝑖|𝜇𝜇,𝑇𝑇𝑖𝑖 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜇𝜇𝑇𝑇𝑖𝑖), 
where 𝑌𝑌𝑖𝑖 is the number of independent i count mutations in a sample of size n and 𝑇𝑇𝑖𝑖 is the 
total length of coalescent tree branches subtending i sampled chromosomes. This will be a 



good approximation if the considered count is sufficiently smaller than n, because mutations 
will be unlikely to occur on the same branch. In practice, what can be observed are composites 
of independent mutations Cj comprising all 𝑌𝑌 = (𝑌𝑌1, … ,𝑌𝑌𝑘𝑘) such that ∑ 𝑌𝑌𝑖𝑖 ⋅ 𝑖𝑖 = 𝑗𝑗. Let 𝛯𝛯𝑗𝑗be a 
random variable giving the sample count of sites in class Cj. 
 
The probability of being in a certain class, conditional on the mutation rate and branch 
lengths is 
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If L sites are observed, the overall distribution of counts in different classes is an overdispersed 
multinomial distribution, where probabilities differ among sites due to differences in genealogy 
and mutation rate. We approximate this distribution as Poisson 

𝛯𝛯𝑗𝑗 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝐿𝐿 ⋅ 𝑃𝑃𝑗𝑗�, 
where 

𝑃𝑃𝑗𝑗 = 𝐸𝐸𝜇𝜇,𝑇𝑇𝑖𝑖[𝑃𝑃(𝐶𝐶𝑗𝑗|𝜇𝜇,𝑇𝑇𝑖𝑖)] 
To obtain the likelihood of the observed counts of low-frequency alleles, we calculate the 
expected probability of observing each allele count. In theory, doing so involves integrating 
over the distribution of genealogies and mutation rates. In practice, we approximate the 
distribution of branch lengths as constant and only consider the first max moments of the 
mutation rate distribution. In the first equation, ignoring higher order moments of the mutation 
rate distribution is equivalent to ignoring observed alleles comprised of more than mmax 
independent mutations, or integer partitions of j with more than mmax components. We can 
break 𝑃𝑃𝑗𝑗 into components corresponding to different levels of recurrence. 

𝑃𝑃𝑗𝑗 = ∑𝑗𝑗
𝑟𝑟=1 𝑃𝑃𝑟𝑟,𝑗𝑗 ≈ ∑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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When the mutation rate is low and recurrence can be ignored, the elements of the 
expected SFS are proportional to E[Tj]. We therefore use the SFS in the trinucleotide context 
with the lowest mutation rate, TTG>TAG, to estimate E[Tj]. We then estimate the five first 
moments of the mutation rate distribution in each trinucleotide context. We allow for a 
maximum of five independent mutations at each site (mmax = 5) and compute the likelihood of 
the first 70 entries of the SFS. We search for maximum likelihood parameter values of the 



mutation rate moments using sequential least squares programming and the Basin-hopping 
algorithm as implemented in scipy. This provides a set of recurrence estimates, 𝑃𝑃�𝑟𝑟,𝑗𝑗 which can 
be used to adjust each SNP in the observed SFS for the expected number of independent 
mutations it represents. 
 
Normalization of mutation rates 
A natural assumption is that number of mutations 𝑚𝑚𝑖𝑖𝑖𝑖 of mutation type 𝑗𝑗 in a window 𝑖𝑖 is drawn 
from Poisson distribution: 𝑚𝑚𝑖𝑖𝑖𝑖 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑖𝑖𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖𝑖𝑖), where 𝜆𝜆𝑖𝑖𝑖𝑖 is mutation rate and 𝑐𝑐𝑖𝑖𝑖𝑖is the number 
of contexts for mutation type 𝑗𝑗 in a window 𝑖𝑖. Since Poisson process makes downstream 
statistical inference complicated, we use its normal approximation 𝑚𝑚𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(𝜆𝜆𝑖𝑖𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖𝑖𝑖,𝜎𝜎𝑖𝑖𝑖𝑖 =
�𝜆𝜆𝑖𝑖𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖𝑖𝑖). That way, observed mutation frequency 𝑚𝑚𝑖𝑖𝑖𝑖/𝑐𝑐𝑖𝑖𝑖𝑖  is linked to mutation rate 𝜆𝜆𝑖𝑖𝑖𝑖: 
𝑚𝑚𝑖𝑖𝑖𝑖/𝑐𝑐𝑖𝑖𝑖𝑖 ∼  𝑁𝑁(𝜆𝜆𝑖𝑖𝑖𝑖,𝜎𝜎𝑖𝑖𝑖𝑖 = �𝜆𝜆𝑖𝑖𝑖𝑖/𝑐𝑐𝑖𝑖𝑖𝑖). To simplify downstream inference, we assume that mutation 
frequencies of a mutation type have shared across windows standard deviation  𝜎𝜎�𝑖𝑖 shared across 
windows:  𝑚𝑚𝑖𝑖𝑖𝑖/𝑐𝑐𝑖𝑖𝑖𝑖 ∼  𝑁𝑁(𝜆𝜆𝑖𝑖𝑖𝑖,𝜎𝜎𝑖𝑖𝑖𝑖 =  𝜎𝜎�𝑖𝑖), 𝜎𝜎�𝑖𝑖 is an empirical standard deviation of 𝑚𝑚𝑖𝑖𝑖𝑖/𝑐𝑐𝑖𝑖𝑖𝑖 across 
genomic windows j. To account for different noise 𝜎𝜎�𝑖𝑖 across mutation types, we further consider 
𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖/(𝑐𝑐𝑖𝑖𝑖𝑖 ⋅ 𝜎𝜎�𝑖𝑖) and 𝑥𝑥𝑖𝑖𝑖𝑖 ∼  𝑁𝑁(𝜆𝜆𝑖𝑖𝑖𝑖/𝜎𝜎�𝑖𝑖𝑖𝑖, 1). An alternative approach could be to estimate 
window-specific and mutation type-specific 𝜎𝜎𝑖𝑖𝑖𝑖 from the data and use it as observation weights 
in the objective function, but it is prone to be noisy in case of small number of mutations. In 
case 𝜎𝜎�𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖 , mutation types would have the same statistical variability. In the data, 𝜎𝜎�𝑖𝑖𝑖𝑖 includes 
statistical and biological variability across windows and generally larger than 𝜎𝜎𝑖𝑖𝑖𝑖. Throughout the 
paper spectra of mutational components are shown in variance normalized form, but are 
available for downloading in both variance normalized and standard forms (see 
https://github.com/hms-dbmi/spacemut) (27). 
 
 
 
Volume-regularized NMF 
Regional mutation frequencies 𝑥𝑥𝑖𝑖  in a window 𝑖𝑖 are assumed to be additive contribution of 𝑞𝑞 
mutational components: 
 

𝑥𝑥𝑖𝑖 = �
𝑞𝑞

𝑝𝑝=1

𝑠𝑠𝑝𝑝 ⋅ 𝐼𝐼𝑖𝑖𝑖𝑖,     (1) 

 
where 𝑠𝑠𝑝𝑝- spectrum of component 𝑝𝑝and 𝐼𝐼𝑖𝑖𝑖𝑖- intensity of component 𝑝𝑝 in window 𝑖𝑖. In particular, 
10 kb non-intersecting genomic windows provide 263,870 vectors of regional mutation 
frequencies 𝑥𝑥𝑖𝑖  of length 192. 
 
NMF is a natural statistical framework of this biological model. It would seek to find non-negative 
matrices 𝑆𝑆 of components spectra and 𝐼𝐼 of components spatial intensities such that 𝑋𝑋 ≈ 𝐼𝐼 ⋅ 𝑆𝑆𝑇𝑇 . 
However, NMF is not an identifiable problem in general cases (5, 30): there are a potentially 
infinite number of pairs (𝐼𝐼, 𝑆𝑆) that deliver the same quality of matrix 𝑋𝑋 approximation. The 
assumptions under which NMF guarantees a unique solution are rather restrictive and likely do 

https://github.com/hms-dbmi/spacemut


not hold in the case of germline mutations (Fig. S1K). At the same time, lack of identifiability 
impedes unambiguous biological interpretation of NMF results.  
 
In the noiseless case, NMF has a simple geometrical interpretation of finding a simplicial cone in 
the positive quadrant that contains all data points. Existence of multiple simplicial cones in the 
positive quadrant containing all data points is equivalent to the lack of NMF identifiability. 
Intuitively, there would exist many simplicial cones as soon as data points are distanced from 
facets of the positive quadrant. To overcome the issue, a common practice is to identify a 
simplicial cone of minimum volume that contains all of the data points (31). Importantly, recent 
theoretical advances reveal that under relatively mild assumptions on spread of column vectors 
of 𝑆𝑆 (or 𝐼𝐼) the simplicial cone of minimum volume is unique and delivers the correct solution of 
the NMF problem (32). 
 
In the case of datasets with large numbers of noisy observations, as happens in this study with 
263,870 windows of regional germline mutation rates, an efficient approach would be a 
reformulation of NMF in “covariance domain” (33): 
 

𝑃𝑃 =  𝑆𝑆 ⋅ 𝑅𝑅 ⋅ 𝑆𝑆𝑇𝑇 ,     (2)  
 

where 𝑆𝑆 ≥ 0, 1𝑇𝑇 ⋅ 𝑆𝑆 = 1,𝑅𝑅 ≥ 0,𝑃𝑃 =  𝑋𝑋𝑇𝑇 ⋅ 𝑋𝑋 is co-occurrence of regional mutation type rates, 
𝑅𝑅 = 𝐼𝐼𝑇𝑇 ⋅ 𝐼𝐼 is co-occurrence of intensities of mutational components.  
 
In the noiseless case, analogous to finding a simplicial cone of minimum volume, it was shown 
that under relatively mild assumptions on the spread of mutational spectra 𝑆𝑆, finding minimum 
volume of matrix 𝑅𝑅 identifies unique and correct solution of (2) (34). Since real data are 
corrupted by noise and can be prone to model misspecifications, a more realistic approach is a 
two-step procedure. In the first step, matrix 𝑃𝑃 is denoised using singular value decomposition by 
projecting vectors onto first 𝑞𝑞 components: if 𝑃𝑃 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇 than denoised 𝑃𝑃 ≈
𝑈𝑈1:𝑚𝑚,1:𝑞𝑞𝛬𝛬1:𝑞𝑞,1:𝑞𝑞𝑈𝑈1:𝑚𝑚,1:𝑞𝑞

𝑇𝑇 , where 𝑚𝑚 = 192 mutation types.  In the second step, quality of matrix 𝑃𝑃 
approximation and volume size of matrix 𝑅𝑅 are balanced in the following optimization problem 
(7, 35): 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅,𝑆𝑆|𝑃𝑃 − 𝑆𝑆 ⋅ 𝑅𝑅 ⋅ 𝑆𝑆𝑇𝑇|𝐹𝐹2 +  𝜆𝜆 ⋅ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅),𝑆𝑆 ≥ 0, 1𝑇𝑇 ⋅ 𝑆𝑆 = 1,𝑅𝑅 ≥ 0,     (3)   
 
where 𝜆𝜆 is volume regularization parameter and | |𝐹𝐹  is Frobenius norm. Volume of matrix 𝑅𝑅 is 
proportional to its determinant. To alleviate computational issues of dealing with determinant, 
here we utilize a commonly used volume approximation 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅)  =  𝑙𝑙𝑙𝑙𝑔𝑔(𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅) + 𝜀𝜀), 
where 𝜀𝜀 is a small number to avoid zero logarithm (7). 
 
However, the problem (3) includes a quadratic form  𝑆𝑆 ⋅ 𝑅𝑅 ⋅ 𝑆𝑆𝑇𝑇, which makes optimization of 
(3) non-trivial. To further simplify complexity and dimensionality of the optimization, we use 
square root decomposition 𝑃𝑃 = 𝐵𝐵𝐵𝐵𝑇𝑇 and decomposition 𝑅𝑅 = 𝐷𝐷𝐷𝐷𝑇𝑇. It can be shown that 
equality (2) entails 𝐵𝐵 ⋅ 𝑈𝑈 = 𝑆𝑆 ⋅ 𝐷𝐷, where 𝑈𝑈 is an orthonormal matrix, and 𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅) + 𝜀𝜀)  =



𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑𝑑𝑑(𝐷𝐷𝐷𝐷𝑇𝑇) + 𝜀𝜀). Thus, optimization problem (3) is almost equivalent to the following 
optimization problem: 
 
𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆,𝐷𝐷,𝑈𝑈|𝐵𝐵 ⋅ 𝑈𝑈 − 𝑆𝑆 ⋅ 𝐷𝐷|𝐹𝐹2 +  𝜆𝜆 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑𝑑𝑑(𝐷𝐷𝐷𝐷𝑇𝑇) + 𝜀𝜀), 𝑆𝑆 ≥ 0, 1𝑇𝑇 ⋅ 𝑆𝑆 = 1,𝐷𝐷 ≥ 0,𝑈𝑈𝑈𝑈𝑇𝑇 = 𝐼𝐼.    (4)   

 
This problem can be solved using alternating optimization. After learning component spectra 
matrix 𝑆𝑆 from (4), matrix 𝐼𝐼 of component intensities can be identified via non-negative least 
squares using (1) and is described in the Methods section “Inference of spatial intensities”. Non-
convex optimization problem (4) is solved using iterative alternating optimization of matrices 
𝑆𝑆,𝐷𝐷 and 𝑈𝑈. Optimization of individual matrices, largely following, is outlined below. 
 
1) Optimization of non-negative 𝐷𝐷. At each iteration 𝑘𝑘, matrix 𝐷𝐷 is optimized upon fixed 
{𝑆𝑆𝑘𝑘−1,𝑈𝑈𝑘𝑘−1}. Optimization problem (4) is majorated by a positive-definite quadratic form with 
respect to 𝐷𝐷 using the following 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 inequality from (35):  
 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑𝑑𝑑(𝐷𝐷𝐷𝐷𝑇𝑇) + 𝜀𝜀)  ≤ 𝑇𝑇𝑇𝑇(𝐹𝐹𝑘𝑘−1𝐷𝐷𝐷𝐷𝑇𝑇)  −  𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑 𝐹𝐹𝑘𝑘−1  −  𝐾𝐾, 
 

where 𝐹𝐹𝑘𝑘−1 = (𝐷𝐷 𝑘𝑘−1𝐷𝐷𝑘𝑘−1𝑇𝑇 + 𝜀𝜀𝜀𝜀) −1 and the equality holds when 𝐷𝐷 = 𝐷𝐷 𝑘𝑘−1. Thus, the 
original non-convex objective function (4) is majorated by the following convex function 𝑔𝑔(𝐷𝐷): 
 

𝑔𝑔(𝐷𝐷) = |𝐵𝐵 ⋅ 𝑈𝑈𝑘𝑘−1 − 𝑆𝑆𝑘𝑘−1 ⋅ 𝐷𝐷|𝐹𝐹2 +  𝜆𝜆 ⋅ 𝑇𝑇𝑇𝑇(𝐹𝐹𝑘𝑘−1𝐷𝐷𝐷𝐷𝑇𝑇). 
 
Function 𝑔𝑔(𝐷𝐷) subject to non-negative  constraints 𝐷𝐷 ≥ 0 is minimized using a local upper bound 
approximation: 

𝑔𝑔(𝐷𝐷)  ≤ 𝑔𝑔(𝐷𝐷𝑘𝑘−1) + 𝛻𝛻𝛻𝛻(𝐷𝐷𝑘𝑘−1,  𝑆𝑆𝑘𝑘−1,𝑈𝑈𝑘𝑘−1)𝑇𝑇 ⋅ (𝐷𝐷 − 𝐷𝐷𝑘𝑘−1) + 𝐿𝐿𝑘𝑘 ⋅ |𝐷𝐷 − 𝐷𝐷𝑘𝑘−1|𝐹𝐹2 , 
where 𝐿𝐿 𝑘𝑘 is Lipschitz constant 𝐿𝐿 𝑘𝑘 = |(𝑆𝑆𝑘𝑘−1)𝑇𝑇𝑆𝑆𝑘𝑘−1 + 𝜆𝜆 ⋅ (𝐹𝐹𝑘𝑘−1)𝑇𝑇 ⋅ 𝐹𝐹𝑘𝑘−1|𝐹𝐹.  It comes down to 
the following update: 
 

𝐷𝐷𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐷𝐷𝑘𝑘−1 − 1/𝐿𝐿𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻(𝐷𝐷𝑘𝑘−1,  𝑆𝑆𝑘𝑘−1,𝑈𝑈𝑘𝑘−1) , 0)    (5) 
 
Overall, optimization of 𝐷𝐷 at each iteration consists of a predefined number of updates (5). To 
speed up convergence of convex upper bound (5) Nesterov acceleration is used at each update 
.  
 
2) Optimization of non-negative 𝑆𝑆. At each iteration 𝑘𝑘, matrix 𝑆𝑆 is optimized upon fixed 
{𝐷𝐷𝑘𝑘,𝑈𝑈𝑘𝑘−1}. Problem (4) is quadratic programming with respect to 𝑆𝑆. However, it requires 
simultaneous full matrix optimization, since rows of 𝑆𝑆 are coupled in (4) due to column 
constraints 1𝑇𝑇 ⋅ 𝑆𝑆 = 1. To uncouple this dependence and provide small-scale per-column 
optimizations, an upper bound local approximation of 𝑆𝑆 in (4) is used. Assuming ℎ(𝑆𝑆) =
|𝐵𝐵 ⋅ 𝑈𝑈𝑘𝑘−1 − 𝑆𝑆 ⋅ 𝐷𝐷𝑘𝑘|𝐹𝐹2 , it follows that: 
 

ℎ(𝑆𝑆)  ≤ ℎ(𝑆𝑆𝑘𝑘−1) + 𝛻𝛻ℎ(𝑆𝑆𝑘𝑘−1) ⋅ (𝑆𝑆 − 𝑆𝑆𝑘𝑘−1) + 𝑀𝑀𝑘𝑘 ⋅ |𝑆𝑆 − 𝑆𝑆𝑘𝑘−1|𝐹𝐹2 ,     (6)   
 



where Lipschitz constant 𝑀𝑀𝑘𝑘 = |(𝐷𝐷𝑘𝑘)𝑇𝑇𝐷𝐷𝑘𝑘|𝐹𝐹. Solution of the upper boundary (6) subject to 
column simplex constraints 1𝑇𝑇 ⋅ 𝑆𝑆 = 1, 𝑆𝑆 ≥ 0, that can be calculated independently for each 
column, is:   
 

𝑆𝑆𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1𝑇𝑇⋅𝑆𝑆=1,𝑆𝑆≥0(𝑆𝑆 − (𝑆𝑆𝑘𝑘−1 − 1/𝑀𝑀𝑘𝑘 ⋅ 𝐺𝐺) ),     (7) 
 
where 𝐺𝐺(𝑆𝑆 𝑘𝑘−1,𝐷𝐷𝑘𝑘 ,𝑈𝑈𝑘𝑘−1) = (𝑆𝑆𝑘𝑘−1𝐷𝐷𝑘𝑘 − 𝐵𝐵𝑈𝑈𝑘𝑘−1) ⋅ (𝐷𝐷𝑘𝑘)𝑇𝑇 .Simplex projection (7)of each column 
vector can be solved efficiently (36). Overall, optimization of 𝑆𝑆 at each iteration consists of a 
predefined number of updates (7). To speed up convergence, Nesterov acceleration is used at 
each update.  
 
3) Optimization of orthonormal 𝑈𝑈. At each iteration 𝑘𝑘, matrix 𝑈𝑈 is optimized upon fixed {𝐷𝐷𝑘𝑘, 𝑆𝑆𝑘𝑘}. 
Problem (4) is orthogonal Procrustes problem with respect to 𝑈𝑈and has a closed-form solution.  
 
The algorithm iteratively updates matrices 𝐷𝐷, 𝑆𝑆,𝑈𝑈 until convergence to a local optimum. Usually 
a small relative change of objective function or matrices is used as stopping criteria. For this 
TOPMed dataset, we observed that the algorithm often converges after 1000 iterations and 
always converges after 3000 iterations. Thus, the algorithm was run for 3000 iterations. Matrices 
𝐷𝐷 and 𝑆𝑆 are updated 10 times inside each iteration to speed up convergence. Overall, vrnmf only 
guarantees convergence to a local optimum. However, 200 random initializations reveal 
convergence to a single stable optimum under a specifically chosen volume weight  𝜆𝜆 (see the 
Methods section “Selection of volume weight  in vrnmf”). At each random initialization, 𝑈𝑈was set 
up as identity matrix and entries of matrices 𝐷𝐷, 𝑆𝑆 were sampled uniformly from [0, 1] followed 
by normalization of columns 𝑆𝑆 to unit sum. 
 
Inference of spatial intensities 
Vrnmf infers spectra of mutational components, but not intensities. The latter are estimated 
using non-negative least squares based on known mutation frequencies 𝑋𝑋 and spectra of 
mutational components 𝑆𝑆: 

𝑥𝑥𝑖𝑖 = �
𝑝𝑝

𝑠𝑠𝑝𝑝 ⋅ 𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,      (8) 

where 𝐼𝐼𝑖𝑖𝑖𝑖are regional intensities and 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is a residual spectrum of possibly unaccounted by 

vrnmf mutational forces, also estimated from (8). 
 
The same procedure was applied to infer intensity of the components in de novo mutations. 
 
Reflection correlation and test 
Separating noise from meaningful components is a common challenge for NMF techniques. In 
addition to that, meaningful mutational processes can be classified as DNA strand-dependent, 
such as transcription-coupled NER, and strand-independent. We argue that the analysis of two 
DNA strands enables separation of noise from biological components and classification of the 
latter into strand-independent and strand-dependent processes. For technical purposes, the two 



DNA strands are annotated as reference and non-reference strands, and mutation frequencies 
are estimated with respect to the reference strand. Since classification of reference/non-
reference strands is artificial, sets of inferred mutational spectra using the reference and non-
reference strands should be the same. This fact is used to separate biological components from 
noise components, which are not expected to be reproducible between inferences on 
reference/non-reference strands. The best Pearson correlation between the spectra of a 
component with components of another inferred set serves as a measure of reproducibility, 
called reflection correlation. Note that mutation frequencies with respect to the reference strand 
are identical to reverse complementary mutation frequencies with respect to the non-reference 
strand. Thus, a set of components inferred using the non-reference strand is identical to the 
reverse complementary set of components inferred using the reference strand. It indicates that 
reflection correlation can be estimated as the best Pearson correlation between spectra of 
components inferred using the reference strand and a set of reverse complementary 
components. 
 
Components corresponding to a strand-independent process should have the same rates of 
reverse complementary mutation. As a consequence, reflection correlation should be the best 
with its own reverse complement. On the other hand, a strand-dependent process has unequal 
rates of at least some complementary mutation types; a component that reflects the strand-
dependent process would be unequal to its own complement and correspond to a different 
reverse complementary component. Since sets of original and reverse complement components 
are expected to be identical, the strand-dependent process generates two different components 
that are the reverse complement of each other. 
 
To summarize, reflection correlation between original and reverse complementary sets of 
components should partition them in three groups: noise with low reflection correlation, 
components reverse complementary to themselves corresponding to strand-independent 
processes, and pairs of reverse complementary components that reflect strand-dependent 
processes. 
The reflection test is a core instrument for vrnmf parameter identification, model selection, and 
benchmarking of methods, as is shown below. Throughout the paper, average reflection 
correlation (ARC) of components of a vrnmf solution serves as a metric of the solution quality, 
and reflection correlation of 0.8 serves as a cutoff to separate meaningful components, which we 
call “reflected components”, from noise. 
 
Selection of volume weight in vrnmf 
Performance of vrnmf critically depends on volume weight 𝜆𝜆 in optimization problem (4): small 
weight would lead to insufficient reduction of volume making the problem similar to standard 
NMF, while large weight would lead to collapse of volume or, equivalently, zero values for at least 
some eigenvalues of matrix 𝐷𝐷. Vrnmf was run for 20 𝜆𝜆 values sampled uniformly from 0 to 0.1 to 
infer 14 components. Average reflection correlation (ARC) of components was used as a criterion 
for overall quality of solution. Parameter 𝜆𝜆 = 7.89 ⋅ 10 −3 with the highest ARC of more than 
0.97 was selected. To ensure stability with respect to local optima, vrnmf with 50 random 
initializations was run for each 𝜆𝜆 and mean ARC across initializations was taken. 



 
Selection of the number of components in vrnmf 
ARC was used to choose a number 𝑁𝑁 of components that together provide a full and sensitive 
representation of the underlying biology. For that, 20 random initializations of vrnmf were run 
for each 𝑁𝑁 from 2 to 20 components using 𝜆𝜆 = 7.89 ⋅ 10−3, and the maximum number of 
reflected components across initializations was recorded for each 𝑁𝑁. The results show that all of 
the components are reflected for 𝑁𝑁 up to 14 (except for 𝑁𝑁 = 9) followed by a plateau at which 
almost no additional components have reflection property. We thus selected 𝑁𝑁 = 14 
components as the largest number at which all components are meaningful. 
 
Selection of the window size 
Size of the genomic window affects statistical power to detect mutational processes: small 
windows reduce power to detect larger-scale processes, while large windows dilute signals from 
smaller-scale processes. ARC was used as a criterion to identify the genomic window size that 
delivers the largest number of meaningful components. To do so, vrnmf was run for windows of 
size 2, 5, 10, 30, 100 and 1000 kilobases with 𝑁𝑁 = 14 components, and reflection correlations 
were estimated. To account for different statistical properties of window-specific datasets, near-
optimal volume weight 𝜆𝜆 was selected for each window following the procedure described in the 
section “Selection of volume weight in vrnmf”: 𝜆𝜆 = 8 ⋅ 10−2 for 2 kb, 𝜆𝜆 = 6 ⋅ 10−2 for 5 kb, 𝜆𝜆 =
3 ⋅ 10−3 for 30 kb,  𝜆𝜆 = 2 ⋅ 10−3 for 100 kb,  𝜆𝜆 = 5 ⋅ 10−4 for 1000 kb. For each window, vrnmf 
was run for 10,000 iterations with 10 updates of matrices at each iteration. Window size of 10 kb 
demonstrates the best ARC across selected window sizes. 
 
Spatial robustness 
Robustness of each component spectrum was assessed using bootstrap of genomic windows. 14 
components were inferred using 400 bootstrap sampling rounds. Maximum Pearson correlations 
between spectra of the original component and components in each bootstrap round were then 
calculated.  
 
Comparison with alternative datasets 
Stability of the inferred components was estimated with respect to mutation recurrence, SNP 
frequency, as well as their presence in another dataset (gnomAD). To estimate the effect of 
mutation recurrence, mutation frequencies without correction for recurrency (see the Methods 
section “Accounting for recurrent mutations”) were used to infer 14 components with the same 
vrnmf parameters.  To estimate the effect of SNP frequencies, singleton frequencies were used 
to infer 14 components using vrnmf with 𝜆𝜆 = 1.4 ⋅ 10−2 and the other parameters kept the same. 
To estimate potential bias of the TOPMed dataset, mutation frequencies in 100 kb windows were 
estimated using the gnomAD dataset (see Methods section “Preparation of mutational matrix”) 
followed by inference of 14 components using vrnmf with 𝜆𝜆 = 2.2 ⋅ 10−2, and the other 
parameters kept the same. We used a window of 100 kb for the gnomAD dataset to account for 
different mutation densities in the datasets: 10 kb TOPMed windows contain on average 18 fold 
more mutations compared to 10 kb gnomAD windows, but only 1.8 fold more mutations 
compared to 100 kb gnomAD. In each case, parameter 𝜆𝜆 was selected as in the Methods section 
“Selection of volume weight in vrnmf” to enable near optimal performance.  



 
Power analysis of the dataset 
The dataset was subsampled up to the size of 1% of the original dataset. For each subsampled 
dataset vrnmf was run to infer 𝑁𝑁 = 2 to 14 components with 5 random initializations for each  
𝑁𝑁. We then selected a solution that had the maximum number of reflected components 
(reflection correlation > 0.8) across 𝑁𝑁 initializations, and estimated 1) the number of reflected 
components, and 2) the number of components having Pearson linear correlation of at least 0.8 
with the original mutational components. 
 
Comparison of NMF methods. 
Vrnmf was compared to standard NMF (37) and non-smooth NMF (38), which enforces 
sparseness of decomposition matrices, using NMF R package. Both standard (option 
method=”brunet” in NMF) and non-smooth (option method=”nsNMF” in NMF) versions of NMF 
were run using the original matrix 𝑋𝑋 of standardized mutation frequencies with rank=14. To 
assess importance of denoising, performed in vrnmf, we additionally run methods with the same 
settings for denoised matrix 𝑋𝑋: if 𝑋𝑋 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇 than denoised 𝑋𝑋 ≈
𝑈𝑈1:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑈𝑈),1:𝑞𝑞𝛬𝛬1:𝑞𝑞,1:𝑞𝑞𝑉𝑉1:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉),1:𝑞𝑞

𝑇𝑇 , where 𝑞𝑞 = 14 components. Additionally, to evaluate 
importance of volume regularization, vrnmf was performed for inference of 14 components with 
volume weight 𝜆𝜆 = 0 that effectively converts it to the standard NMF. Each method (standard 
NMF, standard NMF + denoising, nsNMF, nsNMF + denoising, vrnmf w/o volume regularization 
and vrnmf) was run 30 times to explore possible local optima. Quality of solutions was assessed 
based on the number of reflected components. Of note, volume-regularized NMF is the only 
algorithm that achieved a unique solution with 14 reflected components. 
 
Statistical properties of mutational components      
The scale of mutational components was defined using a linear autoregressive model. The spatial 
intensity of each mutational component was modeled as: 

𝐼𝐼𝑝𝑝 = �
𝑀𝑀

𝑘𝑘=1

𝑎𝑎𝑘𝑘 ∙ 𝐼𝐼𝑝𝑝−𝑘𝑘 + 𝜉𝜉𝑝𝑝, 

where 𝐼𝐼𝑝𝑝 is the intensity at position p, 𝑎𝑎𝑘𝑘are autoregressive coefficients and 𝜉𝜉𝑝𝑝 is the residual 
noise.  Order 𝑀𝑀 of the model was chosen using Akaike Information Criterion. The ar R package 
was used to fit the autoregressive model. The scale of each process was defined as the half-life 
of the autoregressive model            

ℎ𝑙𝑙 =
𝑙𝑙𝑙𝑙(0.5)

𝑙𝑙𝑙𝑙(∑𝑀𝑀
𝑘𝑘=1 𝑎𝑎𝑘𝑘. ) 

      
The contribution of each component was defined as the squared sum of intensities. Contributions 
of all components were then scaled to the unit sum. 
 
 
       
Comparison with de novo data           



To assess if the spatial distribution of de novo mutations is consistent with individual mutational 
processes, we pooled 309,287 de novo point mutations from two datasets (11, 12) 
For each component, we divided the genome in two bins with 10% of the genome with the 
highest activity of the component in TOPMed assigned to the first bin and the remaining 90% 
assigned to the second bin. We infer intensity of the components for de novo mutations in these 
two bins, as we did for individual windows in TOPMed (see Inference of spatial intensities, eq 8). 
We obtained confidence intervals for the intensities in each of the two bins by permuting de novo 
mutations 100 times. 
A very similar approach was used to compare the prevalence of each component among de novo 
mutations of maternal and paternal origin. We calculated the ratio of component intensity in the 
10% of the genome with the highest activity of the component in TOPMed, and the component 
intensity in the remaining genome. We obtained confidence intervals for the ratio of the 
intensities by permuting paternal and maternal de novo mutations 100 times. 
 
Simulations to assess the limitations of the approach  
The ability to infer mutational processes depends on their statistical properties, such as the 
spatial scale and magnitude of variation along the genome and specificity of the mutational 
spectrum. Limitations of vrnmf inference with respect to these statistical properties were 
analyzed by simulating a mutational processes and applying vrnmf to the resulting mutation 
rates.  
 
Briefly, we simulated spectra and intensities of 14 mutational components corresponding to 4 
strand-independent and 5 strand-dependent processes with diverse statistical properties. The 
mutational components were linearly combined to obtain regional mutation type rates along the 
genome that would reflect TOPMed genome-wide mutation spectrum and the number of 
mutations in TOPMed dataset (described in the paragraph below). Mutation counts along the 
genome were sampled from a Poisson process with regional mutation type rates and per-window 
nucleotide content identical to that in the TOPMed dataset. As with the TOPMed count matrix, 
the simulated matrix of mutation counts underwent pre-processing (estimation of regional 
normalized mutation type frequencies) followed by the vrnmf inference of 14 components. 
Vrnmf was run using 𝜆𝜆 = 10−3 for 1,000 iterations. Vrnmf-inferred spectra of mutational 
components were compared to simulated ones to estimate the quality of recovery. Recovery 
quality of the simulated components was calculated as the maximum absolute Pearson 
correlation to one of the inferred components. Simulations were repeated 5000 times to assess 
each processes in a wide range of scales, fraction of mutations and spectra specificities. 
 
In more detail, genome-scale intensities of components were assumed to follow a continuous 
Ornstein-Uhlenbeck (O-U) process. O-U process is a convenient framework that provides control 
of the scale and magnitude of spatial variation of the process, and at the same time enables 
tractable mathematical manipulations. The scale and magnitude of spatial variation were defined 
as the half-life and stationary variance of O-U process. Since spatial inference of components 
takes into account the signal of spatial variation but not the average of intensity across genomic 
loci, a critical parameter of O-U affecting inference power is the stationary variability 𝑣𝑣 of 
intensities. We thus set up a constant mean level 𝑚𝑚 = 1/(#𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ⋅ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠104) of an 



O-U process 𝐼𝐼 and used different values for the coefficient of variation 𝐹𝐹 = 𝑣𝑣/𝑚𝑚. That way, the 
overall number of generated mutations is constant ∫ 𝐼𝐼(𝑝𝑝)𝑑𝑑𝑑𝑑 = 1, but the magnitude of 
variation along the genome reflected in 𝐹𝐹 varies dramatically. To control the spatial scale, we 
vary the half-life ℎ𝑙𝑙 of the O-U process. Parameters of mean 𝑚𝑚, the coefficient of variation 𝐹𝐹 and 
half-life ℎ𝑙𝑙 completely specify O-U process 𝐼𝐼: 

𝑑𝑑𝑑𝑑 = 𝜆𝜆 ∙ (𝑚𝑚− 𝐼𝐼) ∙ 𝑑𝑑𝑑𝑑 + 𝜎𝜎 ∙ 𝑑𝑑𝑊𝑊𝑝𝑝,     (1)  
where 𝜆𝜆 is a reversion to the mean expressed as 𝜆𝜆 = 𝑙𝑙𝑙𝑙𝑙𝑙2/ℎ𝑙𝑙 and 𝜎𝜎 = �2 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(2) ∙ 𝐹𝐹/ℎ𝑙𝑙. To 
cover a wide range of parameters, For each process, the half-life ℎ𝑙𝑙 is sampled from the log-
uniform distribution in the interval 102-106 base pairs, 𝑙𝑙𝑙𝑙(ℎ𝑙𝑙) ∼ 𝑈𝑈(𝑙𝑙𝑙𝑙(102), 𝑙𝑙𝑙𝑙(106)),  and 𝐹𝐹 
is sampled from the log-uniform distribution in the interval 10−4-1.6 ⋅ 10−1, 𝑙𝑙𝑙𝑙(𝐹𝐹) ∼
𝑈𝑈(𝑙𝑙𝑙𝑙(10−4), 𝑙𝑙𝑙𝑙(1.6 ⋅ 10−1)). 
In practice, mutation counts are aggregated in non-intersecting windows. It was shown that the 
integral of the O-U process in non-intersecting windows, 𝐽𝐽𝑤𝑤 = ∫𝑤𝑤 𝐼𝐼𝐼𝐼𝐼𝐼, is a strictly stationary 
Gaussian process with the following parameters (39): 
 
𝐸𝐸(𝐽𝐽𝑤𝑤) = 𝑚𝑚,𝑉𝑉𝑉𝑉𝑉𝑉(𝐽𝐽𝑤𝑤) = 1/𝜆𝜆2 ⋅ (𝛥𝛥 − (1 − 𝑒𝑒−𝜆𝜆𝜆𝜆)/𝜆𝜆) ⋅ 𝜎𝜎2,𝐶𝐶𝐶𝐶𝐶𝐶(𝐽𝐽𝑤𝑤1, 𝐽𝐽𝑤𝑤2) = 𝑟𝑟(𝑤𝑤1− 𝑤𝑤2, 𝜆𝜆) ⋅ 𝜎𝜎2, 

 
where 𝑟𝑟(𝑘𝑘, 𝜆𝜆) = 1/(2𝜆𝜆3)𝑒𝑒𝜆𝜆(1−|𝑘𝑘|)𝛥𝛥 ⋅ (𝑒𝑒−𝜆𝜆𝜆𝜆 − 1)2 and 𝛥𝛥 = 104 is a window size. Thus, instead of 
base pair-resolution O-U process, we simulate window-resolution 𝐽𝐽𝑤𝑤 process. To speed up 
simulations, 𝐽𝐽𝑤𝑤+1 was simulated based on a previous iteration 𝐽𝐽𝑤𝑤: 
 

𝑃𝑃(𝐽𝐽𝑤𝑤+1|𝐽𝐽𝑤𝑤)  ∼ 𝑁𝑁(𝐸𝐸(𝐽𝐽𝑤𝑤),𝜎𝜎2(𝐽𝐽𝑤𝑤)), 
 
where 𝐸𝐸(𝐽𝐽𝑤𝑤) = 𝑚𝑚 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐽𝐽𝑤𝑤 , 𝐽𝐽𝑤𝑤+1)/𝑉𝑉𝑉𝑉𝑉𝑉(𝐽𝐽𝑤𝑤) ⋅ (𝐽𝐽𝑤𝑤 − 𝑚𝑚), 𝜎𝜎2(𝐽𝐽𝑤𝑤) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐽𝐽𝑤𝑤)− 𝐶𝐶𝐶𝐶𝐶𝐶(𝐽𝐽𝑤𝑤 , 𝐽𝐽𝑤𝑤+1)2/
𝑉𝑉𝑉𝑉𝑉𝑉(𝐽𝐽𝑤𝑤).     
 
Intensities are simulated sequentially for each window, based on the value of the previous 
window. To avoid negative values of intensity, it is assigned to zero if the sampled value is 
negative. The number of windows with initially negative sampled values is always less than 1000 
(and frequently zero) out of 263,870.   
Rate vector of the 192 mutation types was sampled using Dirichlet distribution 𝑆𝑆 = 𝐷𝐷𝑖𝑖𝑖𝑖�𝛼𝛼 ∙ 1�⃗ � 
with a concentration parameter 𝛼𝛼 sampled log-uniformly in interval 0.01 to 10, 𝑙𝑙𝑙𝑙(𝛼𝛼) ∼
𝑈𝑈(𝑙𝑙𝑙𝑙(0.01), 𝑙𝑙𝑙𝑙(10)). Concentration parameter controls degeneracy of spectra. Spectra of 
components were then re-normalized to match the average observed genome-wide mutation 
frequencies in TOPMed. Rates 𝑆𝑆𝑖𝑖,𝑗𝑗 of each spectra mutation type 𝑗𝑗 were scaled by a factor 𝑟𝑟𝑗𝑗: 
𝑆𝑆𝑖𝑖,𝑗𝑗 ← 𝑆𝑆𝑖𝑖,𝑗𝑗 ⋅  𝑟𝑟𝑗𝑗 , where 𝑟𝑟𝑗𝑗 = 𝑚𝑚𝑗𝑗

∑𝑤𝑤,𝑖𝑖 𝐽𝐽𝑤𝑤𝑤𝑤⋅𝑛𝑛𝑤𝑤𝑤𝑤⋅𝑆𝑆𝑖𝑖𝑖𝑖
 with 𝑚𝑚𝑗𝑗 being average genome-wide number of 

mutations rate of type 𝑗𝑗, 𝑛𝑛𝑤𝑤𝑤𝑤  being a number of context sites of mutation type 𝑗𝑗  in window 𝑤𝑤.  
 
Finally, the expected mutation rates of each type 𝑗𝑗 in each window 𝑤𝑤 is a linear combination of 
the components  𝑣𝑣𝑤𝑤,𝑗𝑗 = ∑𝑖𝑖 𝐽𝐽𝑤𝑤𝑤𝑤 ⋅ 𝑆𝑆𝑖𝑖𝑖𝑖. Mutation counts of each type in each window 𝑚𝑚𝑤𝑤,𝑗𝑗 were 
sampled from Poisson process with a rate 𝑣𝑣𝑤𝑤,𝑗𝑗 ⋅ 𝑛𝑛𝑤𝑤𝑤𝑤 proportional to mutation rate 𝑣𝑣𝑤𝑤,𝑗𝑗. The 
inference procedure was then applied to matrix 𝑚𝑚𝑤𝑤,𝑗𝑗 of simulated mutation counts: matrix 𝑚𝑚𝑤𝑤,𝑗𝑗 



was preprocessed, including normalization by the number of contexts and mutation type-
specific standard deviations across windows, and inference of 14 components using vrnmf 
with volume weight 𝜆𝜆 = 10−3and 1,000 iterations was performed. 
 
Estimation of relative process activities in non-TOPMed datasets 
In small datasets, such as de novo mutations from trio sequencing or mosaic mutations, it is 
impractical impossible to extract run mutational components using vrnmf, because mutation rate 
estimation in a window is dominated by sampling noise. At the same time, it is possible to 
estimate the contributions of already inferred components already inferred from large-scale 
datasets. 
 
Assuming that observed mutations in a dataset are created by a mixture of the processes with 
predefined spatial intensities and spectra, we may formulate the generative model this inference 
problem as following: 
 

𝜆𝜆𝑖𝑖𝑖𝑖 = ∑𝑞𝑞
𝑝𝑝=1 𝐾𝐾𝑝𝑝 ⋅ 𝑠𝑠𝑝𝑝 ⋅ 𝐼𝐼𝑖𝑖𝑖𝑖+ 𝐾𝐾𝑜𝑜 ⋅ 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 

 
where, 𝜆𝜆𝑖𝑖𝑖𝑖  is a mutation rate of mutation type 𝑖𝑖 in window 𝑗𝑗, 𝐾𝐾𝑝𝑝and 𝐾𝐾𝑜𝑜are prevalences of 
process p and the offset correspondingly, other notations are the same as in the Methods 
section “Volume-regularized NMF”. In this formulation, any dataset may be deconvoluted into 
the processes that are already known with unknown contributions {𝐾𝐾𝑝𝑝} and 𝐾𝐾𝑜𝑜.  
We optimized coefficients {𝐾𝐾𝑝𝑝} and 𝐾𝐾𝑜𝑜  using Poisson regression: 𝑚𝑚𝑖𝑖𝑖𝑖 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑖𝑖𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖𝑖𝑖 ), where  
𝑐𝑐𝑖𝑖𝑖𝑖  is the number of corresponding tri-nucleotide contexts. 
 
In this instance, mutation counts were approximated by the Poisson distribution. We calculated 
parameter λij for mutation type j in window i as: 
 

𝜆𝜆𝑗𝑗𝑗𝑗 = �
𝑞𝑞

𝑝𝑝=1

𝐾𝐾𝑝𝑝 ⋅ 𝑠𝑠𝑝𝑝,𝑗𝑗 ⋅ 𝐼𝐼𝑖𝑖𝑖𝑖+ 𝐾𝐾𝑜𝑜 ⋅ 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗  

 
The optimization procedure starts with equal values of coefficients that, on average, generate 
the same amount of mutations as in the dataset. Then, we sequentially multiply each 
coefficient by a random factor ap or 1/ap , with ap ∈[0.77,1.3]. If substituting 𝐾𝐾𝑝𝑝for either 𝐾𝐾𝑝𝑝 ⋅ 𝑎𝑎𝑝𝑝 
or 𝐾𝐾𝑝𝑝 ⋅ 1/𝑎𝑎𝑝𝑝 increases likelihood, we assigned the corresponding max value for 𝐾𝐾𝑝𝑝, otherwise 
the coefficient remains the same. This procedure is repeated 10 times and usually converges to 
the final set of coefficients after 5-7 iterations. We find that different runs of the deconvolution 
converge to the same coefficients within 5% range. 
  
We applied this deconvolution procedure to de novo mutations from trio sequencing data and 
to mosaic mutation. The ratios of coefficients in the two datasets are shown in Fig. 1F. 
 



All processes except 12 and 13/14 significantly improves likelihood of the decomposition of de 
novo and mosaic mutations. 
 
Associations with epigenetic tracks and DNA features  
We relied on the analysis of correlations between mutational processes and epigenomic tracks 
to gain insight into biological mechanisms.  
 
Coordinates of LINE elements were downloaded from UCSC (repeat masker track). In the 
absence of data from the relevant germline tissue, we used the track for Mcf7 cells. Replication 
fork direction was determined as in reference 6.  
 
Gene coordinates were obtained from the ‘knownGenes’ track downloaded from the UCSC 
genome browser. We measured gene bias within each window as the number of nucleotides 
transcribed on the reference strand minus the number of nucleotides transcribed on the strand 
complementary to the reference. Correlations between the direction of transcription and 
process 8/9 asymmetry were calculated for the top decile of the intensity of process 8/9. 
 
Methylation levels for each CpG dinucleotide were obtained from Molaro et al, 2011 (40) and 
the methylation level per window was calculated as mean methylation value across all CpG 
sites within the window. Hydroxymethylation data was obtained from the dataset associated 
with reference (41). Because this track is very sparse, similarly to an earlier study (25), we 
considered any CpG site with the fraction of hydroxymethylated reads exceeding 0.1 as 
hydroxymethylated. The hydroxymethylation level of a window was calculated as the fraction 
of hydroxymethylated CpG dinucleotides among all CpG dinucleotides.   
 
Histone modifications H3K4me3, H3K27ac and H3K4me1 were downloaded from the UCSC 
genome browser. These tracks were obtained for human embryonic stem cells as a potentially 
relevant cell type. Mappability was obtained from the UCSC genome browser. 
Sex-specific recombination rates were obtained from the dataset associated with reference 3. 
CpG islands coordinates were downloaded from the UCSC genome browser.  
 
Associations with the activity of nucleotide excision repair 
Nucleotide excision repair (NER) effectively removes bulky lesions, and its activity is partly 
governed by chromatin structure. Kinetics of CPD and 6-4PP repair by NER was measured in 
(15). Repair of 6-4PP occurs within less than an hour, and thus it is unlikely to be relevant for 
the mutagenesis that operates in the germline, because divisions of spermatogonia take many 
days and the dictyate phase of oogenesis lasts for many years. Therefore, we focused on the 
repair of CPDs, a much slower process (15). The majority of UV-induced lesions occur in TT 
dinucleotides due to properties of UV radiation. To account for this bias, we normalized NER 
activity to TT dinucleotide content. Following this, we correlated NER efficiency with the 
intensity of each mutational process. 
 
Correlations between NER activity and mutational processes are shown in Fig. S5A. 
      



Clustered de novo mutations 
In line with previous studies, we defined clustered de novo mutations as pairs of mutations 
observed in the same individual at distances less than 20,000 nucleotides (11, 42). De novo 
mutations were obtained from the dataset associated with reference 3 and entire clusters were 
attributed to maternal or paternal origin if there was at least one phased mutation of this 
origin. Clusters that have mutations on both the paternal and maternal haplotype were 
excluded.  
 
De novo and mosaic mutations 
We aggregated 309,287 de novo mutations across two trio sequencing datasets. Clustered 
mutations were not filtered out. Note that phased mutations were available only for one 
dataset, and the analysis of maternal or paternal mutations were applied only to this subset. 
2432 mosaic mutations were collected from three datasets: all mutations from study (43) and 
(44) and gonosomal mutations from study (13).  
 
Alteration of mutation rate in gene bodies 
To directly estimate the effect of transcription on mutation rate, we compared mutation rates 
for each of 12 mutation types on the non-transcribed strand of the gene to mutation rates 100 
kbKB upstream and downstream of the gene (Fig. 3G and Suppl. Fig. S7). To reliably estimate 
the intensity of the process and the mutation rate within genes, only genes longer than 100 
kbKB were considered. Differences in mutation rate between the gene and the flanking region 
were normalized to the genome-average mutation rate for each corresponding mutation type.  
 
Maternal age effect in regions susceptible to process 8/9 
“Maternal regions” were determined by the high intensity of the sum of components 8 and 9. 
We noticed a heavy tail of the process 8/9 intensity and considered the top decile of the 
process as “maternal regions” (Fig. S7).   
 
Excess of maternal de novo C>G mutations in regions with high intensity of process 8/9 
Mutational processes other than process 8/9 have similar prevalence among maternal and 
paternal mutations (Fig. S4F). Thus, we assumed that the ratio of maternal to paternal 
mutations should be similar across loci not mutated by process 8/9. We calculated maternal to 
paternal ratio for C>G mutations in regions with high intensity of process 8/9 and in the 
remaining genome. In dataset (28) in regions with high intensity of process 8/9 this ratio is 
equal to 622/701=0.89, in the remaining genome it is 826/5050=0.16. We expected 
0.16*701=115 C>G mutations of maternal origin in regions of high intensity of process 8/9 to be 
contributed by processes other than process 8/9. The remaining 507 should be attributed to 
process 8/9. 
 
  
Mutagenic effects of complex and simple crossovers 
Observed number of paternal and maternal mutations within 100 kb window centered at 
simple and complex crossover was obtained from ref (28). The expected number of mutations 



was calculated as the average mutation rate around the position of crossover that happened in 
another offspring.   
        
Association of process 11 with enzymatic demethylation 

TET1 and DNMT3B ChIP-seq peaks obtained from (45). Methylation levels here are an average 
of ENCODE whole genome bisulfite sequencing experiments ENCSR806NNG and ENCSR417YFD, 
which originate from testis and ovary samples, respectively, as potentially relevant tissue types. 
Mutation rates were calculated, using uncorrected TOPMED SNV data, for each of 192 mutation 
types in a trinucleotide context, centered on each peak, summed across each given set of peaks 
for each position, and then normalized to the genome average mutation rate per mutation 
type. The 192 mutational types were then aggregated into the given categories using a 
weighted average. Methylation levels were similarly averaged across the same set of peaks per 
position in the window. 
 
      
Optimal scale of the processes 
We showed that sampling noise decreases correlation coefficient between DNA features and 
the extracted processes. Many of the processes have a characteristic scale exceeding window 
size of 10 kb. Thus, it is possible that intensity of a process on a larger scale has a stronger 
association with epigenomic features because of reduced sampling noise. We explored 
properties of spatially smoothed intensities and asymmetries of the mutational processes using 
sliding windows of different sizes from 20 kb to 2 mb. Note that while smoothing reduces 
sampling noise, it reduces spatial precision. We argue that the optimal scale leads to the 
highest value of the explained variance by epigenomic features, and choose to determine the 
optimal windows sizes accordingly. In a few cases, we found that the explained variance 
behaved as a non-monotonic function of scale. In such cases, we always chose the first local 
maximum.  
 
 

Supplementary Text, discussion of biological 
mechanisms behind the processes 
 
Low fidelity of metC replication and deamination of metC are contributing to 
CpG>TpG mutations   
Deamination of methylcytosine C (metC) leads to thymine and results in a T:G mismatch. This 
mismatch may be occasionally repaired into T:A instead of C:G by the Base Excision Repair 



system (BER) (53). Alternatively, hypermutability of CpG transitions could be explained by 
methylated cytosines being inferior replication templates compared to unmethylated 
cytosines(54, 55). The latter model is supported by the observation that CpG transitions 
demonstrate a remarkable asymmetry with respect to replication direction (Fig. S8A, 
correlation with asymmetry of process 3/4 is r=0.64 on 100 kb scale). It is thus surprising that 
process 10 appears to be strand symmetric (see spectra Fig. 4A). An appealing interpretation is 
that process 10 includes mutations arising due to spontaneous deamination, while CpG 
associated replication errors are absorbed into process 3/4 together with other replication 
errors. However, we cannot exclude that vrnmf simply lacks sensitivity to detect this 
asymmetry in the 192 dimensional space.  
 
Enzymatic demethylation causes CpG transversions  
Process 10 promotes transitions in methylated CpGs. By either model explained above, the 
frequency of this process would correlate with the level of methylation. In contrast, process 11 
promotes CpG transversions, and correlates with low methylation levels. However, we believe 
process 11 does not act on unmethylated CpGs, but rather occurs during enzymatic 
demethylation. In support of this, we observe that CpG transitions correlate with methylation 
levels regardless of whether they are found inside or outside CpG islands, whereas CpG 
transversions only correlate with methylation levels inside of CpG islands (Fig. 4F), where active 
demethylation is highly coordinated (59, 60). ChIP-seq peaks for TET1, a key enzyme involved in 
active demethylation (56), are accompanied by a large regional drop in methylation levels 
outside of CpG islands (Fig. S8C,E). These sites show both a proportionate increase in CpG 
transversions and a decrease in CpG transitions, in agreement with ref. (58). In contrast, sites of 
the methylation factor DNMT3B show only a small increase in methylation over the heavily-
methylated background outside of CpG islands with a proportionate increase in CpG transitions, 
but no concomitant decrease in CpG transversions (Fig. S8D,F). Together, these results support 
the model that, rather than acting on unmethylated CpGs, process 11 occurs during enzymatic 
demethylation. 
 
Processes 12/13 and 14 
The 14 components are robust with respect to window size and are reproduced in the 
independent gnomAD dataset (24, 26) (Fig. S2L). Natural selection and biased gene conversion 
can potentially bias the statistical properties of rare alleles relative to de novo mutations. Our 
results are robust to the allele frequency threshold and can be recapitulated on de novo 
mutations (27–29) from parent-child trio studies (Fig. S2L, Fig. S4D). We validated the results by 
excluding singletons, because singletons are enriched in sequencing errors (Fig. S2L). 
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Supplementary Figures 1-10 

Figure S1. Statistical properties of inferred mutational processes. 



A) Volume-regularized NMF pipeline is aimed at providing identifiable decomposition of the 
original matrix of regional mutation rates in a product of two non-negative matrices of 
intensities and spectra of underlying mutational components assuming sufficient spreading 
of mutational spectra. The problem is reformulated in terms of co-occurrence matrix P of 
mutation types followed by denoising of the matrix using SVD. Denoised matrix Y is then tri-
factorized in non-negative spectra matrix S and intensity co-occurrence matrix R with 
regularization on R volume. 

B) Visual interpretation of reflection correlation. For a strand-independent process, exemplified 
by component 11, mutation frequencies of complementary mutations are highly similar (left). 
Top: spectrum of component 11. Bottom: scatterplot of component 11 mutation frequencies 
(X axis) and its reverse complement (Y axis). For a strand-independent process, exemplified 
by components 1/2, mutation frequencies of complementary mutations of component 1 (as 
well as component 2) are different due to strand asymmetry (left scatterplot on the right). 
However, frequencies of mutations of component 1 and reverse complementary mutations 
of component 2 are highly similar (right scatterplot on the right). For each case, a pair of 
reverse complementary mutations are highlighted in spectra and their respective positions in 
scatterplots. 

C) Theoretical scales and magnitudes of spatial variation of simulated mutational components 
that enable correct inference using vrnmf. Each dot of the heatmap shows mutational 
components with the given parameters of scale and magnitude of spatial variability. In 
practice, each dot represents an average of 200 simulated mutational components with the 
closest values of scale and magnitude of spatial variability. Color reflects the reconstruction 
quality of mutational components, measured as a Pearson correlation between simulated 
spectra and spectra inferred using vrnmf on simulated mutation counts. Overall, 70000 (= 
5000 runs * 14 components) simulations generated independent sets of mutation counts. 
Each set of mutation counts reflected size and genome-wide spectrum of TOPMed dataset. 
To assess the performance of vrnmf, mutational processes inferred from simulated mutation 
counts were compared to the underlying simulated processes. Spatial intensity of a 
mutational process was simulated as Ornstein-Uhlenbeck (O-U) process (46) with reflection 
at zero intensity. Scale of spatial variation was defined as the half-life of O-U process. Scale 
and magnitude of spatial variation was defined as a product of half-life and stationary 
standard deviation of an O-U process and fraction of all mutations that the O-U process 
contributed.  Informally, magnitude of spatial variation can be interpreted as a standard 
deviation of component’s spatial intensity normalized to overall mutation counts. In 
simulations, scale and magnitude were sampled randomly in specific ranges to cover 
recoverable and non-recoverable components. The quality of recovery was assessed using 
maximum Pearson correlation between the spectrum of each simulated component and the 
components inferred using vrnmf on the simulated mutation counts. See the details in the 
Methods section “Simulations to assess the limitations of the approach”. 

D) Reflection test enables efficient selection of the volume regularization parameter λ (dashed 
vertical line, λ=7.89). Average Pearson reflection correlation of components (Y axis) was 
estimated for a range of λ (X axis). Grey curves show results for a set of random initializations 
of the vrnmf method, and the black curve shows the average reflection correlation across 50 
random initializations. 



E) Vrnmf optimization procedure empirically converges to a unique optimum. To assess 
existence of local optima of non-convex vrnmf optimization problem, vrnmf solution was 
estimated for 200 random initializations and compared to the average of solutions across 
initializations (consensus spectra) using λ=7.89. A histogram of Pearson correlation 
coefficients of vrnmf solutions with random initializations is shown. 

F) Reflection test provides a strategy to choose an optimal number of components. The number 
of components with the reflection property (spectrum similar to the reverse complementary 
spectrum of any component among all extracted components) was calculated for a range of 
input numbers of components using λ=7.89. Dashed vertical/horizontal lines indicate 14 
selected components. 

G) Assessing quality of component spectra estimates through bootstrap sampling and the 
reflection property. For the bootstrap strategy, we assessed similarity of the extracted 
components with the components extracted using bootstraps of genomic windows. A total 
of 400 bootstrap samples were generated using λ=7.89. For each component, the most 
similar component in a bootstrap sample was recorded to estimate the confidence intervals 
(blue points). We assessed the reflection property using similarity of the spectrum of each 
extracted component to the spectrum of any reverse complementary component (red 
points). 

H) Assessment of vrnmf performance using a range of windows shows near optimality of the 10 
kb scale. Per-component (grey) and average (black) reflection correlations of vrnmf solutions 
were estimated for windows of 2, 5, 10, 30, 100 and 1000 kilobases using respective volume 
regularized λ=0.08, 0.06, 0.0078, 0.003, 0.002, 0.0005. Per-window parameters λ were 
selected to enable near optimal performance for a given window.    

I) The number of detected components does not show saturation with an increasing size of the 
dataset. The number of components having the reflection property (red) or that match 
consensus components of the original dataset (blue) were estimated for a range of 
subsampling depths (X axis). Mutations of the original dataset were subsampled up to 1% of 
the data. 

J) Estimates of the dataset size sufficient to detect individual components. Recovery of each 
component (Y axis), measured as the maximum absolute Pearson correlation of the original 
component with components inferred from subsampled datasets.  

K) Volume-regularization and denoising of NMF significantly contribute to improved 
performance of vrnmf. Standard and non-smooth NMFs applied to the original and denoised 
matrices are compared to vrnmf, using the number of reflected components (Pearson 
reflection correlation of more than 0.8) as a quality metric. The best solutions (red) across 30 
random initializations (grey) indicate that denoising improves performance of both NMF and 
non-smooth NMF, but only volume regularization predicts a single high-quality solution. 
Standard and non-smooth NMFs were run using NMF R package with ‘brunet’ and ‘nsNMF’ 
options respectively. 

L) Recurrence corrected spectra of TOPMed 10 kb windows correlate with the spectra without 
recurrence correction (first panel from left), recurrence corrected spectra of TOPMed 10 kb 
windows correlate with the spectra calculated for singleton SNVs only (second panel from 
left) and with the spectra for rare variants excluding singleton SNVs (third panel from left), 



Recurrence corrected spectra of TOPMed 10 kb windows correlate with the spectra 
calculated for gnomAD 100kb windows (right). 
 

 
 
 

 
Figure S2. Recurrence adjusted mutational rates. 

A) Site frequency spectra (SFS) for 5 different mutation types. Recurrence of mutations in 
CpG context lead to substantial depletion of singletons (see ACG>T mutations). Using 
differences in site frequency spectra between mutation types, our method estimates 
mutation recurrence for allele frequency class. 

B) Comparison of the observed SFS with the expected SFS calculated using the recurrence 
model. Deviations between the observed and expected SFS are shown as function of 
allele frequency. 

C,D) Mutation spectra of SNVs from TOPMed uncorrected for recurrence (C) and corrected 
for recurrence (D), divided by the spectra of de novo mutations. Values above 1 correspond to 
mutation types that are relatively more common among TOPMed SNVs; values below 1 
correspond to mutation types depleted among TOPMed SNVs.     
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Figure S3. Properties of rare SNVs in TOPMed. 

A) Distribution of the number of SNVs per 1 kb window. Windows with less than 50 SNVs 
(dashed grey line) were excluded. 

B) Cumulative distribution of SNVs frequencies. 84% of the variants have allele frequency  
below 10-4. 



C) Distribution of the number of variants per 10 kb window, before and after adjustment for 
recurrent mutations. 

D) Fractions of each of the 96 trinucleotide mutation types (unlike in the rest of this work, 
complementary mutation types are collapsed here) in the de novo mutation dataset and 
TOPMed SNVs at various allele frequency thresholds.  

E-H) Spectra of SNVs in TOPMed with different allele frequency thresholds. 
I) Standard deviation (SD) calculated for each of the 192 mutation types. On the X axis we 

show sampling variance (sampling noise), for uniform mutation rate along the genome 
for each mutation type. Y axis shows the observed deviance of the mutational frequency, 
resulting from both noise and biological variance.   

 
  



 
Figure S4. Germline processes correlate with genomic features. 
A) Heatmap of ANOVA associations between intensities and genome features. Values indicate 

square root of relative increase of explained variance of a component by a genome feature 
after controlling for other genome features. As in Figure 1G, shaded heatmap elements 
indicate p-value > 0.001 (after Bonferroni correction) of the ANOVA model comparison of 
nested linear regressions of a component on genomic features with and without the selected 
genomic feature. 

B) Intensities of mutational processes show significantly higher correlation with genomic 
features compared to raw mutation rates. Left: Pearson correlation of spatial tracks between 
each genomic feature (Y axis) and each process (red) or mutation type (grey) (X axis). Right: 
Maximum absolute Pearson correlation of each genomic feature (dots) with mutation 
processes (Y axis) and the 192 mutation type rates (X axis). For each genomic feature there is 
a mutational process that, on average, improves correlation by 40% (red linear fit compared 
to grey) compared to that of raw mutation type rates. 

C) Consideration of tri-nucleotide contexts of mutation types enables improved correlation with 
genomic features. Comparison of the maximum absolute Pearson correlation of each of the 
eleven genomic features with mutation rates of the 192 tri-nucleotide mutation types (X-axis) 
and with the 14 standard point mutation types (12 point mutations and two strand-specific 
CpG>T) across genomic windows. Of note, the estimate of 192 tri-nucleotide mutation rates 
is statistically significantly nosier compared to 14 point mutation types due to sampling 
errors, indicative that the tri-nucleotide context confers unique biological information. 

D) Correlations between the intensities of the mutational processes and genomic features are 
likely significantly underestimated due to insufficient sample size. Intensities estimated based 
on a subsampled TOPMed dataset (X axis: subsampling depth) show robust increase in 



correlations with genomic features (Y axis: absolute Pearson correlation of intensity of a 
mutational process with a genomic feature) as sample size increases. This indicates that the 
true correlation is likely significantly higher than the correlation estimated based on the 
TOPMed dataset. A representative set of processes and their prominent genomic covariates 
are chosen. 

E) To validate the spectra of the processes and their intensities we calculated their prevalence 
among de novo mutations. The genome was stratified by the intensity of each component in 
TOPMed (discovery dataset) and we measured the intensity of the corresponding component 
in the genomic bin that is expected to have a high intensity (top decile in discovery dataset) 
for de novo mutations (validation dataset). Error bars shows 95% bootstrap confidence 
intervals.  
 



Figure S5. Germline processes correlate with genomic features. 
A) Component 1 and component 2 show strand-specific correlation with XR-seq from Adar 

et al, 2016 (28). XR-seq measures activity of the NER system. 
B) Intensities of process 1/2 on two DNA strands show a strong anticorrelation across 

genomic windows (r=-0.67). Asymmetry of process 1/2 is associated with the asymmetry 
of process 3/4. 

C) Rates of transversions, transitions and intensity of process 7 across deciles of replication 
timing. Mutation rates in each decile were normalized to the mutation rate in the first 
decile. 



D) Average fraction, normalized to the genome average, of nucleotides annotated as LINE 
repeats (pink: LINE from L1PA family, cyan: LINE from other families) across fifty 
genomic bins stratified by absolute value of the process 5/6 asymmetry. 

E) Mutation rate on non-transcribed strand of LINE repeats normalized to the mutation 
rate in 10 kb flanks surrounding the LINEs. 

F) Mutation rate in 10 nucleotide windows from start to the end of full L1PA LINE repeats. 
Complementary mutations are shown on the same panel. 

  



Figure S6. Spikes of the process 8/9.  
Process 8/9 intensity spikes around genes SDK1, WWOX and RBFOX1 on their non-
transcribed strands. Bars at the bottom depict gene bodies (colors: cyan if transcribed 
strand is the reference strand and orange otherwise).  
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Figure S7. Properties of process 8/9. 

A) Violin plots show asymmetry of process 8/9 with respect to transcription and replication.  
B-F) Mutation type-specific comparison of mutation rates on the transcribed and non-
transcribed strands of genes relative to 100 KB flanking regions. Red dots correspond to 
genes within maternal regions and black dots correspond to genes outside of maternal 
regions. Density plots on the right and at the top summarize the distributions on Y and X 
axes. 
G) Heavy-tail distribution of the process 8/9 intensity.  Maternal regions are defined as 10% 
of windows of highest process 8/9 intensity (grey line).  
H) “Recombination hotspot test” to assess association of process 8/9 with maternal 
recombination within maternal regions. Genomic windows (10kb) are classified as hotspots 
or coldspots if window-averaged maternal recombination rate is in the highest decile or 
below the genome average respectively. The effect of recombination within maternal 
regions can be quantified by comparison of process 8/9 intensity between adjacent 
hoptspot and coldspot windows.  We have chosen random windows within the maternal 
regions as a control. 



I) Intensity of process 8/9 in recombination hotspots and in adjacent coldspots within the 
maternal regions. We have chosen random windows within the maternal regions as a 
control. 
J) Example of a lack of strong association of process 8/9 intensity with the maternal 
recombination rate and replication timing on the left arm of chromosome 8.  
K) Fold change in de novo mutation rate in 100kb windows around crossovers in spikes of 

process 8/9 and other regions.  
  



 
 
 

Figure S8. Weak asymmetry of CpG>TpG mutations associated with replication fork direction 
A) Strong correlation of asymmetry of CpG>TpG/CpG>CpA mutations (green), asymmetry 

of process 3/4 (black) and derivative of replication timing (red).  Role of the replication 
and deamination in CpG>TpG mutagenesis discussed in supplementary text1.  

B) Reverse complementary CpG>TpG and CpG>CpA mutation types have strong positive 
correlation of mutation rates across genomic windows. Correlation of reverse 
complementary mutation rates is related to the balance of intensity and asymmetry of 
the underlying mutation processes. Strong positive correlation indicates that strand-
independent factors of mutagenesis modulate CpG>TpG mutation rate is significantly 
stronger in comparison to strand-specific factors.  

C) Mutation frequencies surrounding demethylation enzyme TET1 ChIP-seq sites outside of 
CpG islands. 
D)  Mutation frequencies surrounding methylation enzyme DNMT3B ChIP-seq sites outside 
of CpG islands. 
E) Methylation levels surrounding TET1 sites outside of CpG islands. Shaded regions 
represent binomial proportion confidence intervals. 
F) Methylation levels surrounding DNMT3B sites outside of CpG islands. 

 
 

  



Figure S9. Spectra of the 14 components, where each mutation type is normalized to 
its standard deviation  



Figure S10. Unnormalized spectra of the 14 components. 



 
 
 

Supplementary Tables 1-5 
 
Table S1. ANOVA II associations of the process 1/2 asymmetry with the expression level of 54 
tissues. The values show the increase of explained variance of the process 1/2 asymmetry by an 
expression level in a cell line, after controlling for the effect of expression in other cell lines. 
Tissues sorted by the value of explained variance.   
 

ANOVA II: 
explained 
variance Cell line 
612.07 Testis 
165.14 Brain.Frontal.Cortex.BA9. 
146.83 Brain.Caudate.basal.ganglia. 
128.38 Brain.Putamen.basal.ganglia. 
97.49 Whole.Blood 
73.25 Brain.Spinal.cord.cervical.c.1. 
62.16 Pituitary 
60.02 Fallopian.Tube 
44.59 Adrenal.Gland 
41.78 Brain.Substantia.nigra 
39.90 Brain.Anterior.cingulate.cortex.BA24. 
37.39 Brain.Cortex 
33.13 Nerve.Tibial 
31.80 Brain.Cerebellum 
29.99 Artery.Tibial 
29.01 Brain.Cerebellar.Hemisphere 
26.69 Bladder 
26.57 Esophagus.Gastroesophageal.Junction 
24.58 Stomach 
24.40 Cervix.Ectocervix 
23.78 Small.Intestine.Terminal.Ileum 
23.72 Ovary 
22.78 Thyroid 
22.64 Vagina 
20.49 Artery.Coronary 
18.19 Cells.EBV.transformed.lymphocytes 
17.44 Brain.Nucleus.accumbens.basal.ganglia. 



17.08 Esophagus.Muscularis 
10.03 Uterus 
9.63 Colon.Transverse 
7.69 Muscle.Skeletal 
7.50 Breast.Mammary.Tissue 
7.08 Lung 
6.73 Liver 
6.57 Heart.Atrial.Appendage 
6.14 Brain.Amygdala 
4.51 Esophagus.Mucosa 
4.06 Heart.Left.Ventricle 
3.10 Kidney.Medulla 
3.00 Adipose.Subcutaneous 
2.46 Pancreas 
2.14 Artery.Aorta 
1.15 Prostate 
1.12 Kidney.Cortex 
0.78 Colon.Sigmoid 
0.78 Skin.Sun.Exposed.Lower.leg. 
0.71 Minor.Salivary.Gland 
0.45 Brain.Hypothalamus 
0.42 Cervix.Endocervix 
0.28 Adipose.Visceral.Omentum. 
0.19 Cells.Cultured.fibroblasts 
0.05 Skin.Not.Sun.Exposed.Suprapubic. 
0.04 Spleen 
0.03 Brain.Hippocampus 

 
 
 
Table S2. Optimal scale of inferred processes. Each process was smoothed with sliding windows 
10 kb, 20 kb, 30 kb, 50 kb, 70 kb, 100 kb, 150 kb, 200 kb, 300 kb, 50 kb, 700 kb, 1000 kb, 1500 kb 
or 2000 kb in size. For each window size, the square root of the variance explained by the 
epigenetic features was calculated. Window size that maximizes explained variance considered 
as the optimal scale of the process.  

Process square root of 
explained 
variance without 
smoothing 

optimal 
scale, KB 

square root of 
explained 
variance with 
smoothing 

Process 1/2 intensity 0.17 10 0.17 
Process 1/2 asymmetry 0.36 20 0.38 



Process 3/4 intensity 0.31 10 0.31 
Process 3/4 asymmetry 0.26 100 0.36 
Process 5/6 intensity 0.25 10 0.25 
Process 5/6 asymmetry 0.23 10 0.23 
Process 7 0.54 500 0.64 
Process 8/9 asymmetry 0.18 10 0.18 
Process 8/9 intensity 0.22 50 0.26 
Process 10 0.75 10 0.75 
Process 11 0.25 10 0.25 
Process 12 0.07 500 0.18 
Process 13/14 intensity 0.18 1000 0.56 
Process 13/14 asymmetry 0.09 150 0.15 

 
 
 
Table S3. Comparison of the maternal mutation rate in known and novel “maternal regions” 
and in the rest of the genome. Maternal mutations are from (11). 

 Total size of 
regions 

Number of all 
maternal mutations Enrichment 

Known (predicted 
maternal regions 
on chromosomes: 

2,7,8,9,16) 

Maternal 
regions 145 MB 2356 

3.08 
All other 
regions 568 MB 3000 

Novel (predicted 
maternal regions 

on other 
chromosomes) 

Maternal 
regions 119 MB 1200 

1.91 
All other 
regions 1806 MB 9578 

 
 
 
Table S4. Comparison of clustered maternal mutation rate in known and novel “maternal 
regions” and in the rest of the genome. Maternal mutations are from (11). 
 

 Total size of 
regions 

Number of 
clustered maternal 

mutations 
Enrichment 

Known (predicted 
maternal regions 
on chromosomes: 

2,7,8,9,16) 

Maternal 
regions 145 MB 687 

25.6 
All other 
regions 568 MB 105 

Novel (predicted 
maternal regions 

Maternal 
regions 119 MB 147 8.13 



on other 
chromosomes) 

All other 
regions 1806 MB 275 

 
 
 
 
Table S5. Study Sequencing Acknowledgements. 
TOPMed 
Accession # 

Parent Study 
Short Name 

Parent Study Full Name TOPMed 
Phase 

TOPMed Project Omics 
Center 

Omics Support 
Grant/Contract Number 

phs000956 Amish 
Genetics of Cardiometabolic 
Health in the Amish 

CCDG co-
funded AFGen BROAD 3R01HL121007-01S1 

phs001211 ARIC 
Atherosclerosis Risk in 
Communities Study 1 AFGen BROAD 3R01HL092577-06S1 

phs001211 ARIC 
Atherosclerosis Risk in 
Communities Study VTE cohort 2 VTE BAYLOR 

3U54HG003273-12S2, 
HHSN268201500015C 

phs001143 BAGS 

New Approaches for Empowering 
Studies of Asthma in Populations 
of African Descent - Barbados 
Asthma Genetics Study 1 BAGS ILLUMINA 3R01HL104608-04S1 

phs001189 CCAF 
Cleveland Clinic Atrial Fibrillation 
Study 1 AFGen BROAD 3R01HL092577-06S1 

phs000954 CFS 
Cleveland Family Study - WGS 
Collaboration 1 CFS UW NWGC 3R01HL098433-05S1 

phs000954 CFS 
Cleveland Family Study - WGS 
Collaboration 3.5 CFS UW NWGC HHSN268201600032I 

phs001368 CHS Cardiovascular Health Study 2 VTE BAYLOR 
3U54HG003273-12S2, 
HHSN268201500015C 

phs001368 CHS Cardiovascular Health Study 3 CHS BAYLOR HHSN268201600033I 

phs000951 COPDGene 
Genetic Epidemiology of COPD 
Study 1 COPD UW NWGC 3R01HL089856-08S1 

phs000951 COPDGene 
Genetic Epidemiology of COPD 
Study 2 COPD BROAD HHSN268201500014C 

phs000951 COPDGene 
Genetic Epidemiology of COPD 
Study 2.5 COPD BROAD HHSN268201500014C 

phs000988 CRA 

The Genetic Epidemiology of 
Asthma in Costa Rica - Asthma in 
Costa Rica cohort 1 CRA_CAMP UW NWGC 3R37HL066289-13S1 

phs000988 CRA 

The Genetic Epidemiology of 
Asthma in Costa Rica - Asthma in 
Costa Rica cohort 3 CRA_CAMP UW NWGC HHSN268201600032I 

phs001412 DHS Diabetes Heart Study 2 AA_CAC BROAD HHSN268201500014C 

phs000974 FHS Framingham Heart Study 1 AFGen BROAD 3R01HL092577-06S1 

phs000974 FHS Framingham Heart Study 1 FHS BROAD 3U54HG003067-12S2 

phs000920 GALAII 
Gene-Environment, Admixture 
and Latino Asthmatics Study 1 PGX_Asthma NYGC 3R01HL117004-02S3 



phs000920 GALAII 

ATGC Gene-Environment, 
Admixture and Latino Asthmatics 
Study II Asthma 3 ATGC UW NWGC HHSN268201600032I 

phs001345 GENOA 
Genetic Epidemiology Network of 
Arteriopathy 2 AA_CAC BROAD HHSN268201500014C 

phs001345 GENOA 
Genetic Epidemiology Network of 
Arteriopathy 2 HyperGEN_GENOA UW NWGC 3R01HL055673-18S1 

phs001217 GenSalt 
Genetic Epidemiology Network of 
Salt Sensitivity 2 GenSalt BAYLOR HHSN268201500015C 

phs001359 GOLDN 
Genetics of Lipid Lowering Drugs 
and Diet Network 2 GOLDN UW NWGC 3R01HL104135-04S1 

phs000993 HVH Heart and Vascular Health Study 1 AFGen BROAD 3R01HL092577-06S1 

phs000993 HVH Heart and Vascular Health Study 2 VTE BAYLOR 
3U54HG003273-12S2, 
HHSN268201500015C 

phs001293 HyperGEN 
Hypertension Genetic 
Epidemiology Network 2 HyperGEN_GENOA UW NWGC 3R01HL055673-18S1 

phs000964 JHS Jackson Heart Study 1 JHS UW NWGC HHSN268201100037C 

phs001402 Mayo_VTE 
Mayo Clinic Venous 
Thromboembolism Study 2 VTE BAYLOR 

3U54HG003273-12S2, 
HHSN268201500015C 

phs001416 MESA 
Multi-Ethnic Study of 
Atherosclerosis 2 MESA BROAD 3U54HG003067-13S1 

phs001062 MGH_AF 
Massachusetts General Hospital 
Atrial Fibrillation Study 1 AFGen BROAD 3R01HL092577-06S1 

phs001062 MGH_AF 
Massachusetts General Hospital 
Atrial Fibrillation Study 1.4 AFGen BROAD 

3U54HG003067-12S2, 
3U54HG003067-13S1 

phs001062 MGH_AF 
Massachusetts General Hospital 
Atrial Fibrillation Study 1.5 AFGen BROAD 

3U54HG003067-12S2, 
3U54HG003067-13S1 

phs001062 MGH_AF 
Massachusetts General Hospital 
Atrial Fibrillation Study 

CCDG co-
funded AFGen BROAD 3UM1HG008895-01S2 

phs001024 Partners Partners Healthcare Biorepository 1 AFGen BROAD 3R01HL092577-06S1 

phs001215 SAFS 

Whole Genome Sequencing to 
Identify Causal Genetic Variants 
Influencing CVD Risk - San 
Antonio Family Studies 1 SAFS ILLUMINA 3R01HL113323-03S1 

phs001215 SAFS 

Whole Genome Sequencing to 
Identify Causal Genetic Variants 
Influencing CVD Risk - San 
Antonio Family Studies legacy SAFS ILLUMINA R01HL113322 

phs000921 SAGE 
Study of African Americans, 
Asthma, Genes and Environment 1 PGX_Asthma NYGC 3R01HL117004-02S3 

phs000921 SAGE 

ATGC Study of African 
Americans, Asthma, Genes and 
Environment 3 ATGC UW NWGC HHSN268201600032I 

phs001207 Sarcoidosis 
Genetics of Sarcoidosis in African 
Americans 2 Sarcoidosis BAYLOR 3R01HL113326-04S1 

phs001207 Sarcoidosis 
Genetics of Sarcoidosis in African 
Americans 3.5 Sarcoidosis UW NWGC HHSN268201600032I 

phs000972 
SAS / 
Samoans Samoan Adiposity Study 1 SAS / Samoans UW NWGC HHSN268201100037C 

phs000972 
SAS / 
Samoans Samoan Adiposity Study 2 SAS / Samoans NYGC HHSN268201500016C 



phs001387 THRV 
Taiwan Study of Hypertension 
using Rare Variants 2 THRV BAYLOR 

3R01HL111249-04S1, 
HHSN26820150015C 

phs000997 VAFAR 
Vanderbilt Atrial Fibrillation 
Ablation Registry 1 AFGen BROAD 3R01HL092577-06S1 

phs000997 VAFAR 
Vanderbilt Atrial Fibrillation 
Ablation Registry 1.5 AFGen BROAD 

3U54HG003067-12S2, 
3U54HG003067-13S1 

phs000997 VAFAR 
Vanderbilt Atrial Fibrillation 
Ablation Registry 

CCDG co-
funded AFGen BROAD 3UM1HG008895-01S2 

phs000997 VAFAR 
Vanderbilt Atrial Fibrillation 
Ablation Registry 

CCDG co-
funded year 
2 AFGen BROAD 3UM1HG008895-01S2 

phs001032 VU_AF 
Vanderbilt Genetic Basis of Atrial 
Fibrillation 1 AFGen BROAD 3R01HL092577-06S1 

phs001040 WGHS Women's Genome Health Study 1 AFGen BROAD 3R01HL092577-06S1 
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