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I. PRECISE ENGINEERING OF QUANTUM
DOT SIZE, TUNNEL COUPLINGS AND

CONTROL GATES

An overview of the main parameters of the devices are
presented in Table S1. The quantum dot sizes and inter-
dot distances are directly measured from the STM im-
ages. The nanoscale size of the quantum dots allow us to
achieve large on-site energies (> 20 meV); and the small
separation of ≤ 10 nm allow us to achieve large tunnel
couplings t ≈ 1 − 10 meV. With the nanoscale accuracy
of STM lithography we can engineer the trivial and topo-
logical phases so that we can change 〈v/w〉 from 0.265 to
2.08.

A. Quantum dot size

The quantum dot sizes in the devices are engineered to
be ∼ 25 nm2 hosting ∼ 25 P donors per site [1]. These
sizes were chosen as this on-site energy is robust against
small variations in donor numbers within the quantum
dots as shown in Fig. S1. Here we plot the on-site ener-
gies as a function of the dot size using electrostatic mod-
elling and assuming a 1.5 ± 0.5 nm decay of the donor
wavefunction outside the lithographic size of the dot (as
shown by the shaded grey region). Generally, for small
quantum dot sizes with only a few P donors (for example
1P, 2P and 3P) we can see from Fig. S1 that a change in
a single P number results in a large variation in Ui [2].
This variation is not as important for large quantum dots
with > 15 donors. For larger quantum dots, however, the
capacitive coupling between the quantum dots become
too large and the dots start to behave as a single large
quantum dot or wire [3]. From the experimental zero-
bias conductance peaks (see Fig. 3e of the main text) we
can determine the average on-site energy of the quantum
dot arrays using lever arms determined from the elec-
trostatic modelling [4]. The measured 〈U〉 = 32.9 ± 3.8
meV for device I is above the expected value based on
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the electrostatic modelling, whereas 〈U〉 = 22.0 ± 3.2
meV for device II is below. These values are consistent
with charging energies of previously measured quantum
dots [5], with the differences between dots attributed to
small variations in the gate structure (and hence lever
arms, α, device I: 〈α〉 = 0.2550 ± 0.0221 and device II:
〈α〉 = 0.2574 ± 0.0197), and quantum dot sizes (device
I: 27.7 ± 2.9 nm2 and device II: 23.0 ± 2.8 nm2). These
effects can all contribute to different charging energies
calculated based on the constant interaction model [3].
Note, on the same device, using the same STM tip, the
variation in dot size was less than 13%.

B. Inter-dot tunnel couplings

The tunnel coupling follows an exponential dependence
on the inter-dot separation [8]. Not only do we have to
engineer alternating tunnel couplings for the SSH simu-
lation, the inter-dot separation must also be close enough
that there is sufficient transport current through the de-
vice to perform bias spectroscopy. However, we cannot
make the tunnel and capacitive couplings between the
quantum dots too large as they will not behave inde-
pendently [3]. Watson et al. [1] have previously demon-
strated electron transport through a triple donor quan-
tum dot, with lithographic sizes of approximately 4 x
4 nm2, with ∼ 15 P donors. Here the separations be-
tween the quantum dots were ∼ 9.5 nm and ∼ 10.5 nm
and the source/drain leads were ∼ 10 nm from the ar-
ray. Using such an arrangement it was possible to achieve
sufficient transport currents through this triple quantum
dot system with > 1 nA at a bias of 2 mV. Utilising
this knowledge we restricted quantum dot separations
between 6 ≤ di ≤ 12 nm to ensure the quantum dots
are spaced far enough apart such that they behave inde-
pendently but close enough that sufficient current can be
measured through the device. These distances allowed us
to engineer a large enough ratio between the alternating
tunnel couplings to investigate the trivial and topological
phases of the SSH model. We note that this is challeng-
ing in larger devices due to the exponential dependence
of the tunnel coupling with dot separation.
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TABLE S1. Device parameters for the Trivial (Device I) and Topological (Device II) phases. The average quantum
dot size (nm2) and inter-dot distances, 〈dv〉 and 〈dw〉 (nm), directly measured form the STM images, the on-site energy, 〈U〉
(meV), measured from the experimental zero-bias conductance peaks, the lever arms, 〈α〉, calculated from the electrostatic
modelling and tunnel couplings, 〈v〉 and 〈w〉 (meV), determined from fitting the experimental zero-bias conductance peaks.

〈 Dot size 〉 〈dv〉 〈dw〉 〈U〉 〈α〉 〈v〉 〈w〉 〈v/w〉
Trivial 27.7 ± 2.9 7.7 ± 0.1 10.1 ± 0.2 32.9 ± 3.8 0.2550 ± 0.0221 4.89 ± 0.40 2.35 ± 0.23 2.08

Topological 23.0 ± 2.8 9.6 ± 0.4 7.8 ± 0.6 22.0 ± 3.2 0.2574 ± 0.0197 1.39 ± 0.35 5.25 ± 2.02 0.265
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FIG. S1. Optimisation of the on-site energy U based on
the donor quantum size. Theoretically calculated on-site
energies, U , based on COMSOL electrostatic modelling as a
function of the quantum dot size (black circles). The black
line is a 1/d fit to the theoretical data, with the shaded grey
region corresponding to a ± 0.5 nm variation in the ‘seam’.
The quantum dot size chosen for the experiment is shown
by the centre green dashed region with the outer green lines
corresponding to ± 1 donor. The vertical dashed black lines
correspond to a 3P, 2P, and single donor (in increasing quan-
tum dot size). The variation of U for a single donor changes
significantly from U1P ≈ 45 meV [6] to U2P ≈ 65 meV [2, 7]
for a 2P quantum dot. The variation in U is much smaller for
the 25 nm2 quantum dot size used in the main text with an
expected change of only ±1 meV. The blue (topological phase
device) and red (trivial phase device) circles are the measured
〈U〉 determined using the calculated lever arms from the elec-
trostatic modelling. The inset shows the electrostatic mesh
used to model the quantum arrays indicating the location and
area of the quantum dots.

C. Electrostatic gate density

To tune the energy levels of the different quantum dots
in the array we require control gates capacitively coupled
to the quantum dots that can both tune each quantum
dot’s energy levels independently but also globally. In
order to tune the energy levels of each quantum dot in-
dependently would typically require at least 10 control
gates. However, for realising the SSH model this is not
necessary as it is only important to bring the energy lev-

els into resonance at zero source/drain bias. With preci-
sion donor devices the low density all-epitaxial gates can
be patterned with nanometre accuracy and can be sepa-
rated far enough away to allow reasonable operating gate
ranges (> 1 V) before breakdown leakage occurs. The
addition of more than the 6 patterned gates does not
achieve better independent control of the energy levels
of the individual quantum dots, since the gates become
equally capacitively coupled to the same quantum dots.
Instead, it is more important to be able to engineer suffi-
cient differential lever-arms between the various gates to
the quantum dots.

To maximise both the absolute and differential lever-
arms, the layout of a 10 quantum dot array with the re-
quired gates was considered. Figure S2a, b and c, show
a schematic of a segment of the array with the dots ar-
ranged in a linear, right-angled and tilted arrangement
respectively. The linear arrangement, whilst preventing
parallel tunnelling through the array, results in the low-
est differential lever-arms with the ability to achieve inde-
pendent control of neighbouring quantum dots greatly re-
duced [4]. To improve this differential coupling the quan-
tum dots can be arranged in a tilted array arrangement
as shown in Fig. S2c, with maximal differential control
occurring when the dots are arranged at right angles to
each other (Fig. S2b). However, in this right-angled ar-
rangement the next-nearest neighbour distance between
the quantum dots is also reduced resulting in parallel tun-
nelling through the quantum dots, which is not allowed
in the SSH model, which requires sequential tunnelling
through the array. As such, in order to prevent parallel
tunnelling through the array, while still maximising the
differential lever-arms, the dots were arranged in a tilted
array with a 120◦ angle. In this arrangement next-nearest
neighbour tunnelling is exponentially suppressed with es-
timated ti,i+2/ti,i+1 ≈ 0.01, ensuring electron transport
occurs sequentially through the array.

Figure S2d shows a schematic of the device layout with
the position of the control gates relative to the 10 quan-
tum dot array. Importantly the layout of the gates are
rotationally symmetric on either side of the array such
that combined lever arm from all gates to the quantum
dots is approximately equal allowing for the array to be
globally controlled. For the gate layout; the number,
position and sizes of the gates were considered. With
the restriction on the absolute length of the array set by
the tunnel couplings it is possible to engineer 6 control
gates into the device. To maximise the absolute lever-
arms the gates were positioned as close as possible to the
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FIG. S2. Engineering global and differential electrostatic control of nanoscale quantum dot arrays. a, A linear
arrangement of quantum dots results in the lowest differential lever-arms and greatly reduces the ability to independently tune
of the quantum dot energy levels. b, A right-angled arrangement of the quantum dots has the greatest differential tunability
of the quantum dots, however, allows parallel tunnelling through the array. c, A tilted arrangement of the quantum dots as
used our devices has highly independent tunability whilst suppressing parallel tunnelling. d, Overview of the capacitance mesh
of the device design used, which has a linear array of 10 quantum dots, in a tilted arrangement, as shown in c, tunnel coupled
to source and drain leads, with 6 control gates, ∼20 nm wide, placed ∼ 55 nm from the array, capacitively coupled to the
quantum dots. A cross-sectional view of the device layer structure is shown below with the 40 nm silicon overgrowth and 2 nm
thick phosphorus doped layer. Here we add a 100 nm silicon substrate below and a 100nm air gap on top for the capacitance
simulations.

TABLE S2. Trivial phase, Device I lever-arms. Lever-arms of each gate, labelled G1 to G6, to each quantum dot, labelled
D1 to D10, along with the total lever-arm of all gates acting on each dot.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
G1 0.0785 0.0758 0.0397 0.0383 0.0256 0.0242 0.0168 0.0157 0.0130 0.0112
G2 0.0540 0.0856 0.0522 0.0781 0.0473 0.0619 0.0350 0.0399 0.0255 0.0238
G3 0.0195 0.0294 0.0262 0.0430 0.0375 0.0653 0.0474 0.0776 0.0519 0.0645
G4 0.0106 0.0116 0.0138 0.0146 0.0203 0.0220 0.0318 0.0329 0.0592 0.0591
G5 0.0261 0.0264 0.0418 0.0360 0.0636 0.0507 0.0805 0.0556 0.0878 0.0563
G6 0.0661 0.0494 0.0727 0.0443 0.0609 0.0372 0.0407 0.0260 0.0284 0.0191

Total 0.2547 0.2781 0.2465 0.2544 0.2552 0.2612 0.2522 0.2477 0.2658 0.2340
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TABLE S3. Topological phase, Device II lever-arms. Lever-arms of each gate, labelled G1 to G6, to each quantum dot,
labelled D1 to D10, along with the total lever-arm of all gates acting on each dot.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
G1 0.0712 0.0741 0.0417 0.0424 0.0275 0.0271 0.0196 0.0184 0.0144 0.0122
G2 0.0468 0.0727 0.0493 0.0748 0.0481 0.0649 0.0402 0.0471 0.0292 0.0270
G3 0.0180 0.0263 0.0244 0.0385 0.0346 0.0587 0.0472 0.0775 0.0533 0.0652
G4 0.0116 0.0130 0.0161 0.0169 0.0231 0.0259 0.0398 0.0412 0.0737 0.0733
G5 0.0282 0.0287 0.0447 0.0376 0.0604 0.0498 0.0799 0.0548 0.0818 0.0520
G6 0.0652 0.0499 0.0699 0.0430 0.0537 0.0353 0.0405 0.0261 0.0279 0.0185

Total 0.2409 0.2646 0.2461 0.2532 0.2474 0.2615 0.2671 0.2652 0.2803 0.2481

TABLE S4. Trivial phase, Device I, Coulomb interaction terms, in meV. Diagonal terms are the on-site, Ui, Coulomb
terms and the off-diagonal terms are the inter-site, Vi,j , Coulomb terms, with Vi,j = Vj,i, between the dots labelled D1 to D10.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
D1 31.6341 4.0979 2.0602 1.2905 0.8514 0.6052 0.4325 0.3241 0.2306 0.1540
D2 - 32.3460 3.7095 2.2958 1.3315 0.9359 0.6406 0.4791 0.3330 0.2220
D3 - - 32.4018 4.6171 2.4129 1.4646 0.9704 0.6925 0.4771 0.3110
D4 - - - 33.5702 3.9327 2.3162 1.3523 0.9533 0.6271 0.4077
D5 - - - - 33.9613 4.3813 2.2971 1.4266 0.9109 0.5676
D6 - - - - - 31.9503 3.9703 2.3344 1.2947 0.7935
D7 - - - - - - 34.0740 4.5279 2.2352 1.2070
D8 - - - - - - - 33.3486 3.7508 1.9399
D9 - - - - - - - - 33.4493 3.9548
D10 - - - - - - - - - 32.1580

TABLE S5. Topological phase, Device II, Coulomb interaction terms, in meV. Diagonal terms are the on-site, Ui,
Coulomb terms and the off-diagonal terms are the inter-site, Vi,j , Coulomb terms, with Vi,j = Vj,i, between the dots labelled
D1 to D10.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
D1 20.8626 2.3461 1.3279 0.7643 0.5460 0.3759 0.2799 0.2011 0.1485 0.0944
D2 - 22.6319 2.9451 1.5354 0.9697 0.6439 0.4577 0.3260 0.2351 0.1488
D3 - - 22.7265 2.6728 1.6006 0.9327 0.6505 0.4422 0.3179 0.1972
D4 - - - 22.0545 3.1461 1.5964 0.9693 0.6395 0.4373 0.2691
D5 - - - - 21.8433 2.7527 1.5313 0.8911 0.5974 0.3539
D6 - - - - - 22.8299 2.8517 1.4889 0.8721 0.5024
D7 - - - - - - 23.0762 2.5861 1.4215 0.7251
D8 - - - - - - - 21.6729 2.6286 1.2272
D9 - - - - - - - - 21.1172 2.3171
D10 - - - - - - - - - 21.1956
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array (∼ 55 nm), and made as wide as possible (∼ 20
nm), while still keeping the distances far apart to allow
reasonable operating gate ranges without leakage. The
gates were spaced around the array to maximise the dif-
ferential lever-arm of the gates, while also having the
combined lever-arm of all the gates to each quantum dot
relatively consistent such that the potential of all dots
can be shifted together. With this arrangement; gate 1
is most strongly coupled to quantum dots 1, 2, and 3,
with gate 4 most strongly coupled to quantum dots 10,
9, and 8, gate 2 to quantum dots 4, 2, and 6, gate 5 to
quantum dots 7, 9 and 5, and gate 3 to quantum dots 8,
10 and 6, and gate 6 to quantum dots 3, 1 and 5.

To estimate the lever-arms, α, and the on-site, Ui,
and inter-site, Vi,j , Coulomb interactions of the device,
electrostatic modelling was performed using COMSOL
Multiphysics [4, 9], an electrostatic finite element solver
was used to calculate the Maxwell capacitance matrix
for the device. We assume a phosphorus layer thickness
of 2 nm and a 1.5 nm ‘seam’ around each element of
the device representing the spread of the donor wave-
function outside of the patterned lithographic structures.
From the constant interaction model [3] and the capaci-
tance matrix the lever-arms, α, on-site, Ui, and inter-site,
Vi,j , Coulomb interaction terms can be calculated. The
Coulomb interaction terms are then scaled with respect
to the experimentally measured on-site energies such that
〈Umeasured〉 = 〈Ucomsol〉. The lever-arms for each dot in
device I, in the trivial phase, and device II, in the topo-
logical phase, are listed in Table S2 and S3 respectively.
The Coulomb interaction terms, in meV, for device I and
II are listed in Tables S4 and S5 respectively, where the
diagonal terms are the on-site terms, Ui, and the off di-
agonal terms are the inter-site, Vi,j , Coulomb interaction
terms, with Vi,j = Vj,i. These values were calculated us-
ing the exact distances measured with the STM during
fabrication and fit to the measured conductance peaks
(see Methods).

II. HIGH-BIAS (Vsd 6= 0) REGIME

For sufficiently small source-drain bias, Vsd <
ti,i+1, Vi,i+1, Ui only a single electron can tunnel through
the quantum dots since multi-electron tunnelling pro-
cesses require multiple states to be within the bias win-
dow of the source and drain leads. This is the regime
investigated in the main text. In this section, we show
large bias stability diagrams to investigate the system
when Vsd 6= 0. In particular, we look at the stability
diagram of both devices over large voltage ranges ∼ 1
V corresponding to the addition of > 50 electrons (see
conduction peaks in Fig. S3c and f). Examination of the
full stability diagrams elucidates the differences between
the two phases of the SSH model.

As stated in the main text the quantum dots can be de-
scribed by the extended Hubbard model with the Hamil-

tonian,

HU =

N∑
i=1

εini +

N∑
i

Uini(ni − 1)

+

N−1∑
i

ti,i+1(c†i ci+1 + h.c.) +

N∑
i,j

Vi,jninj , (1)

where εi are the energy levels of the ith dot of the array,
n1 the dot occupation operator, ti,i+1 are the tunnel cou-
pling between nearest neighbour ith and ith+ 1 dots, Ui

is the on-site Coulomb interaction term, Vi,j is the inter-
site Coulomb interaction terms between the ith and jth
sites, and h.c. indicates Hermitian conjugate.

In Fig. 3a of the main text we showed the theoretical
calculation of the conductance through the quantum dot
array as a function of the tunnel coupling ratio (v/w)
between the quantum dots. For this calculation we con-
sidered the regime where there can only be at most 1 elec-
tron on each of the quantum dots (large U -limit). This
large U regime means we can neglect the upper Hubbard
band in the calculations. The inter-site Coulomb interac-
tions, Vi,j cause breaking of particle-hole symmetry and
gives rise to N ! possible conduction pathways. For our
10 quantum dot devices, N = 10 we therefore have a
total of 3628800 different undecuple points in gate space
where electrons can move through the array. Note that
depending on the strength of Vi,j many of these pathways
may be close to degenerate, for example V1,10 ≈ 0 since
the quantum dots are separated by > 50 nm and would
therefore not be experimentally observable due to small
energy differences between these two conduction paths.
To assess the validity of the large U approximation we
measured the stability diagram of each device over a large
voltage range shown in Fig. S3.

In the experiment we do not know the absolute elec-
tron numbers on each of the quantum dots; however, we
know the inner electrons on each quantum dot do not
participate in the electron transport. Instead, these in-
ner electrons contribute an energy offset to the total en-
ergy of the Hamiltonian [10]. The resulting Coulomb lad-
ders for large gate voltages (V ∼ 1000 mV) are shown in
Fig. S3 for both devices. The stability diagrams shown
in Fig. S3a, b, d, e are measured by first aligning the
quantum dots at a particular set of gate voltages (noted
as Align. in Fig. S3a and d) and then sweeping the com-
bined gate voltages. Therefore, the further away from
the fully aligned voltage position the more detuned the
quantum dots will be and there will be contributions
from other conductance pathways through the quantum
dot array. The stability diagrams show the diamond-like
structure characteristic of stability diagrams where re-
gions within the diamonds correspond to stable electron
configurations within the array. Each zero-bias conduc-
tance peak (Fig. S3c and f) corresponds to the addition
of a single electron to the array. The observed stability
diagrams are consistent with the large U approximation
used since the width of these stability regions corresponds
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FIG. S3. Stability diagrams for the two 10 quantum dot linear arrays (trivial and topological phases) a, The
current measured through the quantum dot array as a function of the combined gate voltages and the source-drain bias, Vsd

for the trivial phase. The alignment procedure was performed at the indicated gate voltage. b, The same measurement as
in a but for the conductance through the quantum dot array. The inset shows the ‘shard’ structure discussed in the text
where the trivial case has many more smaller stability regions corresponding to the different electron numbers of the array.
c, The zero-bias conductance measured over the full gate voltage range showing the many conductance peaks corresponding
to the addition of single electrons to the array. d, The current measured through the quantum dot array as a function of the
combined gate voltages and Vsd for the topological phase. e, The same measurement as in d but for the conductance through
the quantum dot array. The inset shows the ‘shard’ structure discussed in the text where the topological case exhibits fewer
stability regions due to the lack of current pathways away from quarter-filling. f, The zero-bias conductance measured over the
entire gate voltage range.

to the quantum dot addition energy (Ea ≈ Um+1 − Um)
and are larger than the tunnel coupling (∼ 5 meV) and
temperature of the array.

The main difference between the two stability diagrams
is the width and structure of the Coulomb ladder. The
structure of the stability diagrams is a direct consequence
of the different topologies of the SSH model. The trivial
phase conductance stability diagram (Fig. S3b) is nar-
rower and does not vary in its width as a function of
gate voltage as much as the topological phase (Fig. S3e).
The narrower stability diagram is again a direct conse-
quence of the many conduction pathways of the trivial
phase leading to the additional ‘shards’ in the Coulomb
ladder [2, 11]. These shards in the Coulomb ladder cor-
respond to the additional conductance peaks away from
quarter-filling (m+ 5) and three-quarter-filling (m+ 15)

of the array as seen in Fig. 3b of the main text. In com-
parison, the topological phase has far less ‘shards’ since
there are only 2 states per U that allows current to flow
(m+ 4→ m+ 5 and m+ 5→ m+ 6 as shown in Fig. 3f)
and as a result the stability diagram is wider with fewer
peaks between the zero-bias conduction peaks.

III. THE EFFECTS OF DISORDER

In the theoretical calculations performed in the main
text the data is fitted using the many-body Hamiltonian
given by Equation 1 with the assumption that the en-
ergy levels of the quantum dots are tuned to account for
the inter-site Coulomb interaction terms, Vi,j , such that

εi = −
∑N

j Vi,j . In reality however, there will be various
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TABLE S6. Inter-dot distances and tunnel couplings for the trivial (device I) and topological (device II) phases.
The quantum dot size (nm2) and inter-dot distances (nm) directly measured from the STM images and corresponding tunnel
couplings (meV) determined from fitting the experimental zero-bias conductance peaks.

T
ri

v
ia

l

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

29.0 29.9 29.0 27.3 25.46 30.3 27.0 28.0 26.5 24.6

d1,2 d2,3 d3,4 d4,5 d5,6 d6,7 d7,8 d8,9 d9,10 〈dv/dw〉

7.7 10.0 7.7 10.3 7.8 10.1 7.9 10.2 7.7 0.76

t1,2 t2,3 t3,4 t4,5 t5,6 t6,7 t7,8 t8,9 t9,10 〈v/w〉

5.01 2.57 5.18 2.10 4.84 2.41 4.38 2.33 5.01 2.08

T
o
p

o
lo

g
ic

a
l

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

22.6 21.0 21.5 23.1 25.4 20.9 21.1 26.4 26.6 21.2

d1,2 d2,3 d3,4 d4,5 d5,6 d6,7 d7,8 d8,9 d9,10 〈dv/dw〉

9.3 7.5 9.9 7.2 9.8 8.1 10.0 8.4 9.4 1.24

t1,2 t2,3 t3,4 t4,5 t5,6 t6,7 t7,8 t8,9 t9,10 〈v/w〉

1.77 6.21 1.19 7.35 1.27 4.16 1.07 3.29 1.66 0.265

forms of disorder present in the system such as in the
absolute value of the quantum dot energy levels, in the
inter-site tunnel couplings and the effect of a finite on-site
Coulomb interaction term, Ui. In this section we discuss
the impact each of these have in the context of both the
single particle SSH model and their effects on the zero-
bias conductance trace and ground state energies of the
many-body SSH model for the two devices fabricated in
this paper.

A. Quantum dot energy level disorder

Misalignments in tuning of the energy level terms of
the quantum dots, εi can potentially lead to errors in the
calculated tunnel coupling terms due to detuned conduc-
tance peaks in the experiment. Some small misalign-
ments are inevitable and give rise to on-site disorder
present in the diagonal terms of the Hamiltonian, given

by the
∑N

i=1 εini term in Equation 1. For the single par-
ticle SSH model on-site disorder is known to break the
chiral symmetry [12] of the system resulting in a non-
symmetric energy spectrum. This disorder shifts the zero
energy edge states asymmetrically away from zero energy,
however, they remain within the insulating band gap for
disorder strengths, δ < w/2, where w is the even tunnel
coupling strength as shown in Fig. 1a of the main text.

For the many-body case the symmetry is also broken
by this on-site disorder. Figure S4 shows the effect on
the zero-bias conductance for small values of detuning,
of 0.01 mV, 0.1 mV and 1 mV, on individual quantum
dots 1 (Fig. S4a, e), 2 (Fig. S4b, f), 3 (Fig. S4c, g) and
5 (Fig. S4d, h) for devices in the trivial and topological
phases. The detuning causes shifts in the conductance
peaks such that the peak structure is no longer sym-
metric around zero. In the trivial phase (Fig. S4a, b, c

and d) the detuning results in small shifts in the conduc-
tance peaks about their initial values. All 10 conductance
peaks can still be observed as the electrons remain delo-
calised across the entire array, while the amount of shift
for each peak varies depending on which quantum dot is
detuned, while the conductance of some peaks increase
as others decrease compared to that of no detuning.

In the topological case (Fig. S4e, f, g and h) only
the conductance peaks corresponding to the two edge
states of the array are shown as the conductance from
states away from quarter-filling are not visible. For the
small detunings investigated these states are still pre-
dominately delocalised within the bulk of the array and
have a very low probability of existing on the edge quan-
tum dots. As a result, tunnelling between these bulk-
like states and the source/drain leads is significantly sup-
pressed. The edge state conductance peaks are observed
to be very sensitive to disorder in the energy levels of
the quantum dots. Figure S4e shows that a small de-
tuning (0.01 mV) on the edge quantum dot (Dot 1) re-
sults in a rapid decay in the strength of the conductance
peaks, compared to that of no disorder, with the conduc-
tance peaks vanishing completely for larger detunings.
These edge state conductance peaks are most strongly
affected by detuning of the edge quantum dot 1 (and 10
not shown). This is due to the edge states being heav-
ily involved in the current through array and where the
electrons are most likely to be moving through the ar-
ray. However, the absolute energy splitting between the
two conductance peaks remains fairly stable due to the
robustness of the topological phase to noise. Small off-
sets in the alignment of the middle quantum dots Fig. S4g
and h can lead to asymmetry in the height of the conduc-
tance peaks, which is observed in the main text Fig. 3f.
However, since multiple quantum dots can cause similar
variations in the peak heights it is not possible to know
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FIG. S4. Effects of disorder in the quantum dot tuning. Theoretical calculations of the zero bias conductance trace
when an energy offset of 0.01 mV, 0.1 mV and 1 mV is applied to the first (a, e), second (b, f), third (c, g) and fifth (d, h)
quantum dot along the array compared to no energy offset for the trivial phases (top panel) and topological phase (bottom)
panel.

exactly which quantum dot(s) is (are) slightly misaligned.

B. Tunnel coupling disorder

To investigate the effect of the non-equal tunnel cou-
plings throughout the array we compare the measured
tunnel coupling traces to an ideal case where we have set
all of the v and w couplings equal to the mean of the ex-
perimental values. In this way, the total couplings should
remain the same but the experimental values will have
an additional randomness to them.

In Figure S5 we show the resulting normalised theoret-
ical conductance as a function of gate voltage for the triv-
ial (Fig. S5a) and topological (Fig. S5b) device phases.
For the trivial phase we can see that the averaged tun-
nel coupling and experimental parameters vary in both
splittings and peak magnitudes. Similarly to the quan-
tum dot tuning, the noise in the tunnel coupling results

in small deviations from the expected ideal array where
all the v and w couplings are equal. However, these vari-
ations remain relatively small with the results from the
main text demonstrating exquisite control over the tun-
nel couplings.

For the topological phase we again see the robustness of
the topological state to disorder. Indeed, some of the tun-
nel couplings in device II are predicted to be almost twice
those of other inter-dot couplings for the v parameter due
to the sensitive distance dependence (see Tab. S6). De-
spite this, the two conductance peaks show almost no dif-
ference in their magnitude and separation. Therefore, we
can conclude that the combined alignment of the quan-
tum dot levels and variations in the tunnel couplings are
sufficient to realise the many-body SSH system.
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