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Structural variants and modifications
of hammerhead ribozymes targeting
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The naturally occurring structure and biological functions of
RNA are correlated, which includes hammerhead ribozymes.
We proposed new variants of hammerhead ribozymes targeting
conserved structural motifs of segment 5 of influenza A virus
(IAV) (+)RNA. The variants carry structural and chemical
modifications aiming to improve the RNA cleavage activity of
ribozymes. We introduced an additional hairpin motif and
attempted to select ribozyme-target pairs with sequence fea-
tures that enable the potential formation of the trans-Hoogs-
teen interactions that are present in full-length, highly active
hammerhead ribozymes. We placed structurally defined gua-
nosine analogs into the ribozyme catalytic core. Herein, the
significantly improved synthesis of 2’-deoxy-2’'-fluoroarabino-
guanosine derivatives is described. The most potent hammer-
head ribozymes were applied to chimeric short hairpin RNA
(shRNA)-ribozyme plasmid constructs to improve the antiviral
activity of the two components. The modified hammerhead ri-
bozymes showed moderate cleavage activity. Treatment of
IAV-infected Madin-Darby canine kidney (MDCK) cells with
the plasmid constructs resulted in significant inhibition of vi-
rus replication. Real-time PCR analysis revealed a significant
(80%-88%) reduction in viral RNA when plasmids carriers
were used. A focus formation assay (FFA) for chimeric plas-
mids showed inhibition of virus replication by 1.6-1.7 log;,
units, whereas the use of plasmids carrying ribozymes or
shRNAs alone resulted in lower inhibition.

INTRODUCTION

Hammerhead ribozymes are short RNA sequences with well-charac-
terized catalytic properties. The smallest variant consists of a 22-nt
conserved catalytic core capable of cleaving RNA molecules and
two arms with variable sequences complementary to the regions adja-
cent to the target RNA cleavage site." A primary requirement for the
hammerhead ribozyme target site is the presence of the NUH
sequence (N, any nucleotide; U, uridine; H, any nucleotide except
guanosine) (Figure 1). Among the frequently highlighted advantages
of using ribozymes are their high specificity for their target sequence
and the ability of a single ribozyme to cleave multiple target RNA
molecules. The latter feature is exceptional for trans-acting ribozymes
and do not refer to natural cis-acting ribozymes. The limitations of
this strategy are also known and include effective cellular delivery
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and stability. One of the main factors regulating the high catalytic
activity of ribozymes is the dependence on the concentration of mag-
nesium ions, as its concentration in cells is much lower than the
optimal concentration for in vitro RNA cleavage. Attempting to
adjust ribozyme catalytic activity to the conditions present in cells re-
sults in the introduction of a number of changes to the catalytic core,
chemical modifications, and the addition of elements stabilizing the
active conformation of the ribozyme-substrate complex.z’7 To date,
reports have shown that standard variants of hammerhead ribozymes
have the ability to inhibit viral proliferation, including that of influ-
enza A virus (IAV).*'* Hammerhead ribozymes have been the
subject of clinical trials demonstrating their effective delivery and
applications as a therapeutic for human immunodeficiency virus
(HIV).”" In addition, new variants of catalytic nucleic acids have
been used against HIV with success.'®

In this study, we present a few potentially favorable structural variants
and modifications of trans-acting hammerhead ribozymes that
should exhibit multiple turnover kinetics. We also tested these ribo-
zymes against the IAV in infected cell culture. One of these strategies
is based on an attempt to reconstruct the tertiary interactions present
in full-length natural hammerhead ribozymes, the catalytic activity of
which significantly exceeds the minimum variant (Figure 1).>'7*°
This can potentially be obtained by selecting a target sequence con-
taining a U residue at the position 7 nt downstream of the cleavage
site to form a trans-Hoogsteen base pair with the A residue in the
GUGA tetraloop of the conserved ribozyme core. In previous studies,
this interaction was identified to be one of the requirements that a
sequence must fulfill, in addition to conservation of the ribozyme
CUGA tetraloop, to improve the catalytic activity of the ribozyme.’
Another variant contains an additional hairpin motif introduced
into the hammerhead ribozyme structure, which may also contribute
to ribozyme conformation stabilization.* The 19-nt hairpin, also
called the tetraloop receptor (TLR), is placed upstream of the
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Figure 1. Hammerhead ribozyme type Il scheme

(A) Model hammerhead ribozyme secondary structure. (B) Possible tertiary in-
teractions between loop L2 and stem | are enabled in the Y conformation. The target
sequence is marked in green, with the black arrow indicating the cleavage site. Two
nucleosides, 2.2 and 2.3, of tetraloop L2 are marked in yellow. Only the sequence of
the conserved catalytic core and target NUH are shown.

5’ ribozyme arm, which enables the formation of tertiary interactions
with the tetraloop of the ribozyme catalytic core (Figure 1). Two gua-
nosine residues in the catalytic core are potentially involved in trans-
esterification catalysis. These residues (G8 and G12) connect with the
RNA strand that undergoes cleavage. N1 of the G12 residue interacts
with O2' of the target RNA in the cleavage site, resulting in activation
of the 2'-hydroxyl to act as a nucleophile in an S\2 reaction, forming
the 2',3'-cyclic phosphate terminus. The G8 2'-hydroxyl stabilizes O5'
of the leaving group in a cleavage reaction, resulting in the creation of
a new 5' end.”"*? It is clear that the conformations of these two gua-
nosine residues are crucial for the hammerhead transesterification re-
action rate. In the present study, we applied conformationally defined
nucleosides to modify the hammerhead catalytic core to influence
ribose puckering and the syn-anti conformation by introducing gua-
nosine modifications at the G8 and G12 positions (Figure S2). These
chemical modifications were intended to change the ribozyme
conformation and modulate its reactivity. Finally, we applied the
most potent hammerhead ribozymes to chimeric short hairpin
RNA (shRNA)-ribozyme plasmid constructs to improve the antiviral
activity of the two components.”>** All hammerhead ribozymes
tested in this study were designed to target conserved motifs of IAV
segment 5 (+)RNA. Notably, the target sites were selected on the basis
of the previously published structure of segment 5 (+)RNA ((+)
RNAS5) of the A/California/04/2009 (HIN1) strain and available
data on structure-guided viral inhibition (Figure S1).>?° Moreover,
these sequences fulfill the known requirements for potential struc-
tural stabilization and were determined to be effective targets for nu-
cleic-acid-based inhibitory approaches.

The obtained results show unexpected adverse effects caused by the
modifications and structural variants of the hammerheads. The ana-
lyses also indicate the critical role of target-site selection for effective
inhibition of the virus. Moreover, we demonstrate significant inhibi-
tion of influenza virus replication by applying the plasmid constructs.
This approach, based on effective delivery of the inhibitory molecules
and considering the target structural context, may lead to the devel-
opment of constructs resulting in substantial antiviral effects.

RESULTS

Improved chemical synthesis of 2'-deoxy-2'- fluoropurine
arabinoside derivatives

Herein, a new approach to synthesize purine derivatives of 2’-deoxy-
2'-fluoroarabinonucleotides via the substitution of 2'-O-trifluorome-
thanesulfonyl with triethylammonium fluoride without the use
of bulky protecting groups at the 5" and 3’ positions is presented
(Scheme S1).

As described earlier, the synthesis of 2'-deoxy-2'-fluoroarabinonu-
cleosides is a laborious process with low yield of the final products
because the incorporation of fluoride at the B-C2’ position requires
simultaneous protection of the 5 and 3’ hydroxyls with bulky
protecting groups.”” This approach is necessary when the bulky,
protected derivative is directly fluorinated with (diethylamino) sul-
fur trifluoride (DAST)***° but also when the 2/-O-triflate deriva-
tive is substituted with tetrabutylammonium fluoride (TBAF).”!
Both approaches face two significant difficulties. The first is the
low-yield synthesis of 5',3’-diprotected nucleosides. The second
is linked to the considerable contribution of the side reaction
product accompanying DAST and TBAF treatment, which is
related to the equilibrium of the C2'-endo/C3'-endo conformation
of ribonucleotides.

To avoid such a laborious and low-yield synthesis, N*-(dimethylami-
nomethylene)-guanosine’ was protected with tetraisopropyldisilox-
ane (TIPDSi) (Markiewicz protecting group)”” followed by placement
of a triflate at the C2’ position. Deprotection of the last derivative of
TIPDSi with triethylammonium fluoride (TEAHF) resulted in the
formation of a 2/-O-triflate derivative (*°F nuclear magnetic reso-
nance [NMR] 3 —74.86 ppm; "H NMR 8 5.96 ppm [d, H-1/, Jyy/_110 =
4.75 Hz]), which spontaneously and completely became inverted in
the 3'-O-triflate derivative (*’F NMR & —77.75 ppm; 'H NMR
d 5.89 ppm [d, H-1', Jyg1 .o = 5.86 Hz]). To avoid 2'-O-triflate iso-
merization, deprotection of TIPDSi was performed with triethylam-
monium fluoride in the presence of acetic anhydride at room temper-
ature for 2 h.** The N-protected 5',3'-diacetyl-2'-O-triflate guanosine
in tetrahydrofuran (THF) solution was treated in a plastic vessel with
7 equivalents of a 1 molar solution of TEAHF*® in pyridine for 60—
65 h at 37°C. '"’F NMR analysis of the reaction mixture indicated
the appearance of a new signal at —197 ppm, and the peak at —74
ppm shifted to —77 ppm. The signal at —197 ppm indicates the pres-
ence of a fluoride substituent at B-C2’, whereas the peak at —77 ppm
is related to the appearance of the released triflate anion. Synthesis of
the 8-bromoguanosine derivatives with bromine in water was per-
formed at that stage of synthesis. Next, the reaction mixture was
treated with aqueous ammonia in methanol, and the deprotected
2'-deoxy-2'-fluoroarabinonucleosides were converted into N2-dime-
thylaminomethylene derivatives using the same method as that used
for the N protection of guanosine.”* The next step was the protection
of the 5'-hydroxyl with a dimethoxytrityl group. Finally, the N-pro-
tected-5'-O-dimethoxytrityl guanosine derivatives were converted
into the corresponding 3'-O-phosphoramidites according to a stan-
dard method.”***
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Table 1. Sequences of the analyzed hammerhead ribozymes

Names Sequences of the hammerhead ribozymes Target ((+)RNA numbering) Cleavage NUH triplet
RHINL 5-UAAUCACUCUGAUGAGUCCGUGAGGACGAAAGUUUGAG-3

RH1 5-UAAUCACUCUGAUGAGUCCGUGAGGACGAAAGUUUGAG"-3’ 184200

RH2 5-AUCACUCUGAUGAGUCCGUGAGGACGAAAGUUUGAG-3’ 184-198

RH3 5-UAAUCACUCUUAUGAGUCCGUGAGGACGAAAGUUUGAG-3’ 184-200 CucC
RB1 5-AUCACUCUGAUGAGGCCGAAAGGCCGAAAGUUUG-3’

RB2 5-CCUAAGGCCAAAGCUAUGGAUCACUCAGAUGCGGCCGAAAGGCCGUAAGUUUG-3 186-198

RB3 5-AUCACUCUUAUGAGGCCGAAAGGCCGAAAGUUUG-3

RZ6A 5’—UUCUGAUUCUGAUGAGUCCGUGAGGACGAAACUCCAUHL—3’ 615-631 GUU
RZ6C 5-CCACGUUUCUGAUGAGUCCGUGAGGACGAAAUCAUUCU-3’ 628-644 AUC
RZ6D 5’—UCAUAAGCCUGAUGAGUCCGUGAGGACGAAACCCUUGEL—3’ 688-704 GUU

The sequence of the hammerhead ribozyme catalytic core is marked as bold letters, and its mutations are indicated in italic. The TLR motif is underlined in the ribozyme sequence. The

LNA residue is marked with EL.

Using the above procedure, protected derivatives of 2’-deoxy-2'-fluo-
roarabinoguanosine, 2’'-deoxy-2’-fluoro-8-bromoarabinoguanosine,
2'-deoxy-2’'-fluoroarabinoadenosine, and 2’'-deoxy-2’-fluoro-2,6-dia-
minopurine arabinoriboside were synthesized. The overall yields of
the synthesis of the purine 2’-deoxy-2'-fluoroarabinoside derivatives
were 40%-50%, which are 2- to 3-fold greater than that reported for
2/-deoxy-2/-fluoroarabinoguanosine.””*’ Because 2'-deoxy-2'-fluo-
roarabinonucleosides and their stability have been well described in
the literature, we did not determine the stability of the synthesized
analogs."*"!

Selection of target sites

Selection of the target sites for ribozyme activity was based on an anal-
ysis of the published structural model.”> All RNA regions targeted in
this paper are located in conserved RNA secondary structure motifs,
which are preserved among distinct and distant influenza strains.
They are also potentially functional in the influenza virus replication
cycle and accessible for interaction with oligonucleotides, according
to available experimental data (Figure S1).>>*® Target region 184-
200 contains a U residue at a position 7 nt downstream of the CUC
cleavage site for potential trans-Hoogsteen base pair formation with
the GUGA tetraloop in the ribozyme core. Importantly, RNA motifs
containing target sites 615-631, 628-644, and 688-704 were previ-
ously targeted by antisense oligonucleotides and small interfering
RNAs (siRNAs).”>*® Tqhese studies indicated that targeting selected
regions leads to effective viral inhibition. Moreover, the designed
hammerhead ribozymes are able to target both segment 5 mRNA
and cRNA, as they share the same sequence (with the exception of
the extreme 5’ and 3’ ends, which are shortened in mRNA).

Design of the hammerhead ribozymes

All ribozyme sequences are listed in Table 1. RHI is a standard min-
imal hammerhead ribozyme. RH2 is a variant containing a 6-nt-long
5 arm to allow potential tertiary interactions between target RNA
containing the U residue at a position 7 nt downstream of the cleavage
site and the A residue in the ribozyme GUGA tetraloop (Figure 2).
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Both of these ribozymes target the (+)RNAS region starting at nucle-
otide 184 (Figure S1). RB1 is another version of the standard minimal
hammerhead ribozyme, which differs from RH1 in the sequence of
ribozyme stem loop I Its core became the basis for the RB2 variant
containing a TLR hairpin motif that stabilizes the active ribozyme
conformation in accordance with previously published data.*” The
target region starts at nucleotide 186 in the (+)RNA5 sequence. Three
ribozymes based on the RH1 core, targeting regions 615-631 (RZ6A),
630-644 (RZ6C), and 688-704 (RZ6D), were also designed to assess
the dependence of target site selection on the inhibitory potential. As
an additional control, ribozymes RH3 (based on the RHI core) and
RB3 (based on the RB1 core) were used, which contain a single G5
to U mutation in the catalytic core of the ribozyme to impair its
activity (Table 1).

Moreover, within RH1, RZ6A, and RZ6C, the catalytic cores were modi-
fied with guanosine analogs. RH1 was also modified with nucleoside de-
rivatives in the tetraloop. These conformationally defined analogs of
guanosine included arabinoguanosine, 2’-deoxyguanosine, 2'-deoxy-
2'-fluoroguanosine, 2'-deoxy-2'-fluoroarabinoguanosine, 8-bromo-
2'-deoxy-2'-fluoroarabinoguanosine, 8-bromoarabinoguanosine, and
8-bromoguanosine (Figure S2). The chosen derivatives of guanosine
differ by only one or two functional groups at a time. The introduced
changes influence the conformation of the sugar residue and/or
N-glycosidic bond in the modified residue. Regarding the Sx2 mecha-
nism and conformation of the catalytic core of the hammerhead ribo-
zyme, changes in the G12 and G8 conformations will be noticed by
changes in the catalytic activity of the ribozyme.

Cleavage kinetics of the modified hammerhead ribozymes

Twenty-five synthetic hammerhead variants with modified nucleo-
side residue were tested to evaluate their cleavage activity and calcu-
late the observed cleavage rate constants (ks values). The collected
results are presented in Table 4. In the case of all ribozymes, cleavage
was observed in the expected site of the NUH triplet in the target 5'
end FAM-labeled oligomers (Figure S5). All modifications introduced



www.moleculartherapy.org

5—ACUCAAACUCAGUGAUUAU 3
rrrrnnl rrrrrnnl
3— GAGUUUGA UCACUAAU-5

A Cu A
A Ca A
G AGY G
C=6 C
A=U A
G=C G
G-C G
A G @
RH1 G U RH2 fe

5— ACUCAAACUCAGUGAUUAU-3
e et
3-GUUUGA UCACUA-5

5— ACUCAAACUCAGUGA
3-GAGUUUGA UCACUAT s

5—CUCAAACUCAGUGAUUA-3
3—GUUUGA UCACUAG=C-5

U-3 5-ACUCAAACUCAGUGAUUAU-3
Tt renennd

3-GAGUUUGA UCACUAAU-5

CUGA E A CUU

U ! A A

AGT G AGgY
G ! C-G
U ! A=U
© : G-C
A : G=C
! A G
U ; RH3 G U

5— ACUCAAACUCAGUGAUUAU-3
e r prrnntld

il
3—GUUUGA UCACUA-¥

A Cu A Cu G=C A Cu
G ke U
A JA A G\l A Up A %
G AG G AgY A G AG
C=G cC=-G U“"E C=G
Cc-G C-G c-G
c=G =g
G-C G=C 5-C G-C
G-C G=C A C G-C
A G A A A G
RB1 A A RB2 A © RB3 A A

5— CAAUGGAGUUAAUCAGAAU-3 5— CAGAAUGAUCAAACGUGGA -3 5— GACAAGGGUU GCUUAUGAA -3

frrrrrer prnniad
3-UUACCUCA UUAGUCUU-s¢

3-UCUUACUA UUUGCACC-s

3—-UGUUCCCA CGAAUACU-s

A Cuy A Cy A Cy
A 7 A Gy A G
G AcY G AgY G AcY
c-G Cc-G c-G
A=-U A-U A-U
G=C G-C G-C
G-C G-C G-C
A G A G A G
RZ6A G U RZ6C G U RZ6D G U

Figure 2. Model hammerhead ribozymes with the RNA target sequences
Target RNA sequences are shown in green, and the side arms of the ribozymes are shown in orange. Nucleosides that may be involved in trans-Hoogsteen iterations are
marked in red, and changes in hammerhead stem Il and loop L2 are marked in yellow.

into the catalytic core resulted in decreased ribozyme activity toward
target RNA cleavage. In the case of ribozymes RH1-8-6 and RH1-8-8,
there was no cleavage product observed after 1.5 h. The experiments
for every hammerhead ribozyme variant were performed in quadru-
plicate. Kinetic curves for all tested variants of the modified ribozymes
are given in Figure S6. Hammerhead ribozymes with modifications
introduced in G8 showed greater changes in the reaction rate than
ribozymes with G12 modification. Most of the hammerhead ribo-
zymes modified in G8, such as RH1-8-3, RH1-8-4, RH1-8-5, and
RH1-8-7, do not reach the kinetic cleavage plateau within 1.5 h.
This suggests that the performance of these ribozymes is impaired
compared with unmodified variants. After 1.5 h, ribozymes RH1-8-
4 and RH1-8-5 showed less than 15% cleavage. Hammerhead
ribozymes modified at position G12, such as RH1-12-3 and RH1-
12-6, gave over 50% of substrate cleavage after 1.5 h of reaction,

whereas ribozyme RH1-12-4 presented only 10% cleavage. The
possible reason for these lower cleavage yields could be the
conformation of the 8-bromoarabinoguanosine in GI12. Even
though RH1-12-3 contains arabinose, its puckering may be similar
to that of 8-bromoarabinoguanosine, and RHI1-12-6 contains
8-bromoguanosine, which favorably adopts the syn conformation,
but the combined puckering of the sugar ring (arabinose) and the
syn conformation of the base (8-bromoguanine) drastically lowers
the yield of ribozyme RH1-12-4.

Next, the kops parameters were determined from the kinetic curves
(Figure S6) and further used to select ribozymes for experiments
investigating the inhibition of IAV replication in cell culture. Based
on these data, only ribozymes with chemical modifications in G12
were used in the in cellulo experiments.
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Figure 3. Antiviral activity of the ribozymes in MDCK cell culture based on
real-time PCR quantitative analysis of viral RNA

(A) Sequential and structural variants of the ribozymes targeting (+)RNA5 region
184-200. (B) Chemically modified variants of the ribozyme targeting (+)RNA5 region
184-200 are shown. (C) Ribozymes targeting (+)RNA5 region 615-704 are shown.
The viral RNA level in the ribozyme-treated samples was compared with the Lip-
ofectamine-treated control (LF). INF denotes the untreated infected cells. Error bars
represent the standard error of the mean (SEM). An unpaired two-tailed t test was
performed for statistical comparisons (*p < 0.05 and **p < 0.01).

Antiviral effect of the ribozyme variants targeting (+)RNA5 region
184-200

Selected ribozyme variants were tested against IAV in Madin-Darby
canine kidney (MDCK) cell cultures infected with the A/California/
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04/2009 (HIN1) strain. According to real-time PCR analysis, the
RH1 ribozyme caused 31.4% inhibition of viral replication in compar-
ison to the Lipofectamine control (Figure 3A). This result was proven
to be statistically insignificant (p > 0.05). The antiviral activity was
also insignificant for the sequential and structural variants of the ribo-
zyme, such as RH2 and RB1. No inhibitory effect was observed in the
IAV titer from cells treated with RB2. In addition, all chemically
modified RH1 ribozyme variants, RH1-L10, RH1-12-7, RH1-12-8,
RH1-12-2, and RH1-12-5, caused insignificant changes in viral repli-
cation (Figure 3B). These data are similar to those obtained for the
mutant ribozymes RH4 and RB3. The number of viral RNA copies
in each sample was similar to that found in the Lipofectamine-treated
control.

Viral inhibition by ribozymes targeting (+)RNA5 region 615-704
The highest statistically significant inhibitory effect on IAV replica-
tion was obtained by the application of the ribozymes RZ6A and
RZ6C, which reduced replication by 37.4% and 30.2%, respectively
(Figure 3C). The chemically modified variants of these ribozymes
also reduced the viral load; however, none of them exceeded the effect
obtained by the primary unmodified ribozyme. Ribozymes RZ6A-
12-8, RZ6A-12-2, and RZ6C-12-8 decreased the number of viral
RNA copies by 24.7%, 21.9%, and 28.9%, respectively. The modifica-
tion in RZ6C-12-2 resulted in almost complete loss of ribozyme
inhibitory potential, and viral reduction reached 12.3%. In addition,
RZ6D showed negligible antiviral potential, causing 13.1% IAV
inhibition.

Design of the plasmid constructs coding shRNA and
hammerhead ribozymes

The ribozymes showing the most prominent inhibitory effects against
influenza virus, such as RZ6A and RZ6C, were selected for the prep-
aration of chimeric shRNA-ribozyme constructs (Table 2).%> These
constructs combined the catalytic properties of ribozymes and the ac-
tions of siRNA through the RNA-induced silencing complex (RISC)
cascade, finalized by enzymatic RNA cleavage by Ago2. As a precur-
sor concomitant with both ribozymes joined by a cleavable linker,
shRNA corresponding to the highly active siRNA 613 tested in our
previous studies was used.”” As a result, the chimeric sShRNA-ribo-
zyme sh613RZ6A and sh613RZ6C were created. To assess the role
of each molecule in the viral inhibition process, constructs were pre-
pared carrying only ribozyme RZ6A or shRNA sh613. As an addi-
tional control, mutant ribozymes containing a single G5 to U point
mutation in the catalytic core were also used in single-molecule
construct mutRZ6A and the chimeric constructs sh613mutRZ6A
and sh613mutRZ6C.

Antiviral potential of the constructs coding shRNA and

hammerhead ribozymes delivered to cells as plasmids

Plasmid constructs were tested against IAV in MDCK cell cultures in-
fected with the A/California/04/2009 (HIN1) strain. All of the tested
constructs caused significant inhibition of AV replication in compar-
ison to the Lipofectamine-treated control. Real-time PCR analysis
revealed a significant reduction in the viral RNA copy number in
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Table 2. Sequences of the chimeric constructs

Names Sequence of chimeric constructs

sh613RZ6A 5-GCAATGGAGTTAATCAGAATTCAAGAGATTCTGATTAACTCCATTGCTTCAACTTACGTTTCTGATGAGTCCGTGAGGACGAAATCATTCT-3
sh613RZ6C 5-GCAATGGAGTTAATCAGAATTCAAGAGATTCTGATTAACTCCATTGCTTCAACTTCTGATTCTGATGAGTCCGTGAGGACGAAACTCCATT-3’
sh613mutRZ6A 5-GCAATGGAGTTAATCAGAATTCAAGAGATTCTGATTAACTCCATTGCTTCAACTTACGTTTCTTATGAGTCCGTGAGGACGAAATCATTCT-3
sh613mutRZ6C  5-GCAATGGAGTTAATCAGAATTCAAGAGATTCTGATTAACTCCATTGCTTCAACTTCTGATTCTTATGAGTCCGTGAGGACGAAACTCCATT-3’

the samples treated with the single-molecule constructs. For sh613,
inhibition reached 88.8%, and for RZ6A, it reached 88.0% (Figure 4A).
Interestingly, comparable, high antiviral potential was also observed
for mutRZ6A. The chimeric constructs carrying both shRNA and ri-
bozyme significantly inhibited viral replication; however, none of
them were able to exceed the effect obtained by constructs coding
only shRNA or hammerhead ribozyme. Inhibitory effects of 85.9%
and 80.0% were observed in the samples treated with sh613RZ6A
and sh613RZ6C, respectively (Figure 4B). A comparable decrease
was also detected for the constructs carrying the mutated, catalytically
inactive ribozymes sh613mutRZ6A or sh613mutRZ6C.

The antiviral effects of the plasmid constructs were also investigated
with focus formation assay (FFA). This method is based on the analysis
of infectious virus particle production. The single-molecule constructs
sh613 and RZ6A reduced the viral load by 1.0 and 1.3 log; units,
respectively. Application of chimeric sh613RZ6A and sh613RZ6C
led to high inhibition of virus replication (1.6 and 1.7 log;, units,
respectively). This method also confirmed the high and significant
antiviral effects of mutRZ6A, sh613mutRZ6A, and sh613mutRZ6C.

DISCUSSION

Nucleoside substitution in the catalytic core hinders ribozyme
activity

Hammerhead ribozymes with introduced modified nucleosides
differ only by one or two groups relative to the unmodified variants
(Figure S2). The modifications of guanosine used were designed to
initiate a pucker in the case of ribose analogs and/or the syn-anti
conformation of the glycosidic bond. In the case of ribozymes
modified in the G8 position, such as RH1-8-2, RH1-8-3, RH1-8-4,
RH1-8-5, RH1-8-6, RH1-8-7, RH1-8-8, and RH1-8-9 (Table 3), the
target RNA cleavage yields were significantly lower than those with
the unmodified ribozyme. The 2'-OH moiety of G8 in the catalytic
core acts as the general acid in the proposed mechanism. It is also
known that the G8 base is involved in Watson-Crick pairing with
C3."7*° The lowered yields indicate that the sugar residue of G8
cannot be changed without loss of ribozyme activity. Interaction of
the 2'-hydroxyl with the cleavage site is impossible for all 2’-deoxy an-
alogs introduced into G8. The ribozymes RH1-8-5 and RH1-8-7 con-
taining 2’-deoxyguanosine and 2’-fluoro-2'-deoxyarabinoguanosine
in G8, respectively, showed residual activity. This result may suggest
that another mechanistic pathway is involved. Only in the case of the
8-bromoguanosine-substituted hammerhead ribozymes did variants
of RH-8-6 and RH-8-8 show no activity in the kinetic assay experi-
ment. This must be due to the syn conformation of the nucleobase

(8-bromoguanine) disrupting the necessary G8-C3 base pairing in
the catalytic core.”” This indicates that the conformation of nucleo-
base G8 is as important for hammerhead cleavage activity as the pres-
ence and configuration of the 2'-hydroxyl group. Modifications intro-
duced into G12 of this ribozyme seem to have less influence on the
cleavage kinetics. Changes in the sugar residue of G12 mainly affected
ribozyme activity in the case of substitution with 2’-fluoro-2’-deoxy-
guanosine in RH1-12-7. This could indicate that the substituted sugar
ring changes the availability of N1 of the nucleobase to act as a general

. . . 43-45
base in this reaction.”” ™

A similar lowering in the yields was ex-
pected in the case of ribozymes with 8-bromoguanine because the
syn conformation should be adopted. Whereas 8-bromoguanosine
derivatives introduced in G12 slightly influenced the ribozyme activ-
ity, RH1-12-4 showed a reaction rate similar to that of RH1-12-7, with

a kops equal to 0.002 min~" (Table 4).

Moreover, modification in hairpin loop L2 with unlocked nucleic acid
(UNA) analogs of uridine and isoguanosine*®
unchanged reaction rate for RH1-L10 but almost completely stopped
the reaction for RH1-L11. This result indicates that the isoguanosine
residue in the loop significantly changed the interaction in the ribo-
zyme, which led to nearly no cleavage activity by ribozyme RH1-L11
(Table 4).

8 resulted in an almost

Despite their low kps values, nine modified ribozymes, RH1-12-2,
RH1-12-5, RH1-12-7, RH1-12-8, RH1-L10, RZ6A-12-2, RZ6A-12-
8, RZ6C-12-2, and RZ6C-12-8, were transfected into the MDCK
cell line, and their antiviral activities against the IAV were verified.
The in cellulo experimental results were consistent with the outcomes
of the kinetic assays for the modified ribozymes. Other conclusions
regarding ribozyme performance in cells are discussed below.

Limited utility of the approaches that stabilize hammerhead
ribozymes

The presented results show that the application of catalytic nucleic
acids in biological systems is challenging. The introduction of a
hairpin motif or the selection of target-ribozyme pairs with sequence
features enabling potential trans-Hoogsteen interactions, both of
which promote stabilization, did not result in the desired increase
in catalytic activity as reported previously.” However, in our studies,
these variants were proposed for the hammerhead ribozyme RH1
with initially low inhibitory potential, which may have diminished
the effect. The conditions in which the improvement of features
and the high activity of the minimal ribozyme variants are observed
require clarification and more detailed analyses. The design of the
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A 1.4 B Figure 4. Antiviral potential of plasmid constructs
' 1.21 T (A and B) Inhibitory potential of the tested plasmid
ﬁ 1.0} ﬁ constructs based on quantitative real-time PCR anal-
z o8] = ysis of viral RNA in samples treated with (A) single-
E Tg molecule constructs and (B) shRNA-ribozyme con-
E 0.61 ; structs. (C and D) Analysis of infectious viral particles
§ 04 s by FFA in samples treated with (C) single-molecule
& 0.2] *** wEE aEE & constructs and (D) shRNA-ribozyme constructs. Error

0.04 bars represent the SEM. An unpaired two-tailed t test
Q,lga‘? ‘3;3’ Qaga‘? N \e“ was performed for statistical comparisons (*p < 0.05,
) && **p < 0.01, and **p < 0.001).
C 5 D ¢ . e
zyme, which showed great potential to inhibit
_ . _ x T TAV replication in cell-culture studies. In addi-
E T E ° '¥' . . .
> . . . % % S ¢ tion, the target triplet for RZ6C was located in
Ly ° . . S e E o e the single-stranded loop, which was accessible
g | | g = =+ Y for the previously tested antisense oligonucleo-
3 " 3 l tides.”® The most active ribozyme, RZ6A,
| |
cleaved influenza RNA after the GUU triplet,
qﬂs’v &2 qﬂf’v & & qj?v 415’0 & <ajg,c; & & as did the ribozyme RZ6D, which gave a low
& & & W @"& & yield. These results show that the efficiency of ri-
X X &) %) e . .
SRV bozyme-initiated catalytic cleavage is not exclu-
) )

RH2 ribozyme was based solely on the selection of target and ribo-
zyme sequences that could potentially enable trans-Hoogsteen inter-
actions. However, the complete sequences neighboring the interac-
tion site differ from known crystallized ribozyme examples showing
the abovementioned tertiary contacts. Further analysis of the
sequence and structural context of this target-ribozyme pair as well
as preparation of other structural models could be helpful to interpret
the observed effects. The results obtained for potentially inactive
mutant ribozymes that showed inhibition levels similar to the pri-
mary ribozyme support previous reports suggesting potential anti-
sense effects of catalytically inactive ribozymes.”** However, it
should also be taken into consideration that the catalytic cleavage per-
formed by ribozymes is expected to be a multiple-turnover mecha-
nism that is more efficient than steric hindrance caused by antisense
oligonucleotides, which present single-turnover kinetics. The exact
mechanism of action of mutant ribozymes remains to be elucidated.

The antiviral activity of the ribozyme depends on the target site

There are many factors influencing the biological activity of ribozymes,
such as various ions and pH values as well as the presence of biomol-
ecules.”’ The selection of a target sequence and its structural context,
particularly within the nucleotide triplet at the RNA cleavage site,
may be important.”” To date, it has been shown that the availability
of the target RNA region and the specific sequence of the NUH triplet
#164253 Not all nucleotide trip-
lets provide highly efficient target RNA cleavage. In published reports,
the most effective hydrolysis was observed for GUC and AUC trip-
lets."*** Only one of the ribozymes tested in this study was designed
within the optimal nucleotide NUH triplet. This was the RZ6C ribo-

determine the activity of the ribozyme.
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sively dependent on the type of target NUH

triplet. It was previously reported that the
sequence context of the cleavage triplet is also important; however,
no clear rules were determined.”* On the other hand, when considering
the structural context of the cleavage site, all triplets except AUC
(RZ6C) were located in regions either partially or fully involved in
the formation of double-stranded structures. However, they were
also preceded by a string of unpaired nucleotides to enable potential
hybridization of at least one of the ribozyme arms. In this case, it is
not possible to clearly indicate how the target region structure influ-
ences the activity of the tested ribozyme. Information on tertiary struc-
ture, RNA-protein interactions, and RNA dynamics could explain the
observation. However, the target region of the two most active
hammerhead ribozymes, RZ6A and RZ6C, was the domain at which
the effective ASO and siRNA were directed in previous studies.”>*°
The second region (682-700 nt) with a similar inhibition profile medi-
ated previously by ASO and siRNA did not prove to be a suitable target
region for RZ6D ribozyme effectiveness. These results show that, while
the most effective oligonucleotide tools operate within the same do-
mains, not every region of the viral RNA structure may be a universal
target for a variety of RNA-targeting strategies. The final effect is prob-
ably dependent on a number of factors, all of which simultaneously
affect in cellulo target cleavage. Inhibitory approaches based on
sense-antisense interactions proceed through distinct intracellular
pathways, and their performance criteria may differ slightly.

Increased antiviral potential of constructs coding shRNA and
hammerhead ribozymes delivered in plasmids

The obtained results indicate that ribozyme plasmid constructs have a
higher potential to inhibit IAV replication than ribozymes delivered
directly into the cells via the Lipofectamine reagent. According to
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Table 3. Modified nucleotide residues included in the hammerhead
ribozymes

Table 4. Calculated kinetic parameters of the modified ribozymes

Observed reaction rate Kop, (min™")

Ribozyme Modification
Name variant Included modification site RHI 0.112 RH1-8-2 0.022 RHI-L10 0.108
RHI122 RH1 §-bromoguanosine oL RH1-12-2 0.042 RH1-8-3 0.013 RH1-L11 0.008
RH1-12-3 RH1 arabinoguanosine GI2 RHI1-12-3 0.040 RH1-8-4 0.004 RZ6A o.015
RH1-12-4 RH1 8-bromoarabinoguanosine G12 RHI1-12-4 0.002 RHI1-8-5 0.003 RZ6A-12-2 0.003
RHI12.5 RHL 2~ deoxyguanosine oL RH1-12-5 0.057 RH1-8-6 n/n RZ6A-12-8 0.008
RH1-12-6 RH1 8-bromo-2’-deoxyguanosine G12 RH1-12-6 0.026 RH1-8-7 0.002 RZ6C 0128
; ; RH1-12-7 0.002 RHI1-8-8 n/n RZ6C-12-2 0.020
RHI-12-7 RH1 2"-deoxy-2"- G12
fluoroarabinoguanosine RHI1-12-8 0.077 RH1-8-9 0.029 RZ6C-12-8 0.093
- 1 2 - -
RH1-12-8 RH1 8-bromo: 2 deoxy: 2A G12 RH1-12-9 0.032
fluoroarabinoguanosine
RHI1-12-9 RH1 2-aminoadenosine GI2 o .
- bozyme. The inhibitory effect of the sh613RZ6A construct increased
RH1-8-2 RH1 8-bromoguanosine G8 . . .
by 0.6 log;o units compared with the sh613 plasmid construct and
RH1-8-3 RH1 bi i G8 - 1
arabinoguancsine 0.3 log;o units in the case of the RZ6A plasmid (Figures 4C and
RH1-8-4 RH]I 8-bromoarabinoguanosine G8 4D). Plasmid sh613RZ6C causes viral inhibition that is 0.7 log; units
RH1-8-5 RHI 2'-deoxyguanosine G8 higher than the sh613 construct.
RH1-8-6 RH1 8-bromo-2’-deoxyguanosine G8
2'-deoxy-2’-
RH1-8-7 RH1 G8 i
fluoroarabinoguanosine Conclusions
HLes . 8-bromo-2'-deoxy-2- s All of the chemically modified hammerhead ribozymes in this study
e fluoroarabinoguanosine showed lower catalytic activity than the unmodified ribozymes. Our
RH1-8-9 RH1 3 -aminoadenosine G8 explanations for these results are based on studies of different models
RHLL10 RUL UNA-uridine 22 a.nd their crystal s-truFtures. More experiments ITIVOlVIDg pH change,
F—— - ONA - P ribozyme crystallization and molecular dynamics or quantum me-
- -isoguanosine . h . .
chanics calculations would be useful for further understanding how
RZ6A-12-2 RZ6A 8-b i G12 o . . .
romognanosine each modification used here influenced the active and stationary state
! / . . . . .
RZ6A-12-8 RZ6A g'bmmo'b% -deoxy-2 - G12 of the ribozyme catalytic core. The obtained results also indicate that
uoroarabinoguanosine . . . . .1: .
g variants with the potential to increase the structural stabilization of
RZ6C-12-2 Rz6C §-bromoguanosine G12 the ribozyme (carrying the TLR motif or potential trans-Hoogsteen
RZ6C-12-8 RZ6C 8-bromo-2'-deoxy-2'- G12 interactions) and its catalytic activity should be further investigated

fluoroarabinoguanosine

real-time PCR analysis of viral RNA copies, a greater than 50% in-
crease in antiviral activity occurred when RZ6A was cloned into the
plasmid. This may be due to the continuous expression of the ribo-
zyme from the plasmid vector within the cell during viral infection.
Direct transfection of ribozyme RNA is a single event affected by
the cell penetration efficiency and RNA degradation during the pro-
cess. The foreign RNA may also be degraded within the cell after suc-
cessful entry. These events, which do not apply to plasmids, lead to a
decrease in the ribozyme RNA concentration and lower effective
target cleavage.

Another aspect is the contribution of the plasmid construct compo-
nents to the overall inhibitory effect. Quantitation of viral RNA
showed that inhibition of viral replication reached similar levels after
treatment with constructs coding both shRNAs and ribozyme and
constructs coding only shRNA or ribozyme. However, analysis of
the infectious viral particles indicated that the influence of chimeric
constructs is more effective than constructs coding only shRNA or ri-

to reveal critical factors determining successful property improve-
ment. Even the analysis of the unmodified minimal ribozyme variants
showed that multiple factors may affect ribozyme activity, including
target site and sequence selection; however, our knowledge in this
area is still limited. In this study, the highest inhibitory potential
was achieved by the application of plasmid constructs. The maximum
reduction in the viral load (1.7 log;o units) was obtained by applica-
tion of the chimeric construct sh613RZ6C.

MATERIALS AND METHODS

Materials

Most reagents used during the synthesis of the protected derivatives
of guanosine were purchased from Sigma-Aldrich. Dimethoxytrityl
chloride, 2-cyanoethyl N,N,N’,N’-tetraisopropylphosphorodiami-
dite, and 1,1,3,3-tetraisopropyldisiloxane-1,3-dichloride were pur-
chased from ChemGenes. Solvents used were of the highest purity
available and dried with molecular sieves if necessary. The stepwise
chemical synthesis of 3’-O-phosphoramidite of protected 2’-fluoro-
2'-deoxyarabinoguanosine and 8-bromo-2’-fluoro-2’'-deoxyarabino-
guanosine is described in detail in supplemental information S3.
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Synthesis and deprotection of the oligonucleotides
Oligonucleotides were synthesized on a BioAutomation MerMadel2
DNA/RNA synthesizer using B-cyanoethyl phosphoramidite chemis-
try’”” and commercially available phosphoramidites (ChemGenes
and GenePharma). Deprotection and purification of the oligonucleo-
tides were accomplished according to previously published proced-
ures.”” However, deprotection of the oligonucleotides with an
8-bromoguanosine residue with aqueous ammonia/ethanol (3:1 v/v)
was performed for 48 h at room temperature.

In vitro cleavage assay (kinetic assay)

Cleavage reactions were performed in a 30-uL volume of 500 nM ri-
bozyme and 5 mM FAM 5' end-labeled RNA target substrate in the
presence of 50 mM Tris-HCI (pH 7.5) and 5 mM MgCl, at 25°C.
The sequences of the target substrates were as follows: for RHI,
5-FAM-ACUCAAACUCAGUGAUUAU-3’; for RZ6A, 5-FAM-CA
AUGGAGUUAAUCAGAAU-3’; and for RZ6C, 5°-FAM-CAGAAU
GAUCAAACGUGGA-3. The same oligonucleotides were used for
the modified ribozymes. Stock solutions of ribozyme and substrate
were prepared in 50 mM Tris-HCl (pH 7.5), heated separately at
90°C for 1 min, and cooled to 25°C. Next, MgCl, was added to
both solutions to obtain a 5 mM concentration. The reaction was
initiated by the addition of ribozyme to the substrate. Aliquots of
3 uL were removed at predetermined time intervals (0, 0.5, 1, 2.5, 5,
15, 30, 45, 60, and 90 min) and quenched with 17 pL of stop mix
(5 mM sodium citrate, 7 M urea, and 200 mM EDTA [pH 5]). The
cleavage reaction was analyzed by electrophoresis on a 12% polyacryl-
amide 8 M urea gel and visualized with PhosphoImager (Fuji FLA-
5100) (Figure S5). The bands were quantified, and the ks parameters
were obtained by fitting to f= 1 — e~ *, where fis the fraction cleaved
at time ¢.

Cell culture and virus titration

MDCK cells (Sigma) were cultured as previously described.*® Exper-
iments were carried out on the A/California/04/2009 (HIN1) influ-
enza strain (a gift from Prof. Luis Martinez-Sobrido, Texas Biomed-
ical Research Institute, USA) propagated in MDCK cells. A standard
plaque assay determined the virus titer.

Plasmid preparation

The DNA sequences of the ribozyme, shRNA, and shRNA-ribozyme
chimeric constructs were chemically synthesized. Each insert was
flanked with restriction site sequences for HindIII and BamHI restric-
tion endonucleases. Digestion was performed using FastDigest Hin-
dIIl and FastDigest BamHI restriction enzymes (Thermo Fisher
Scientific) according to the manufacturer’s protocol, followed by
phenol-chloroform extraction and ethanol precipitation. The inserts
were cloned into a pcDNA3.1(+) vector using T4 DNA ligase
(EURX) according to the manufacturer’s recommendation.

Ribozyme and plasmid transfection into the cells

Transfection was carried out using Lipofectamine 2000 (Invitrogen),
which was diluted in Opti-MEM (Invitrogen) according to the manu-
facturer’s instructions and incubated for 10 min at room temperature
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(RT). Next, ribozyme RNA or plasmid was diluted with the appro-
priate volume of Opti-MEM, mixed gently with Lipofectamine-Opti-
MEM solution, and incubated for 30 min at RT. The final concentra-
tion of ribozyme during transfection was 200 nM, or 500 ng of plasmid
construct was added per well. Just before transfection, the MDCK cells
were trypsinized and resuspended in fresh culture medium. Transfec-
tion solution (100 pL) was added to the MDCK cell suspension con-
taining 1.4 x 10° cells per well at a final volume of 600 pL, which
was then seeded in 24-well plates.

Viral infection of the cell culture

Eighteen hours after transfection, the cell cultures were washed with
PBS and infected with influenza virus A/California/04/2009 (HIN1)
at a multiplicity of infection (MOI) of 0.01. The cells were incubated
with a solution containing virus diluted with infection medium
(0.3% BSA [Sigma], 100 U/mL penicillin, and 100 pg/mL strepto-
mycin [penicillin-streptomycin; Sigma]), 0.1 mM CaCl,-2H,0, and
0.1 mM MgCl,-6H,0 in PBS for 1 h at RT on a gently rocking plat-
form. The supernatant was then removed, and the cells were main-
tained in postinfection medium (0.3% BSA, 100 U/mL penicillin,
100 pg/mL streptomycin, 2 mM glutamine, and 1 pg/mL N-tosyl-
L-phenylalanine chloromethyl ketone (TPCK)-treated trypsin
[Sigma] in DMEM) at 33°C for 24 h.

Quantitative real-time PCR analysis of viral RNA

Total RNA from the cell monolayer was extracted using TRIzol re-
agent.56 DNase treatment, reverse transcription, and real-time PCR
were carried out as previously described.”” The viral RNA copy num-
ber for each sample was calculated as a percentage of the viral copy
number detected in the negative control (Lipofectamine-treated
cells), which was established as 100% of the viral RNA copies.

Virus titration by focus formation assay

Supernatants collected from infected cell cultures were used to pre-
pare 10-fold serial dilutions of the virus in infection medium.
Next, 50 pL of each dilution was inoculated onto confluent mono-
layers of MDCK cells cultured in 96-well culture plates. After 1 h
of incubation on a gently rocking platform at RT, the supernatants
were replaced with 100 pL of postinfection medium containing
Avicel (0.2% BSA, 67 U/mL penicillin, 67 pg/mL streptomycin,
1.33 mM glutamine, 2.5 pug/mL N-acetylated trypsin [Sigma],
and 1% Avicel in DMEM) and maintained for 24 h at 33°C under
5% CO,. The supernatants were discarded, and the cells were fixed
and permeabilized with 4% formaldehyde and 0.5% Triton X-100
solution (BioShop) in PBS for 20 min at RT. Blocking was per-
formed using 3% BSA in PBS for 1 h at RT. Next, the solution
was replaced with the mouse anti-influenza primary antibody tar-
geting nucleoprotein (NP) (MAB8257 Merck) diluted in PBS
(I pg/mL) and incubated for 1 h at RT. Detection was carried
out with an fluorescein isothiocyanate (FITC)-conjugated second-
ary rabbit anti-mouse immunoglobulin G (IgG) antibody (AP160F
Merck) diluted in PBS (1:150 v/v) for 30 min at RT. Visualization
under a fluorescence microscope was followed by calculating the
focus-forming units (FFUs)/mL.
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Statistical analysis

Statistical analysis of the data from three independent experiments
(each containing three technical repeats) was performed using
GraphPad Prism 5 software. A two-tailed t test with unequal variance
was conducted, and three intervals of statistical confidence were
considered: 0.05, 0.01, and 0.001.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.
1016/j.0mtn.2022.05.035.
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S1. (+)RNAGS5 A/California/04/2009 (H1IN1) secondary structure.

Figure S1. Target regions of hammerhead ribozymes in the (+)RNAS5 A/California/04/2009
(H1N1) secondary structure. Secondary structure of (+)RNA5 A/California/04/2009 (H1N1)
was previously published!. Target regions for analyzed hammerhead ribozymes are marked

with colored lines.
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S3.  Nucleoside and Phosphoroamidite synthesis.

General. Guanosine, adenosine and 2,6-diaminopurine riboside used for synthesis and most
other reagents were purchased from Sigma-Aldrich and Merck. Dimethoxytrityl chloride and
2-cyanoethyl N,N,N’,N'-tetraisopropylphosphorodiamidite were purchased from ChemGenes.

Solvents were used at the highest available purity and dried with molecular sieves, if necessary.

NMR spectra were acquired using a Bruker Avance Il (400 MHz) or Avance 11l (500 MHz) or
Avance 111 (700 MHz) spectrophotometer. For 'H, 3C, ¥F and 3'P NMR spectra TMS, H3POs

and trifluoroacetic acid, respectively, were used as references.

Lg
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Scheme S1. Synthesis of 2’-deoxy-2'-fluoropurinearabinosides marked as following: a —
guanine, b — adenine, ¢ — 2,6-diaminopurine, d — 8-bromoguanine, respectively. Where: 1 means
1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane/pyridine; 11 means triflate  anhydride,
DMAP/dichloromethane, pyridine; iii means triethylammonium fluoride (TEAHF), acetic
anhydride/pyridine; iv means TEAHF/THF, pyridine; v means ammonia/methanol; vi means

bromine/water; vii means dimethylformamide dimethyl acetal/methanol; viii means 4,4'-



dimethoxytrityl ~ chloride/pyridine = and ivn  means  2-cyanoethyl = N,N,N’,N'-

tetraisopropylphosphoramidite, terazole/acetonitrile.

HO B~ B"
iPN,Si—C
O (iPr,Si),0Cl, (P12 \ O
—_—
pyridine OE
OH OH (iPr),Si—O OH
1a-c 2a-c

N-protected-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)-purine riboside (step 1i). N-
protected purine riboside (1) (1 equiv) suspension was evaporated twice with anhydrous
pyridine. The dried residue was suspended in pyridine (5 ml per 1 mmol) and 1,1,3,3-
tetraisopropyldisiloxane-1,3-dichloride (1.1 equiv) was added. After 3 h at room temperature
(rt), the reaction was completed, worked up with aqueous solution of sodium bicarbonate, and
extracted 3 times with dichloromethane. The combined organic layers were dried with
anhydrous sodium sulfate, filtered and evaporated to obtain product (2) as white foam. Yield

ca. 100 %.

N2-(dimethylaminomethylene)-3’ 5'-O-(tetraisopropyldisiloxane-1,3-diyl)-guanosine (2a). ‘H
NMR (400 MHz, dmso-ds), 8, ppm: 11.34 (s, 1H, NH), 8.54 (s, 1H, CH dmm), 7.85 (s, 1H, H-
8), 5.79 (d, Jn-n = 3.92 Hz, 1H, H-1"), 5.68 (s, 1H, 2’-OH), 4.36 (m, 2H, H-3’, H-2"), 4.09-3.91
(m, 3H, H-5', H-5", H-4"), 3.14 (s, 3H, CH3 dmm), 3.02 (s, 3H, CHs dmm), 0.99-1.04 (m, 28H,
(iPr)s); ¥C NMR (100 MHz, dmso-ds), 8, ppm : 157.93, 157.54, 157.40, 149.32, 135.37,
119.65, 88.10, 80.95, 73.83, 69.67, 60.73, 17.27, 17.11, 17.08, 16.90, 16.84, 16.81, 16.74,
12.75, 12.40, 12.25, 11.98; HRMS (ESI): calcd for C2sH44NsQOsSi> [M+H]" 581.2934; found

581.2932;

N®-benzoyl-3’, 5'-O-(tetraisopropyldisiloxane-1,3-diyl)-adenosine (2b) *H NMR (400 MHz,

dmso-ds), 3, ppm: 11.24 (s, 1H, NH), 8.67 (s, 1H, H-2), 8.53 (s, 1H, H8), 8.06 - 7.53 (5H, H-

4



Ar), 6.01 (d, 1H, H-1'), 5.68 (d, 1H, 2'-OH), 4.84-4.81 (m, 1H, 2'), 4.65, (m, 1H, 3') 4.09-3.93
(m, 3H, 4',5',5"), 1.06 - 0.94 (m, 28H, (iPr)4); 3C NMR (100 MHz, dmso-ds), 5, ppm: 165.68,
151.41, 150.48, 143.07, 133.34, 132.43, 128.48, 128.43, 128.16, 127.41, 125.95, 89.52, 80.95,
73.38, 69.86, 60.72, 54.88, 17.32, 17.18, 17.17, 17.13, 17.01, 16.89, 16.81, 12.73, 12.42, 12.25,

12.05; HRMS (ESI): calcd for C29H43NsO6Si> [M+H]* 614.2825; found 614.2831;

NZ2,NC-diacetyl-3" 5"-O-(tetraisopropyldisiloxane-1,3-diyl)-2-aminoadenosine (2¢) H NMR
(400 MHz, dmso-ds): 8 10.56 (s, 1H, NH), 10.30 (s, 1H, NH), 8.32 (s, 1H, H-8), 5.89 (s, 1H,
H-17, 5.59 (s, 1H, 2'-OH), 4.55 - 4.50 (m, 2H, H-2", H-3'), 4.09 - 3.92 (m, 3H, H-4', H-5', H-
5", 2.31 (s, 3H, Ac CHa), 2.22 (s, 3H, Ac CHs), 1.05-0.85 (m, (iPr)s); *C NMR (176 MHz,
dmso-ds), 6, ppm: 169.88, 152.68, 152.40, 150.15, 141.30, 120.30, 89.09, 81.86, 73.87, 70.57,
61.51, 25.13,24.98, 17.83,17.67,17.64,17.57,17.49, 17.41, 17.35, 13.18, 12.94, 12.68, 12.51;

HRMS (ESI): calcd for C2sHaaNsO7Siz [M-H] 607.2737; found 607.2747;

R R
(|Pr)28|\O o) a) Tf,0, DMAP AcO C
0 pyridine, CH,CI, F
, b) TEAHF, Ac,0 ~
(iPr),Si—O OH o YA OAc
2a-c THF 3a-c

N-protected 3',5’-di-O-acetyl-2'-deoxy-2'-fluoropurine arabinoside (step ii).

a) N-protected-3’,5'-O-(tetraisopropyldisiloxane-1,3-diyl)-purine riboside (2) (1 equiv) was
dissolved in anhydrous dichloromethane (6 ml per 1 mmol) with the addition of pyridine (0.2
ml per 1 mmol) and 4-dimethylaminopyridine (DMAP) (5 equiv). The mixture was cooled in
an ice bath for 30 min and trifluoromethanesulfonyl anhydride (7 equiv) was added dropwise
over 15 min. Then, the reaction mixture was left at rt for 2 h to complete the reaction. The

reaction mixture was worked up with an aqueous solution of sodium bicarbonate and extracted



3 times with dichloromethane. The organic layer was washed with an aqueous solution of
dibasic sodium phosphate and the combined organic layers were dried with anhydrous sodium
sulfate, filtered and evaporated.

b) Residue from previous reaction was dissolved in a 1 molar pyridine solution of
triethylammonium fluoride (4 equiv), and acetic anhydride (8 equiv) was added. The mixture
was left for 2 h at rt in a plastic container. After that time, the reaction was completed, and the
reaction mixture was worked up with an aqueous solution of sodium bicarbonate and was
extracted 3 times with dichloromethane. The combined organic layers were dried with
anhydrous sodium sulfate, filtered and evaporated.

c) Prepared N-protected 2'-O-trifluoromethanesulfonyl-3’,5'-di-O-acetylpurine riboside
without further purification was dissolved in anhydrous tetrahydrofuran (5 ml per 1 mmol), and
a 1 molar pyridine solution of TEAHF (7 equiv) was added. The mixture was left for 64 h at
37° C. After that time, °F NMR signal at -74.57 ppm disappeared, and a new signal at -198.43
ppm was indicated. The reaction mixture was worked up with an aqueous solution of sodium
bicarbonate and was extracted 3 times with dichloromethane. The combined organic layers
were dried with anhydrous sodium sulfate, filtered and evaporated. Product (3) without

purification was used for the next reaction.

3’ 5'-di-O-acetyl-N2-(dimethylaminomethylene)-2'"-deoxy-2-fluoroarabinoguanosine (3a). 'H
NMR (500 MHz, dmso-ds), 5, ppm: 11.44 (s, 1H, NH), 8.62 (s, 1H, CH dmm), 7.87 (d, 1H, H-
8), 6.34 (dd, 1H, H-1", Ju.r = 15.18 Hz), 5.74 (m, 1H, H-2", Ju.r = 19.30 Hz), 5.56 (m, 1H, H-
3", Jur = -51.20 Hz), 4.41-4.23 (m, 3H, H-5', H-5", H-4"), 3.18 (s, 3H, CHz dmm), 3.05 (s, 3H,
CHs dmm), 2.15 (s, 3H, CHs Ac), 2.03 (s, 3H, CH3 Ac); *C NMR (125 MHz, dmso-ds), &,
ppm: 170.60, 170.32, 158.48, 157.98, 150.11, 138.12, 119.73, 93.76, 92.23, 81.89, 81.76,

77.84, 75.71, 75.49, 63.42, 41.09, 40.54-39.45, 35.18, 21.11, 20.93, 17.77, 13.08; °F NMR



(470 MHz, dmso-de), 5, ppm: -198.43 (ddd, 1F, Jur = 17.36 Hz, Jip-r = -51.58 Hz); HRMS

ESI): calcd for C17H21FNgOs [M+H]* 425.1579; found 425.1573;
(

3" 5'-di-O-acetyl-Nb-benzoyl-2"-deoxy-2"-fluoroarabinoadenosine (3b). *H NMR (500 MHz,
dmso-ds), 5, ppm: 11.27 (s, 1H, NH), 8.81 (s, 1H, H-2), 8.56 (s, 1H, H-8), 8.06-7.54 (5H, H-
Ar), 6.64 (dd, 1H, H-1", Ju.r = 15.18 Hz), 5.71-5.57 (m, 2H), 4.44-4.33 (m, 3H), 2.16 (s, 3H,
CHs Ac), 2.05 (s, 3H, CH3 Ac); 1*C NMR (125 MHz, dmso-dg), 5, ppm: 170.16, 169.63, 152.03,
151.91, 150.57, 143.24, 143.19, 133.24, 132.51, 128.51, 128.48, 93.68, 91.77, 81.96, 81.80,
78.17, 78.13, 75.41, 75.13, 63.00, 20.61, 20.52; 1°F NMR (470 MHz, dmso-de), 5, ppm: -197.90
(ddd, 1F, Ju-r = 17.18 Hz, Jua-r = -51.74 Hz); HRMS (ESI): calcd for Ca1H20FNsOs [M+H]*

458.1470; found 458.1453;

N?,N8-diacetyl-3", 5'-di-O-acetyl-2'-deoxy-2'-fluoro-2-aminoarabinoadenosine (3c). ‘H NMR
(500 MHz, dmso-ds), 5, ppm: 10.43 (s, 1H, NH), 8.36 (s, 1H, H8), 6.44 (dd, 1H, H-1", Ji-F =
16.73 Hz, Jui-u = 3.96 Hz), 5.65-5.51 (m, 2H), 4.41-4.32 (m, 4H), 2.32 (s, 3H, NAc CHa),
2.23 (s, 3H, NAc CHg), 2.14 (s, 3H, OAc CHs), 2.04 (s, 3H, OAc CHs); *C NMR (125 MHz,
dmso-ds), 8, ppm: 170.65, 169.98, 169.92, 152.93, 152.79, 142.39, 119.51, 94.02, 92.49, 82.24,
82.10, 78.76, 75.93, 75.72, 63.61, 25.09, 25.06, 21.07, 21.00, 20.95, 20.81, 20.69, 19.00, 17.76,
13.08; F NMR (470 MHz, dmso-ds), 8, ppm: -197.75 (ddd, 1F, Ju-r = 17.28 Hz, Jro-r = -50.92

Hz); HRMS (ESI): calcd for C1gH21FNsO7 [M+H]* 453.1529; found 453.1514;
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2'-deoxy-2'-fluoroarabinoguanosine (step iii). The residue from the previous reaction was
dissolved in methanol (5 ml per 1 mmol) and 25 % aqueous ammonia (5 ml per 1 mmol) was
added; the reaction was left in sealed vessel overnight at 55 °C. The mixture was cooled and

evaporated twice with isopropanol to dryness. The yield for the two last steps was 60 %.

2'-deoxy-2"-fluoroarabinoguanosine (4a). *H NMR (500 MHz, dmso-ds), &, ppm: 10.94 (s, 1H,
NH), 7.77 (s, 1H, H-8), 6.65 (s, 1H), 6.13 (dd, 1H, H-1’, Ju.r = 16.19 Hz), 5.10 (m, 2H, H-2’,
Jir = -52.45 Hz, 2'-OH), 4.36 (dt, 1H, H-3', Jur = 17.87 Hz), 3.80 (m, 1H, H-4"), 3.40 (m,
2H, H-5', H-5"); C NMR (176 MHz, dmso-de), 8, ppm: 171.98, 157.10, 154.52, 151.31,
136.27, 136.24, 116.35, 96.12, 95.03, 84.14, 84.12, 81.73, 81.64, 73.18, 73.05, 60.90, 40.32-
39.60, 22.97; °F NMR (376 MHz, dmso-dg), 5, ppm: -198.09 (ddd, 1F, Jur = 16.99 Hz, Jio-¢

=-52.40 Hz); HRMS (ESI): calcd for C1oH12FN504 [M+H]* 286.0946; found 286.0941;

0 O
NH NH
N )—NH, HaN— }N
IS NN AN
N N Br
HO— 4 o, HO— 4
F — F
H,O
OH OH
4a 4d
2'-deoxy-2'-fluoro-8-bromoarabinoguanosine (4d) (step Iv). 2'-Deoxy-2'-

fluoroarabinoguanosine (4a) was suspended in water and aqueous bromine was added dropwise
until discoloration occurred. The product (4d), in the form of a white precipitate, was filtered

and dried.

IH NMR (500 MHz, dmso-ds), 5, ppm: 10.83 (s, 1H, NH), 6.52 (s, 1H, 2'-OH), 6.27 (dd, 1H,
H-1', Jur = 16.19 Hz), 5.23 (dt, 1H, H-2', Juo-r = -52.45 Hz), 4.68 (dt, 1H, H-3"), 3.78-3.71 (m,
3H, H-4', H-5", H-5"); 33C NMR (125 MHz, dmso-ds), , ppm: 155.45, 153.55, 152.35, 119.67,

116.97, 97.40, 95.45, 82.20, 82.11, 82.08, 81.90, 73.61, 73.40, 61.53; °F NMR (376 MHz,



dmso-ds), 3, ppm: -197.05 (dg, 1F, Ju.r = 10.06 Hz, Jur = 21.88 Hz, Jua-r = -54.17 Hz); HRMS

ESI): calcd for C10H11BrFNsO4 [M+H]" 364.0051; found 364.0055
(

O @)

NH NH
N&)—NHQ N N\ )demm
[ PR

HO N HO N
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F _— F
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OH OH
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NZ2-(dimethylaminomethylene)-2'-deoxy-2'-fluoroarabinoguanosine (5a) (step v). 2'-
Deoxy-2'-fluoroarabinoguanosine (4a) was evaporated twice with methanol. The substrate was
suspended in methanol (5 ml per 1 mmol) and N,N-dimethylformamide dimethyl acetal (DMF
DMA) (5 equiv) was added and stirred for 6 h at 50 “C. Product (5a) was filtered, dried and

used without further purification.

IH NMR (500 MHz, dmso-ds), 5, ppm: 8.59 (s, 1H, CH dmm), 7.89 (d, 1H, H-8), 6.29 (dd, 1H,
H-1", Jun = 4.48 Hz, Jur = 15.69 Hz), 5.16 (dt, 1H, H-2", Juo-r = -52.55 Hz), 4.41 (dt, 1H, H-
3, Jur = 19.11 Hz), 4.09 (m, 1H, H-4'), 3.63 (m, 2H, H-5', H5"), 3.16 (s, 3H, CHz dmm), 3.03
(s, 3H, CH; dmm); C NMR (125 MHz, dmso-ds), 5, ppm: 162.80, 151.70, 135.23, 116.68,
96.50, 94.98, 83.98, 83.95, 81.65, 81.52, 73.40, 73.21, 61.01, 36.25, 31.23; °F NMR (376 MHz,
dmso-de), 8, ppm: -197.27 (ddd, 1F, Ju.r = 17.26 Hz, Juo-r = -52.45 Hz); HRMS (ESI): calcd

for C13H17FNeO4 [M+H]" 341.1368; found 341.1366
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N-protected 5’-O-(4,4’-dimethoxytrityl)-2’-deoxy-2'-fluoropurine arabinoside (step vi).
Base-protected 2'-deoxy-2'-fluoropurine arabinoside (5) was evaporated twice with anhydrous
pyridine and dissolved in pyridine (5 ml per 1 mmol). The dimethoxytrityl chloride (1.1 equiv)
was added and the mixture was stirred at rt for 3 h. After reaction completion, the reaction
mixture was worked up with an aqueous solution of sodium bicarbonate and extracted 3 times
with dichloromethane. The combined organic layers were dried with anhydrous sodium sulfate,
filtered and evaporated. Product (6) was purified by silica gel column chromatography using

dichloromethane and methanol (linear gradient up to 7 %) as eluent. Yield: ca. 80 %.

5'-0-(4,4'-dimethoxytrityl)-N2-(dimethylaminomethylene)-2'"-deoxy-2-fluoroarabinoguanosine
(6a). 'H NMR (500 MHz, dmso-ds), 8, ppm: 11.37 (s, 1H, NH), 8.53 (s, 1H, CH dmm), 7.92
(d, 1H, H-8), 7.74-6.83 (Ar-DMT), 6.84 (dd, 1H, H-1’, Jui-¢ = 16.39 Hz, Jui-m = 4.38 Hz),
6.12 (s, 1H, 3'-OH), 5.19 (dt, 1H, H-2", Ji-r = -52.19 Hz), 4.43 (m, 1H, H-3"), 3.99 (m, 1H, H-
4", 3.71 (s, 6H, CH3-DMT), 3.32-3.20 (m, 2H, H-5, H-5"), 3.10 (s, 3H, CHz dmm), 3.04 (s,
3H, CH; dmm); ¥C NMR (125 MHz, dmso-dg), 5, ppm: 162.98, 158.55, 158.13, 158.03,
150.25, 145.15, 137.61, 137.57, 135.91, 135.84, 130.13, 128.30, 128.09, 127.24, 119.28,
113.61, 96.43, 94.90, 85.97, 82.15, 82.11, 81.61, 81.48, 74.29, 74.10, 63.84, 55.48, 41.15,
40.22, 40.05, 39.97, 39.88, 39.80, 39.71, 39.55, 39.38, 39.21, 36.30, 35.15, 31.27; °F NMR
(470 MHz, dmso-de), 6, ppm: -197.28 (ddd, 1F, Jur = 17.52 Hz, Jr.u2 = -53.34 Hz); HRMS

(ESI): calcd for C3sHssFNsOs [M+H]" 643.2675; found 643.2676

NE-benzoyl-5'-O-(4,4'-dimethoxytrityl)-2'-deoxy-2"-fluoroarabinoadenosine (6b). *H NMR
(500 MHz dmso-ds), &, ppm: 11.27 (s, 1H, NH), 8.03-6.83 (m, Bz-Ar, DMT-Ar), 6.61 (dd, 1H,
Juior = 13.9 Hz, Jui-u = 4.74 Hz), 6.04 (d, 3'-OH), 5.32 (dt, 1H, H-2', Juy-F = -52.44 Hz), 4.57-
4.51 (m, 1H, H-3"), 4.07 (m, 1H, H-4"), 3.72 (s, 6H, CH3-DMT), 3.41-3.37, 3.28-3.26 (m, 2H,
H-5', H-5"); $3C NMR (125 MHz dmso-ds), 8, ppm: 167.90, 165.65, 158.10, 151.92, 150.50,

144.74, 142.90, 135.53, 135.39, 134.25, 133.30, 132.48, 131.19, 129.71, 129.69, 128.51,
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128.47, 128.30, 128.18, 127.81, 127.68, 127.44, 126.72, 125.08, 113.18, 96.33, 94.42, 85.55,
81.74, 81.66, 81.49, 73.69, 73.45, 63.38, 55.01, 39.50; 1°F NMR (470 MHz, dmso-ds), 5, ppm:
-197.68 (ddd, 1F, Jur = 17.11 Hz, Juor = -53.14 Hz); HRMS (ESI): calcd for C3gH34FN5Os

[M+H]" 676.2566; found 676.2572

N2 ,NC-diacetyl-5"-O-(4,4'-dimethoxytrityl)-2'-deoxy-2-fluoro-2-aminoarabinoadenosine  (6¢).
IH NMR (400 MHz, dmso-de), 8, ppm: 10.60, 10.35 (2xs, 2H, NH), 8.22 (1H, H-8), 7.38 - 6.79
(m, 9H, Ar-DMT), 6.43 (dd, 1H, H-1", Ji-r = 13.36 Hz, Jui-m2 = 4.84 Hz), 5.96 (d, 1H, 3'-OH),
5.27 (dt, 1H, H-2', Jur = -52.47 Hz), 4.65 (m, 1H, H-3"), 4.04 (m, 1H, H-4"), 3.72 (s, 6H, CH3-
DMT), 3.48-3.44, 3.24-3.21 (m, 2H, H-5', H-5"), 2.32 (s, 3H, Ac CHz), 2.20 (s, 3H, Ac CHa);
13C NMR (100 MHz, dmso-ds), 5, ppm: 162.79, 158.35, 157.93, 157.83, 150.06, 144.96,
135.71, 135.65, 129.93, 128.10, 127.90, 127.04, 119.08, 113.42, 96.23, 94.71, 85.77, 81.95,
81.91, 81.42, 81.28, 74.09, 73.90, 63.64, 55.28, 40.95 - 39.02, 36.11, 34.95, 31.07; °F NMR
(376 MHz, dmso-de): & -198.05 (ddd, 1F, Jr-+2' = = -52.10 Hz, Jr-n = 16.09 Hz); HRMS (ESI):

calcd for C3sHzsFNsO7 [M+H]" 671.2624; found 671.2634;

5'-0-(4,4'-dimethoxytrityl)-N2-(dimethylaminomethylene)-2'-deoxy-2"-fluoro-8-

bromoarabinoguanosine (6d). *H NMR (400 MHz, dmso-dg), 5, ppm: 11.54 (s, 1H, NH), 8.23
(s, 1H, CH dmm), 7.35 - 6.77 (m, Ar-DMT), 6.48 (dd, 1H, H-1’, Ju.r = 10.42 Hz, Jui-mo = 6.38
Hz), 5.97 (s, 1H, 3'-OH), 5.34 (dt, 1H, H-2), 4.72-4.65 (m, 1H, H-3'), 3.96 (m, 1H, H-4"), 3.72
(s, 6H, CH3-DMT), 3.55 (m, 1H, H-5"), 3.24-3.17 (m, 1H, H-5"), 3.00 (s, 3H, CHz dmm), 2.98
(s, 3H, CHs; dmm); C NMR (100 MHz, dmso-ds), 5, ppm: 158.50, 158.43, 157.97, 157.52,
156.80, 151.49, 145.23, 135.89, 135.83, 130.13, 130.01, 128.17, 128.12, 127.09, 121.83,
120.46, 113.53, 113.49, 97.39, 95.83, 85.94, 82.23, 82.09, 79.89, 79.80, 74.52, 74.35, 64.21,
55.48, 55.45, 49.07, 41.24, 40.57-39.47, 35.12; **F NMR (376 MHz, dmso-d6): § -197.31 (ddd,
1F, Jrm> = -52.28 Hz, Jr-nv = 17.52 Hz); HRMS (ESI): calcd for CzsHzssFNsOs [M+H]*

721.1780; found 721.1773;

11
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N-protected [5'-O-(dimethoxytrityl)-2'-deoxy-2'-fluoroarabinofuranosyl]purine 3’-O-(2-
cyanoethyl N,N-diisopropyl)phosphoramidite (step vii). Dimethoxytrityl and base-protected
purine riboside (6) (1 equiv) and tetrazole (1 equiv) was vacuum-dried for 8 h. Substrates were
dissolved in anhydrous acetonitrile (5 ml per 1 mmol) and 2-cyanoethyl N,N,N’,N'-
tetraisopropylphosphorodiamidite (1.1 equiv) was added. The mixture was stirred at rt
overnight. The reaction mixture after completion was worked up with an aqueous solution of
sodium bicarbonate and extracted 3 times with dichloromethane containing 1 % of
triethylamine (TEA). The combined organic layers were dried with sodium sulfate and
evaporated. Product was purified using silica gel column chromatography starting with hexane,
and ethyl acetate was used to form a gradient. During purification, the eluent contained 1 %

TEA. Product (7) was lyophilized from benzene. Yield: 92 % (after purification).

5'-O-(dimethoxytrityl)-N2-(dimethylaminomethylene)-2-deoxy-2-fluoroarabinoguanosine 3 '-
O-(2-cyanoethyl N,N-diisopropyl)phosphoramidite (7a). *H NMR (400 MHz, CD3sCN-d3), §,
ppm: 9.49 (s, 1H, NH), 8.60 (s, 1H, CH dmm), 7.70 (s, 1H, H-8), 7.47-6.84 (13H, Ar-DMT),
6.34 (dd, 1H, H-1"), 5.23 (m, 1H, H-2"), 4.80-4.65 (m, 1H, H-3"), 4.15 (m, 1H, H-4"),3.76 (s,
6H, CH3-DMT), 3.67-3.60 (m, 4H, O-CH2 CEO, 2x CH iPr), 3.40-3.36 (m, 2H, H-5', 5"), 3.10
(s, 3H, CHs dmm), 3.05 (s, 3H, CHz dmm), 2.62 (t, 1H, CH2 CEO), 2.52 (t, 1H, CH2 CEO),
1.18-1.07 (13H, CHs iPr); 3C NMR (100 MHz, CD3sCN-d3), &, ppm: 159.68, 159.33, 159.26,
158.78, 158.66, 158.62, 151.26, 151.24, 145.95, 145.92, 138.10, 138.06, 138.04, 138.01,
136.73, 136.68, 131.00, 130.96, 130.94, 129.27, 128.97, 128.90, 128.83, 127.87, 127.84,

120.43, 120.36, 119.39, 119.28, 118.27, 114.06, 96.67, 96.63, 96.61, 96.59, 94.75, 94.71, 94.69,

12



94.67, 87.13, 87.10, 83.24, 83.10, 83.07, 82.99, 82.93, 82.90, 82.82, 82.78, 82.74, 77.77, 77.60,
77.51,77.34,77.00, 76.82, 76.74, 76.57, 63.94, 63.72, 59.94, 59.77, 59.75, 59.58, 59.16, 59.11,
55.89, 55.88, 45.99, 45.92, 44.27, 44.20, 44.15,44.07, 41.65, 35.30, 24.94, 24.90, 24.87, 24.83,
24.80, 24.73, 23.16, 23.14, 23.09, 23.07, 20.99, 20.94, 20.92, 20.87, 20.61, 20.53, 1.30; °F
NMR (470 MHz, CD3sCN-ds), 5, ppm: -197.17 (dddd, 1F, Ju-r = -52.46 Hz, Jur = 18.83 Hz,
Jr.r = 78,49 Hz); 3P NMR (162 MHz CD3CN-ds): 5, ppm: 151.27, 150.82; HRMS (ESI): calcd

for C43Hs52FNgO7P [M+H]" 843.3753; found 843.3741;

5'-O-(dimethoxytrityl)-N°-benzoyl-2"-deoxy-2'-fluoroarabinoadenosine 3'-0O-(2-cyanoethyl
N,N-diisopropyl)phosphoramidite (7b). *H NMR (500 MHz, CD3sCN-ds), 8, ppm: 9.51 (s, 1H,
NH), 8.67 - 8.66 (1H, H-2), 8.29-8.27 (1H, H-8), 8.03-6.85 (18H, Bz-Ar, DMT-Ar), 6.61-6.57
(m, 1H, H-1"), 5.47 — 5.32 (m, 1H, H-2"), 4.93-4.82 (m, 1H, H-3"), 4.27-4.25 (m, 1H, H-4"),
4.14-3.63 (m, 4H, H-5', H-5"), 3.77 (s, 6H, CH3-DMT), 2.66 (t, 1H, CH2 CEO), 2.56 (t, 1H,
CH. CEO), 1.26-1.07 (13H, CHs iPr); 3C NMR (125 MHz, CDsCN-ds), &, ppm: 159.29,
159.28, 145.53, 145.51, 143.19, 136.32, 136.30, 136.27, 133.14, 130.60, 129.22, 128.73,
128.42, 117.89, 113.64,96.22, 96.19, 96.07, 94.68, 94.65, 94.53, 86.76, 83.15, 83.02, 82.93,
82.79,82.70, 82.49, 77.11, 76.98, 76.91, 76.78, 76.28, 76.15, 76.08, 75.95, 63.49, 63.28, 59.47,
59.35,59.32, 59.19, 55.48, 55.47, 45.58, 45.53, 43.83, 43.77,43.74, 43.67, 24.51, 24.44, 24 42,
24.39, 24.36, 24.33, 22.76, 22.74, 22.69, 22.67, 20.57, 20.52, 20.47, 1.39, 1.23, 1.06-0.40; *°F
NMR (470 MHz, CDsCN-d3), 8, ppm: -197.12 (dddd, 1F, Juz-r = -51.78 Hz, Jur = 17.52 Hz,
Jp-£ = 96,71 Hz); 3P NMR (202 MHz, CD3sCN-ds), §, ppm: 151.03, 150.95; HRMS (ESI): calcd

for C43Hs2FNgO7P [M+H]" 876.3655; found 876.3641;

NZ,NC-diacetyl-5"-O-(dimethoxytrityl)-2"-deoxy-2'-fluoro-2-aminoarabinoadenosine ~ 3'-O-(2-
cyanoethyl N,N-diisopropyl)phosphoramidite (7c). *H NMR (400 MHz, CD3CN-ds), &, ppm:
8.74, 8.64 (2xs, 2H, NH), 8.07 (m, 1H, H-8), 7.43 - 6.78 (14H, Ar-DMT), 6.41-6.36 (m, 1H, H-
1), 5.43-5.25 (m, 1H, H-2'), 5.01-4.83 (m, 1H, H-3'), 4.19 (m, 1H, H-4"), 4.14-3.80 (m, 2H,
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H-5', H-5"), 3.74 (s, 6H, CH3-DMT), 3.68-3.37 (m, 4H, O-CH. CEO, 2x CH iPr), 3.37 (m, 2H,
H-5, 5"), 2.75 (t, 1H, CH2 CEO), 2.63 (t, 1H, CH2 CEO), 2.31 (1H, CHs Ac), 2.16 (1H, CHa
Ac), 1.24-1.07 (12H, CHs iPr); 3C NMR (100 MHz, CDsCN-ds), 3, ppm: 170.98, 159.64,
159.62, 159.60, 153.03, 150.62, 145.97, 136.79, 136.71, 136.69, 136.65, 131.05, 131.00,
130.94, 128.99, 128.91, 128.72, 127.79, 119.28, 118.25, 113.93, 87.06, 83.59, 83.42, 83.27,
83.19, 83.10, 64.12, 59.74, 59.65, 59.55, 59.46, 59.12, 59.07, 55.84, 45.91, 44.24, 44,19, 44.11,
44,07, 25.79, 25.29, 24.89, 24.84, 24.81, 24.77, 24.71, 24.68, 23.14, 23.12, 23.06, 23.05, 20.87,
1.89, 1.68, 1.48, 1.27, 1.06, 0.86, 0.65; °F NMR (376 MHz, CDsCN-ds), §, ppm: -197.79 - -
198.16 (m); 3P NMR (162 MHz, CD3sCN-ds), §, ppm: 151.12, 150.96; HRMS (ESI): calcd for

C43Hs2FNgO7P [M+H]* 871.3703; found 871.3711;

5'-O-(dimethoxytrityl)-N2-(dimethylaminomethylene)-2'"-deoxy-2-fluoro-8-

bromoarabinoguanosine 3'-O-(2-cyanoethyl N,N-diisopropyl)phosphoramidite (7d). *H NMR
(500 MHz CD3CN-d3), 5, ppm: 9.77 (s, 1H, NH), 8.28, 8.25 (2xs, 1H, H-8), 7.41-6.72 (14H,
Ar-DMT), 6.52-6.47 (m, 1H, H-1"), 5.51-5.35 (m, 1H, H-2), 5.25-5.02 (m, 1H, H-3'), 4.15 (m,
1H, H-4'),3.75 (s, 6H, CH3-DMT), 3.72-3.50 (m, 4H, O-CH2 CEO, 2x CH iPr), 3.37 (m, 2H,
H-5',5), 3.09 (s, 3H, CHs dmm), 3.04 (s, 3H, CHz dmm), 2.62 (t, 1H, CH2 CEO), 2.52 (t, 1H,
CH2 CEO), 1.18-1.07 (12H, CHs iPr); 3C NMR (400 MHz, CDsCN-ds), 8, ppm: 159.61,
159.54, 158.58, 158.51, 158.10, 158.03, 157.49, 152.53, 152.48, 146.01, 145.91, 136.70,
136.57, 136.53, 136.50, 130.99, 130.93, 130.77, 129.27, 128.90, 128.79, 128.77, 128.74,
127.79, 127.73, 122.56, 121.58, 119.32, 119.18, 118.27, 113.99, 113.97, 96.83, 95.25, 87.06,
87.03, 83.65, 83.50, 83.40, 83.26, 80.18, 80.14, 80.10, 80.06, 77.33, 77.16, 76.98, 64.61, 64.31,
59.99, 59.85, 59.56, 59.41, 55.89, 55.86, 44.35, 44.26, 44.18, 44.08, 41.81, 41.77, 35.35, 24.88,
24.82, 24.53, 24.47, 20.88, 20.82, 1.79, 1.62, 1.46, 1.29, 1.13, 0.96, 0.80 ; **F NMR (470 MHz,
CDsCN-ds), 3, ppm: -197.77 - -197.97 (m); 3P NMR (202 MHz, CD3CN-d3), 5, ppm: 152.21,

151.22; HRMS (ESI): calcd for [M+H]" 921.2858; found 921.2865;
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S5.  Polyacrylamide gels (kinetic assay).

Figure S5. Examples of 12% polyacrylamide denaturing gels electrophoresis of chosen
ribozymes Kinetic assay A — RH1, B — RZ6A, C — RZ6C, D — RH1-12-5, E — RH1-8-5, F —
RZ6-12-8 (Table 3). Far-left lane shows the Mg-ladder of FAM-labeled target RNA
oligonucleotide. From left to right 0, 0.5, 1, 2.5, 5, 15, 30, 45, 60 and 90 min quenching time of
respective ribozyme reaction. The observed cleavage is as expected after the NUH sequence in

the FAM-labeled target oligoribonucleotide (Figure 1), giving a visible band of 10nt product.
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S6.  Reaction rate plots.
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Figure S6. Kinetic curves of tested ribozymes. The bands from PAGE (Figure S5) were

quantified, and kops parameters were obtained by fitting to f = 1-e** formula and collected in

Table 4.

69



ST.

Suplemental references.

Piasecka, J., Lenartowicz, E., Soszynska-Jozwiak, M., Szutkowska, B., Kierzek, R.,
and Kierzek, E. (2020). RNA secondary structure motifs of the influenza A virus as
targets for sSiRNA-mediated RNA interference. Molecular Therapy - Nucleic Acids 19,

627-642.

70



	Structural variants and modifications of hammerhead ribozymes targeting influenza A virus conserved structural motifs
	Introduction
	Results
	Improved chemical synthesis of 2′-deoxy-2′- fluoropurine arabinoside derivatives
	Selection of target sites
	Design of the hammerhead ribozymes
	Cleavage kinetics of the modified hammerhead ribozymes
	Antiviral effect of the ribozyme variants targeting (+)RNA5 region 184–200
	Viral inhibition by ribozymes targeting (+)RNA5 region 615–704
	Design of the plasmid constructs coding shRNA and hammerhead ribozymes
	Antiviral potential of the constructs coding shRNA and hammerhead ribozymes delivered to cells as plasmids

	Discussion
	Nucleoside substitution in the catalytic core hinders ribozyme activity
	Limited utility of the approaches that stabilize hammerhead ribozymes
	The antiviral activity of the ribozyme depends on the target site
	Increased antiviral potential of constructs coding shRNA and hammerhead ribozymes delivered in plasmids
	Conclusions

	Materials and methods
	Materials
	Synthesis and deprotection of the oligonucleotides
	In vitro cleavage assay (kinetic assay)
	Cell culture and virus titration
	Plasmid preparation
	Ribozyme and plasmid transfection into the cells
	Viral infection of the cell culture
	Quantitative real-time PCR analysis of viral RNA
	Virus titration by focus formation assay
	Statistical analysis

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


