Supporting Information

First-in-class star-shaped triazine dendrimers endowed with MMP-9 inhibition and VEGF suppression capacity; design, synthesis and anticancer evaluation

Nesreen S. Haiba,^a Hosam H. Khalil, ^b Ahmed Bergas,^b Marwa M. Abu-Serie,^c Sherine N. Khattab,* ^{b,e} Mohamed Teleb,^{d,e}

^a Department of Physics and Chemistry, Faculty of Education, Alexandria University, Egypt

^b Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt

^c Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt

^d Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt

^e Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt

Table of Content

1. IR and NMR (¹H and ¹³C) Spectra of the synthesized dendrimers and their precursors.

Figure	Figuro namo	naga
number	rigui e name	page
S1	IR (KBr) spectrum of 8a	3
S2	¹ H-NMR (DMSO- d_6) spectrum of 8a	4
S3	¹³ C-NMR (DMSO-d ₆) spectrum of 8a	5
S4	IR (KBr) spectrum of 8b	6
S5	¹ H-NMR (DMSO- d_6) spectrum of 8b	7
S6	¹ H-NMR (DMSO- d_{6} -D ₂ O) spectrum of 8b	8
S7	¹³ C-NMR (DMSO-d ₆) spectrum of 8b	9
S8	IR (KBr) spectrum of 8c	10
S9	¹ H-NMR (DMSO- d_6) spectrum of 8c	11
S10	¹ H-NMR (DMSO- d_{6} -D ₂ O) spectrum of 8 c	12
S11	¹³ C-NMR (DMSO-d ₆) spectrum of 8 c	13
S12	IR (KBr) spectrum of 10	14
S13	¹ H-NMR (DMSO- d_6) spectrum of 10	15
S14	13 C-NMR (DMSO-d ₆) spectrum of 10	16
S15	IR (KBr) spectrum of 11	17
S16	¹ H-NMR (DMSO- d_6) spectrum of 11	18

S17	¹ H-NMR (DMSO- d_6 .D ₂ O) spectrum of 11	19
S18	13 C-NMR (DMSO-d ₆) spectrum of 11	20
S19	IR (KBr) spectrum of 12	21
S20	¹ H-NMR (DMSO- d_6) spectrum of 12	22
S21	¹³ C-NMR (DMSO-d ₆) spectrum of 12	23
S22	IR (KBr) spectrum of 13	24
S23	¹ H-NMR (DMSO- d_6) spectrum of 13	25
S24	¹ H-NMR (DMSO- d_6 .D ₂ O) spectrum of 13	26
S25	¹³ C-NMR (DMSO-d ₆) spectrum of 13	27
S26	IR (KBr) spectrum of 14a	28
S2	¹ H-NMR (DMSO- d_6) spectrum of 14a	29
S28	¹ H-NMR (DMSO- d_6 .D ₂ O) spectrum of 14a	30
S29	¹³ C-NMR (DMSO-d ₆) spectrum of $14a$	31
S30	IR (KBr) spectrum of 14b	32
S31	¹ H-NMR (DMSO- d_6) spectrum of 14b	33
S32	¹³ C-NMR (DMSO-d ₆) spectrum of 14b	34
S33	IR (KBr) spectrum of 14c	35
S34	¹ H-NMR (DMSO- d_6) spectrum of 14c	36
S35	¹³ C-NMR (DMSO-d ₆) spectrum of 14c	37
S36	IR (KBr) spectrum of 14d	38
S37	¹ H-NMR (DMSO- d_6) spectrum of 14d	39
S38	¹³ C-NMR (DMSO-d ₆) spectrum of 14d	40
S39	IR (KBr) spectrum of 14e	41
S40	¹ H-NMR (DMSO- d_6) spectrum of 14e	42
S41	13 C-NMR (DMSO-d ₆) spectrum of 14e	43

2. Biological evaluation

- 2.1. Cytotoxicity of the synthesized dendrimers on normal human lung fibroblasts (Wi-38)
- 2.2 Anticancer evaluation of the synthesized dendrimers
- 2.3. In vitro MMPs inhibition of the most active dendrimers
- 2.4. Flow cytometric analysis of apoptotic effects of the most active and safe compounds
- 2.5. Tumer cell migration inhibition
- 2.6. Expression of VEGF, cyclin D and p21
- 2.7. Statistical analysis

Figure S1: IR (KBr) spectrum of 2,2',2'',2''',2''''-((6,6',6''-(2,2',2''-(4,4',4''-((1,3,5-triazine-2,4,6-triyl))tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(1,3,5-triazine-6,4,2-triyl))hexakis(azanediyl))hexaacetic acid **8a**.

Figure S2: ¹H-NMR (DMSO- d_6) spectrum of 2,2',2",2"",2"",2""-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl)) tris(hydrazine-2,1-diyl))tris(1,3,5-triazine-6,4,2-triyl))hexakis(azanediyl))hexaacetic acid **8a**.

Figure S3: ¹³C-NMR (DMSO- d_{δ}) spectrum of 2,2',2",2"'',2"'''-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl)) tris(hydrazine-2,1-diyl))tris(1,3,5-triazine-6,4,2-triyl))hexakis(azanediyl))hexaacetic acid **8a**.

Figure S4: IR (KBr) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(piperidin-1-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid **8b**.

Figure S5: ¹H-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(piperidin-1-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid **8b.**

Figure S6 ¹H-NMR (DMSO- d_6 D₂O) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1- diyl))tris(4-(piperidin-1-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid **8b**.

Figure S7: ¹³C-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl)) tris(4-(piperidin-1-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid **8b.**

Figure S8: IR (KBr) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-morpholino-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid 8c.

Figure 9: ¹H-NMR (DMSO-*d*₆) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-morpholino-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid **8c**.

Figure S10: 1H-NMR (DMSO- d_6 , D2O) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1- diyl))tris(4-morpholino-1,3,5- triazine-6,2- diyl))tris(azanediyl))triacetic acid 8c.

Figure S11: 13 C-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl))tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-morpholino-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid **8c.**

Figure S12: IR (KBr) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl)) tris(4-(chloro-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid 10.

Figure S13: 1H-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(chloro-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid 10.

Figure S14: 13 C-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(chloro-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid 10.

Figure S15: IR (KBr) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl)) tris(4-(hydroxy-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid 11.

Figure S16: 1H-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(hydroxy-1,3,5-triazine-6,2-diyl))tris(azanediyl))triscetic acid 11.

Figure S17: ¹H-NMR (DMSO- d_6 , D₂O) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1- diyl))tris(4-(hydroxy-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid **11**.

Figure S18: 13C-NMR (DMSO- d_{δ}) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(hydroxy-1,3,5-triazine-6,2-diyl))tris(azanediyl))triacetic acid 11.

Figure S19: IR (KBr) spectrum of 4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(N'-(4,6-dihydroxy-1,3,5-triazin-2-yl)benzohydrazide) 12

Figure S20: ¹H-NMR (DMSO- d_6) spectrum of 4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(N-(4,6-dihydroxy-1,3,5-triazin-2-yl)benzohydrazide) 12

Figure S21: ¹³C-NMR (DMSO- d_6) spectrum of 4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(N-(4,6-dihydroxy-1,3,5-triazin-2-yl)benzohydrazide) 12

Figure S22: IR (KBr) spectrum of 4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(*N*-hydroxybenzamide) 13.

Figure S23: ¹H-NMR (DMSO-*d*₆) spectrum of 4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(*N*-hydroxybenzamide) **13**.

Figure S24: ¹H-NMR (DMSO-*d*₆, D₂O) spectrum of 4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(*N*-hydroxybenzamide) 13.

Figure S25: ¹³C-NMR (DMSO-*d*₆) spectrum of 4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(*N*-hydroxybenzamide) 13.

Figure S26: IR (KBr) spectrum of 2,2',2",2"'',2"'''-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(1,3,5-triazine-6,4,2-triyl))hexakis(azanediyl))hexakis(*N*-hydroxyacetamide) **14a**.

Figure S27: ¹H-NMR (DMSO- d_6) spectrum of 2,2',2'',2''',2''''-((6,6',6''-(2,2',2''-(4,4',4''-((1,3,5-triazine-2,4,6-triyl))tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(1,3,5-triazine-6,4,2-triyl))hexakis(azanediyl))hexakis(N-hydroxyacetamide) **14a**.

Figure S28: ¹H-NMR (DMSO- d_6 , D₂O) spectrum of 2,2',2",2"",2"",2""'-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl))tris (azanediyl))tris (benzoyl))tris (hydrazine-2,1-diyl))tris (1,3,5-triazine-6,4,2-triyl))hexakis (azanediyl))hexakis (N-hydroxyacetamide) **14a**.

Figure S29: ¹³C-NMR (DMSO- d_6) spectrum of 2,2',2''',2'''',2''''-((6,6',6''-(2,2',2''-(4,4',4''-((1,3,5-triazine-2,4,6-triyl))tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(1,3,5-triazine-6,4,2-triyl))hexakis(azanediyl))hexakis(*N*-hydroxyacetamide) **14a**.

Figure S30: IR (KBr) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris (4-(piperidin-1-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) 14b.

Figure S31: ¹H-NMR (DMSO- d_{δ}) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris (4-(piperidin-1-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(*N*-hydroxyacetamide) **14b**.

Figure S32: ¹³C-NMR (DMSO- d_6 , TFA) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triy))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(piperidin-1-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) 14b.

Figure S33: IR (KBr) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(morpholin-4-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) **14c**.

Figure S34 ¹H-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris (4-(morpholin-4-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) **14c**.

Figure S35: ¹³C-NMR (DMSO- d_6 , TFA) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-(morpholin-4-yl)-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) **14c**.

Figure S36: IR (KBr) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-chloro-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) 14d.

Figure S37: ¹H-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-chloro-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) **14d**.

Figure S38: 13 C-NMR (DMSO- d_{δ}) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-chloro-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) 14d.

Figure S39: IR (KBr) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4hydroxy-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) 14e.

Figure S40: 1H-NMR (DMSO- d_6) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-hydroxy-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) 14e.

Figure S41: 13 C-NMR (DMSO- d_{δ}) spectrum of 2,2',2"-((6,6',6"-(2,2',2"-(4,4',4"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(benzoyl))tris(hydrazine-2,1-diyl))tris(4-hydroxy-1,3,5-triazine-6,2-diyl))tris(azanediyl))tris(N-hydroxyacetamide) 14e.

2. Biological evaluation

2.1. Cytotoxicity of the synthesized dendrimers on normal human lung fibroblasts (Wi-38)

Wi-38 cell line was cultured in DMEM medium-contained 10% fetal bovine serum (FBS), seeded as $5x10^3$ cells per well in 96-well cell culture plate and incubated at 37°C in 5% CO₂ incubator. After 24 h for cell attachment, serial concentrations of the tested compounds were incubated with Wi-38 cells for 72 h. Cell viability was assayed by MTT method [1]. Twenty microliters of 5 mg/ml MTT (Sigma, USA) was added to each well and the plate was incubated at 37°C for 3 h. Then MTT solution was removed, 100 µl DMSO was added and the absorbance of each well was measured with a microplate reader (BMG LabTech, Germany) at 570 nm. The effective safe concentration (EC₁₀₀) value (at 100% cell viability) of the tested compounds was estimated by the Graphpad Instat software.

2.2 Anticancer evaluation of the synthesized dendrimers

Anticancer activities of the synthesized dendrimers were evaluated on two human cancer cell lines namely; triple negative breast cancer cells; MDA-MB 231 and colon cancer cells; Caco-2, in comparison to reference chemotherapy. Triple negative breast cancer cells MDA-MB 231were cultured in RPMI-1640 (Lonza, USA) supplemented with 10% FBS, while colon cancer cell line (Caco-2) was cultured in DMEM (Lonza, USA) contained with 10% FBS. All cancer cells ($4x10^3$ cells/well) were seeded in sterile 96-well plates. After 24h, serial concentrations of the tested compounds were incubated with the cancer cell lines for 72 h at 37°C in 5% CO₂ incubator. MTT method was done as described above. The half maximal inhibitory concentration (IC₅₀) values were calculated using the Graphpad Instat software. Furthermore, cellular morphological changes before and after treatment with the most effective and safest anticancer compounds were investigated using phase contrast inverted microscope with a digital camera (Olympus, Japan).

2.3. In vitro MMPs inhibition of the most active dendrimers

- The assay protocols were performed as directed ny the manufacturer
- Inhibition data analyses was carried out as follows:

code	IC50	conc.uM	log conc	%inh	T2	T1	ΔT	RFU2	RFU1	ΔRFU	slope	K.Activity	EC
8a		10	4	89.7	30	0	30	0.145	0	0.145	0.0469	12.367	120
8a 📑		1	3	76.4	30	0	30	0.332	0	0.332	0.0469	28.316	120
		0.1	2	42.7	30	0	30	0.806	0	0.806	0.0469	68.742	120
		0.01	1	20.7	30	0	30	1.116	0	1.116	0.0469	95.181	120
EC	» <u> </u>			0	30	0	30	1.407	0	1.407	0.0469	120	120

MMP-9 inhibition

code	IC50	conc.uM	log conc	%inh	T2	T1	ΔT	RFU2	RFU1	ΔRFU	slope	K.Activity	EC
14a		10	4	81.4	30	0	30	0.261	0	0.261	0.0469	22.26	120
14a ·		1	3	64.9	30	0	30	0.494	0	0.494	0.0469	42.132	120
- 1		0.1	2	31.8	30	0	30	0.959	0	0.959	0.0469	81.791	120
		0.01	1	15.1	30	0	30	1.194	0	1.194	0.0469	101.83	120
EC				0	30	0	30	1.407	0	1.407	0.0469	120	120

			log										
code	IC50	conc.uM	conc	%inh	T2	T1	ΔT	RFU2	RFU1	∆RFU	slope	K.Activity	EC
14b		10	4	88.3	30	0	30	0.165	0	0.165	0.0469	14.072	120
14b													
		1	3	71.2	30	0	30	0.405	0	0.405	0.0469	34.542	120
		0.1	2	42.4	30	0	30	0.811	0	0.811	0.0469	69.168	120
		0.01	1	16.1	30	0	30	1.181	0	1.181	0.0469	100.72	120
EC				0	30	0	30	1.407	0	1.407	0.0469	120	120

			log										
code	IC50	conc.ug/ml	conc	%inh	T2	T1	ΔT	RFU2	RFU1	ΔRFU	slope	K.Activity	EC
14 d	_	10	4	87.7	30	0	30	0.173	0	0.173	0.0469	14.755	120
14d													
	•	1	3	70.3	30	0	30	0.418	0	0.418	0.0469	35.65	120
12		0.1	2	34.1	30	0	30	0.927	0	0.927	0.0469	79.062	120
		0.01	1	18.9	30	0	30	1.141	0	1.141	0.0469	97.313	120
EC				0	30	0	30	1.407	0	1.407	0.0469	120	120

code	IC50	Mu.2no2	log conc	%inh	T2	T1	ΔT	RFU2	RFU1	∆RFU	slope	K.Activity	EC
NNGH		10	4	75.37526	30	0	30	0.115	0	0.115	0.015567	29.54969	120
kodal		1	3	63.81234	30	0	30	0.169	0	0.169	0.015567	43.42519	120
		0.1	2	50.53639	30	0	30	0.231	0	0.231	0.015567	59.35633	120
		0.01	1	40.25824	30	0	30	0.279	0	0.279	0.015567	71.69011	120
EC				0	30	0	30	0.467	0	0.467	0.015567	120	120

code IC ₅₀ conc.ng/ml conc %inh T2 T1 ΔT RFU2 RFU1 ΔRFU slope K.Activity 8a 10 1 76 30 0 30 24.31 0 24.31 3.33333 29.17 1 0 56 30 0 30 43.86 0 43.86 3.33333 52.63 0.1 -1 30 30 0 30 69.75 0 69.75 3.33333 83.7	EC 120 120 120 120 120
8a 10 1 76 30 0 30 24.31 0 24.31 3.33333 29.17 1 0 56 30 0 30 43.86 0 43.86 3.33333 52.63 0.1 -1 30 30 0 30 69.75 0 69.75 3.33333 83.7	120 120 120 120 120
1 0 56 30 0 30 43.86 0 43.86 3.33333 52.63 0.1 -1 30 30 0 30 69.75 0 69.75 3.33333 83.7	120 120 120 120
0.1 -1 30 30 0 30 69.75 0 69.75 3.33333 83.7	120 120 120
	120 120
0.01 -2 12 30 0 30 88.12 0 88.12 3.3333 105.7	120
EC 0 30 0 30 100 0 100 3.33333 120	
log	FC
14_{0} 10 1 74 20 0 20 20 0 20 20 0 20 20 20 20 20 20	EC 120
14a 10 1 74 30 0 30 25.99 0 25.99 3.33333 31.19	120
	120
	120
0.01 - 2 8.3 30 0 30 91.74 0 91.74 3.33333 110.1	120
EC 0 50 0 50 100 0 100 5.55555 120	120
log	
code IC50 conc.ng/ml conc %inh T2 T1 ΔT RFU2 RFU1 ΔRFU slope K.Activity	EC
14b 10 1 86 30 0 30 13.62 0 13.62 3.3333 16.34	120
1 0 70 30 0 30 29.81 0 29.81 3.3333 35.77	120
0.1 -1 48 30 0 30 52.41 0 52.41 3.3333 62.89	120
0.01 -2 33 30 0 30 66.93 0 66.93 3.3333 80.32	120
EC 0 30 0 30 100 0 100 3.33333 120	120
log	
iog codo IC50 concing/ml conc %inh T2 T1 AT PEU2 PEU1 APEU clono KActivity	FC
14 10 1 82 30 0 30 17 52 0 17 52 3 33333 21 0	120
140 10 1 82 30 0 30 17.32 0 17.32 3.33333 21.07	120
1 0 54 30 0 30 46.32 0 46.32 3.33333 55.58	120
0.1 -1 28 30 0 30 72.42 0 72.42 3.33333 86.9	120
0.01 -2 15 30 0 30 85.07 0 85.07 3.33333 102.3	120
EC 0 30 0 30 100 0 100 3.33333 120	120
log	
code IC50 conc.ng/ml conc %inh T2 T1 ΔT RFU2 RFU1 ΔRFU slope K.Activit	EC
NNGH 10 1 89 30 0 30 11.41 0 11.41 3.33333 13.6	120
1 0 72 30 0 30 28.45 0 28.45 3.3333 34.1	120
0.1 -1 49 30 0 30 51.16 0 51.16 3.3333 61.3	120
0.01 -2 35 30 0 30 64.58 0 64.58 3.3333 77.	120
EC 0 30 0 30 100 0 100 3.33333 12	120

MMP-2 inhibition

MMP-7 inhibition

coc	de IC ₅₀	conc	log	%inh	T2	T1	ΔT	RFU2	RFU1	ΔRFU	slope	K.Activity
88	a	10	1	81	30	0	30	19.14	0	19.14	3.333	22.96802
		1	0	66	30	0	30	33.89	0	33.89	3.333	40.66804
		0.1	-1	44	30	0	30	56.27	0	56.27	3.333	67.52407
		0.01	-2	25	30	0	30	75.43	0	75.43	3.333	90.51609
EC	2			0	30	0	30	100	0	100	3.333	120
IC50	conc.uM	log conc	%inh	T2	T	1	ΔT	RFU2	RFU1	∆RFU	slope	K.Activity

NNGH						1000000000	0000000000						
	10	4	89.73602	30	0	30	17843	0	17843	5794.7	12.31677	120	
	1	3	76.23921	30	0	30	41306	0	41306	5794.7	28.51295	120	
	0.1	2	40.40991	30	0	30	103592	0	103592	5794.7	71.5081	120	
	0.01	1	7.055873	30	0	30	161575	0	161575	5794.7	111.533	120	
EC		1.51	0	30	0	30	173841	0	173841	5794.7	120	120	_

MMP-10 inhibition

code NNGH

					log										
	code	IC ₅₀	conc.	ng/ml	conc	%inh	T2	T1	ΔT	RFU2	RFU1	ΔRFU	slope	K.Activity	1
	8a			10	1	85	30	0	30	14.61	0	14.61	3.333	17.53202	2
				1	0	64	30	0	30	35.55	0	35.55	3.333	42.66004	ł
				0.1	-1	47	30	0	30	52.58	0	52.58	3.333	63.09606	;
				0.01	-2	28	30	0	30	71.79	0	71.79	3.333	86.14809)
	EC					0	30	0	30	100	0	100	3.333	120)
			_												
code	IC50	conc.uM	log conc	%inh	, T	2	T1	Δ1	Г	RFU2	RFU1	∆RFU	slope	K.Activity	1
NNGH		10	4	92.9301	6 3	0	0	30)	11059	0	11059	5214.167	8.48381	
		1	3	82.359	6 3	0	0	30)	27594	0	27594	5214.167	21.16848	1000
		0.1	2	46.5290	1 3	0	0	30)	83642	0	83642	5214.167	64.16519	
		0.01	1	25.2734	6 3	0	0	30)	116891	0	116891	5214.167	89.67185	
EC				0	3	0	0	30)	156425	0	156425	5214.167	120	

MMP-13 inhibition

			log									
code	IC50	conc.ng/ml	conc	%inh	T2	T1	ΔT	RFU2	RFU1	ΔRFU	slope	K.Activity
8a		10	1	89	30	0	30	11.21	0	11.21	3.333	13.45201
		1	0	74	30	0	30	25.91	0	25.91	3.333	31.09203
		0.1	-1	46	30	0	30	53.83	0	53.83	3.333	64.59606
		0.01	-2	26	30	0	30	74.01	0	74.01	3.333	88.81209
EC				0	30	0	30	100	0	100	3.333	120

code	IC50	conc.uM	log conc	%inh	T2	T1	ΔT	RFU2	RFU1	∆RFU	slope	K.Activity	EC
NNGH		10	4	87.3909	30	0	30	17597	0	17597	4651.933	15.13091	120
		1	3	65.43444	30	0	30	48239	0	48239	4651.933	41.47867	120
		0.1	2	31.01864	30	0	30	96269	0	96269	4651.933	82.77763	120
		0.01	1	10.09114	30	0	30	125475	0	125475	4651.933	107.8906	120
EC				0	30	0	30	139558	0	139558	4651.933	120	120

2.4. Flow cytometric analysis of apoptotic effects of the most active and safe compounds

Dendrimers were incubated, for 72 h, with MDA-MB231 and Caco-2. After trypsinization, the untreated and treated cells were incubated with annexin V/PI for 15 min. Then cells were fixed and incubated with streptavidin-fluorescein (5 μ g/mL) for 15 min. The apoptosis-dependent anticancer effect was determined by quantification of annexin-stained apoptotic cells using the FITC signal detector (FL1) against the phycoerythrin emission signal detector (FL2).

2.5. Tumor cell migration inhibition

Caco2 cells were used for the wound healing migration assay. After cell seeding in 6-well plate and reaching > 90% confluence, a yellow tip was used for scratching. Then cells were washed and treated with the selected compounds. The wound area was photographed and calculated by image j software for estimating the inhibition migration percentages in the treated wells relative to untreated wells.

2.6. Expression of VEGF, cyclin D and p21

Total RNAs of untreated and three most effective anticancer compounds-treated MDA-MB-231 and Caco-2 cells were extracted using Gene JET RNA Purification Kit (Thermo Scientific, USA). The cDNA was synthesized from mRNA using cDNA Synthesis Kit (Thermo Scientific, USA). Real time PCR was performed using SYBR green master mix and specific primers (Forward/Reverse) were 5'-TACTCTGGCGCAGAAATTAGGTC-3'/5'-CTGTCTCGGAGCTCGTCTATTTG-3', 5'-CCACAGCGATATCCAGACATTC-3'/5'-GAAGTCAAAGTTCCACCGTTCTC-3' and 5'-GAGGGCAGAATCATCACGAAG-3'/5'-CACACAGGATGGCTTGAAGA-3' for cyclin D, p21 and VEGF genes, respectively. The $2^{-\Delta\Delta CT}$ equation was used to estimate the change in gene expressions in the treated cancer cells relative to untreated cancer cells.

2.7. Statistical analysis

The data are expressed as mean \pm standard error of mean (SEM) and the significant values were considered at p < 0.05. One-way analysis of variance (ANOVA) by Tukey's test used for evaluating the difference between the mean values of the studied treatments. The analysis was done for three measurements using SPSS software version 16.

References:

[1] T. Mosmann, J. Immunol. Methods 65 (1-2) (1983) 55-63.