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SUMMARY
Global research to combat the COVID-19 pandemic has led to the isolation and characterization of thousands
of human antibodies to the SARS-CoV-2 spike protein, providing an unprecedented opportunity to study the
antibody response to a single antigen. Using the information derived from 88 research publications and 13
patents, we assembled a dataset of �8,000 human antibodies to the SARS-CoV-2 spike protein from >200
donors. By analyzing immunoglobulin V and D gene usages, complementarity-determining region H3 se-
quences, and somatic hypermutations, we demonstrated that the common (public) responses to different
domains of the spike protein were quite different. We further used these sequences to train a deep-learning
model to accurately distinguish between the human antibodies to SARS-CoV-2 spike protein and those to
influenza hemagglutinin protein. Overall, this study provides an informative resource for antibody research
and enhances our molecular understanding of public antibody responses.
INTRODUCTION

From the beginning of the COVID-19 pandemic, many research

groups worldwide turned their attention to SARS-CoV-2 and, in

particular, to the immune response to infection and vaccination.

Since 2020, thousands of human monoclonal antibodies to

SARS-CoV-2 have been isolated and characterized (Li et al.,

2022a; Raybould et al., 2021). The major surface antigen to

which antibodies are elicited is the SARS-CoV-2 spike

(S) protein, which is a homotrimeric glycoprotein that facilitates

virus entry by first engaging the host receptor angiotensin-con-

verting enzyme 2 (ACE2) and then mediating membrane fusion

(Shang et al., 2020; Zhou et al., 2020). The S protein has three

major domains, namely the N-terminal domain (NTD), receptor-

binding domain (RBD), and S2 domain (Walls et al., 2020;

Wrapp et al., 2020). Most studies on SARS-CoV-2 antibodies

have focused on the immunodominant RBD (Yuan et al.,

2021) because neutralizing antibodies can be elicited to it

with very high potency (Tortorici et al., 2020; Wang et al.,

2021). Antibodies to the NTD and the highly conserved S2

domain have also been discovered (Cerutti et al., 2021; Chi
Immunity 55, 1105–1117, Ju
This is an open access article und
et al., 2020; Li et al., 2021a; 2022b; Pinto et al., 2021; Voss

et al., 2021; Zhou et al., 2022b).

A common or public antibody response describes antibodies

to the same antigen in different donors that share genetic ele-

ments that usually result in similar modes of antigen recognition.

Deciphering public responses to particular antigens is not only

critical for uncovering the molecular features of recurring anti-

bodies within the diverse antibody repertoire at the population

level, but also important for development of effective vaccines

(Andrews and McDermott, 2018; Lanzavecchia et al., 2016). A

conventional approach to study public antibody responses is

to identify public clonotypes, which are antibodies from different

donors that share the same immunoglobulin-heavy variable

(IGHV) gene and with similar complementarity-determining re-

gion (CDR) H3 sequences (Henry Dunand and Wilson, 2015;

Jackson et al., 2014; Pieper et al., 2017; Setliff et al., 2018; Tr€uck

et al., 2015). While this definition of public clonotypes has

improved our understanding of public antibody response, it

generally ignores the contribution of the light chain. Moreover,

our recent study has shown that a public antibody response to

influenza hemagglutinin (HA) is driven by an IGHD gene with
ne 14, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1105
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minimal dependence on the IGHV gene (Wu et al., 2018). There-

fore, the true extent and molecular characterization of public

antibody responses remain to be explored.

Although information of many human monoclonal antibodies

to SARS-CoV-2 is now publicly available, it has been difficult

to leverage all available information to investigate public anti-

body responses to SARS-CoV-2. One major challenge is that

the data from different studies are rarely in the same format.

This inconsistency imposes a huge barrier to data mining. The

establishment of the coronavirus antibody database (CoV-Ab-

Dab) has enabled researchers to deposit their antibody data in

a standardized format and has partially resolved the data format-

ting issue (Raybould et al., 2021). However, not every SARS-

CoV-2 antibody study has deposited their data to CoV-AbDab.

Furthermore, IGHD gene identities, nucleotide sequences, and

donor IDs are not available in CoV-AbDab, which makes it chal-

lenging to study public antibody responses using CoV-AbDab.

Thus, additional efforts must bemade to fully synergize the infor-

mation across many different SARS-CoV-2 antibody studies to

investigate and decipher public antibody responses.

In this study, we performed a systematic literature survey and

assembled a large dataset of human SARS-CoV-2 monoclonal

antibodies with donor information.We then analyzed this dataset

and uncovered many antibody sequence features that

contribute to the public antibody responses to SARS-CoV-2 S.

For example, we identified a public antibody response to RBD

that is largely independent of the IGHV gene, as well as involve-

ment of a particular IGHD gene in a public antibody response to

S2. Our analysis also revealed a number of recurring somatic hy-

permutations (SHMs) in different public clonotypes. All of these

sequence features provide a foundation for using deep learning

to identify SARS-CoV-2 S antibodies.

RESULTS

A large-scale collection of SARS-CoV-2 antibody
information
Information for 8,048 human antibodies was collected from 88

research publications and 13 patents that described the discov-

ery and characterization of antibodies to SARS-CoV-2 (Fig-

ure S1; Table S1). Among these antibodies, which were isolated

from 215 different donors, 7,997 (99.4%) react with SARS-CoV-

2, and the remaining 51 react with SARS-CoV or seasonal coro-

naviruses. While 99.1% (7,923/7,997) SARS-CoV-2 antibodies in

our dataset bind to S protein, 49 bind to N and 25 to ORF8.

Epitope information was available for most SARS-CoV-2 S anti-

bodies, with 5,002 to RBD, 513 to NTD, and 890 to S2. In addi-

tion, information on neutralization activity, germline gene usage,

sequence, structure, bait for isolation (e.g., RBD and S), and

donor status (e.g., infected patient, vaccinee, etc.), if available,

was collected for individual antibodies. Using this large dataset,

we aimed to analyze the sequence features of public antibody re-

sponses to SARS-CoV-2 S.

Antibodies to RBD, NTD, and S2 have distinct V gene
usage bias
We first performed an analysis on the V gene usage of SARS-

CoV-2 S antibodies. Our analysis captured previously known V

gene usage patterns, including the prevalence of IGHV3-53/
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IGKV1-9 and IGHV3-53/IGKV3-20 among RBD antibodies (Cao

et al., 2020; Clark et al., 2021; Kim et al., 2021; Tan et al.,

2021; Yuan et al., 2020; Zhang et al., 2021; Figure 1A), as well

as substantial enrichment of IGHV1-24 among NTD antibodies

(Cerutti et al., 2021; Chi et al., 2020; Li et al., 2021a; Voss

et al., 2021; Figure 1B). Importantly, our dataset also enabled

us to discover previously unknown patterns in gene usage. For

example, IGHV3-30 and IGHV3-30-3 were highly enriched

among S2 antibodies (Figure 1B). V gene usage bias was also

observed in the light chain. For example, IGKV3-20 and

IGKV3-11 were most used among S2 antibodies, whereas

IGKV1-33 and IGKV1-39 were most used among RBD anti-

bodies (Figure 1C). Overall, these results demonstrated that

RBD, NTD, and S2 antibodies have distinct patterns of V gene

usage and that both heavy and light-chain V genes contribute

to the public antibody response to SARS-CoV-2 S.

CDR H3 analysis reveals domain-specific public
antibody response
Most of the antibody sequence diversity comes from the CDRH3

region due to V(D)J recombination (Elhanati et al., 2015; Jung

and Alt, 2004; Schatz and Swanson, 2011). To identify the

sequence features of CDR H3 in public antibody response to

SARS-CoV-2 S, CDR H3 sequences with the same length were

clustered by an 80%sequence identity cutoff. A total of 170 clus-

ters that contained antibodies from at least two different donors

were identified (Figure 2A; Table S1).

Most of the antibodies in the largest cluster (cluster 1, Figure 2B)

belonged to a well-characterized public clonotype to RBD that is

encoded by IGHV3-53/3-66 and IGKV1-9 (Cao et al., 2020; Clark

et al., 2021; Kim et al., 2021; Tan et al., 2021; Zhang et al., 2021).

IGHV3-53/3-66,which is frequently used in RBD antibodies (Yuan

et al., 2020), was also enriched among antibodies in several other

major CDR H3 clusters (e.g., clusters 2, 4, 8, and 14). Antibodies

that bind to quaternary epitopes by bridging two RBDs on the

same spike were found in clusters 14 and 17 (Barnes et al.,

2020; Figure S2). Notably, both clusters 3 and 5, which targeted

the RBD, contained a pair of highly conserved cysteines, sug-

gesting the presence of a disulfide bond within the CDR H3 (Fig-

ure 2B). Cluster 3 represented another well-characterized public

clonotype that is encoded by IGHV1-58/IGKV3-20 and indeed

contains an intra-CDR H3 disulfide bond (Dejnirattisai et al.,

2021; Robbiani et al., 2020; Tortorici et al., 2020; Wang et al.,

2021; Reincke et al., 2022). On the other hand, antibodies in clus-

ter 5, which were largely encoded by IGHV3-30/IGKV1-33, have

not been extensively studied. Most antibodies within cluster 5

had relatively weak neutralizing activity, if any, despite having

reasonable binding affinity (Table S2). This result suggests the ex-

istence of an RBD-targeting public clonotype that had minimal

neutralizing activity. Similar observation was made with RBD an-

tibodies encoded by IGHV3-13/IGKV1-39, although most of

these antibodies did not share a similar CDR H3 (Figure S3;

Table S2). The weak neutralizing activity of these antibodies

may at least be partly attributed to their inability to compete

with ACE2, as demonstrated by the structural studies of the

IGHV3-30/IGKV1-33-encoded RBD antibody COVOX-45 (Dejnir-

attisai et al., 2021), and the IGHV3-13/IGKV1-39-encoded RBD

antibody S304 (Piccoli et al., 2020; Starr et al., 2021; Thomson

et al., 2021).



Figure 1. Antibodies to different domains of SARS-CoV-2 S have distinct patterns of V gene usage

(A) The frequency of different V gene pairings between heavy and light chains are shown for SARS-CoV-2 S antibodies to RBD, NTD, and S2. The size of each data

point represents the frequency of the corresponding IGHV/IGK(L)V pair within its epitope category. Only those antibodies where both IGHV and IGK(L)V infor-

mation is available for both heavy and light chains were included in this analysis.

(B) The IGHV gene usage in antibodies to NTD, RBD, and S2 is shown. Only those antibodies with IGHV information available were included in this analysis.

(C) The IGK(L)V gene usage in antibodies to NTD, RBD, and S2 is shown. Only those antibodies with IGK(L)V information available were included in this analysis.

(B and C) Error bars represent the frequency range among 26 healthy donors (Briney et al., 2019; Guo et al., 2019; Soto et al., 2019). See also Figure S1 and

Tables S1 and S2.
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Furthermore, we also discovered several S2-specific CDR H3

clusters (clusters 6, 9, and 11) that were predominantly encoded

by IGHV3-30 with diverse IGK(L)V genes, suggesting a public

heavy-chain response to S2 (Figure 2B). Clusters 10 and 15

were also of particular interest. Cluster 10 featured a very short

CDR H3 (6 amino acids, IMGT numbering) and was encoded by

IGHV4-59/IGKV3-20, which was a frequent V gene pair among
the S2 antibodies (Figure 1A). Cluster 15 was encoded by

IGHV1-69/IGKV3-11,whichwas themostusedVgenepair among

the S2 antibodies (Figure 1A). Therefore, clusters 10 and 15 repre-

sented two major S2 public clonotypes, despite their minimal

neutralizingactivity (TableS2). Incontrast toRBD-andS2-specific

clusters, all NTD-specific CDR H3 clusters had a relatively small

size (Figure 2A), suggesting that the paratopes for most NTD
Immunity 55, 1105–1117, June 14, 2022 1107



A B

C D FE G

Figure 2. SARS-CoV-2 S antibodies exhibit convergent CDR H3 sequences

(A) CDR H3 sequences from individual antibodies were clustered using a 80% sequence identity cutoff (see STARMethods). The epitope of each CDR H3 cluster

is classified based on that of its antibody members. Cluster size represents the number of antibodies within the cluster.

(B) The V gene usage and CDR H3 sequence are shown for each of the 16 CDR H3 clusters of interest. For each of the CDR H3 cluster of interest, the CDR H3

sequences are shown as a sequence logo, where the height of each letter represents the frequency of the corresponding amino-acid variant (single-letter amino-

acid code) at the indicated position. The dominant germline V genes (>50% usage among all antibodies within a given CDR H3 cluster) are listed. Diverse: no

germline V genes had >50% frequency among all antibodies within a given CDR H3 cluster. HC, heavy chain; LC, light chain. Clusters with the same domain

specificity are grouped in the same box.

(C) IGHV usage in cluster 7 is shown. Different colors represent different donors. Unknown: IGHV information is not available.

(D) An overall view of SARS-CoV-2 RBD in complex with IGLV6-57 antibody S2A4 (PDB 7JVA) (Piccoli et al., 2020), which belongs to cluster 7, is shown. The RBD

is in white with the receptor-binding site highlighted in green. The heavy and light chains of S2A4 are in orange and yellow, respectively.

(E) Percentages of the S2A4 epitope that are buried by the light chain, heavy chain (without CDR H3), and CDR H3 are shown as a pie chart. Buried surface area

(BSA) was calculated by proteins, interfaces, structures, and assemblies (PISA) at the European Bioinformatics Institute (https://www.ebi.ac.uk/pdbe/prot_int/

pistart.html) (Krissinel and Henrick, 2007).

(F and G) Detailed interactions between the (F) light and (G) heavy chains of S2A4 and SARS-CoV-2 RBD. Hydrogen bonds and salt bridges are represented by

black dashed lines. The color coding is the same as (D). See also Figures S2–S4 and Tables S1 and S2.
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antibodies are not dominated byCDRH3. Nevertheless, the small

number of H3 clusters among NTD antibodies may also be due to

fewer antibodies to NTD than to RBD or S2 in our dataset.

IGLV6-57 contributes to RBD-specific public antibody
response
While most clusters had a dominant IGHV gene, diverse IGHV

genes were observed in cluster 7 (Figures 2B and 2C). Most an-

tibodies (42 out of 45) in cluster 7 used IGLV6-57, suggesting

their paratopes are mainly composed of CDR H3 and light chain.

S2A4, which is encoded by IGHV3-7/IGLV6-57 (Piccoli et al.,

2020), is an antibody in cluster 7. A previously determined struc-

ture of S2A4 in complex with RBD indeed demonstrates that its

CDR H3 contributes 38% of the buried surface area (BSA) of the

epitope, whereas the light chain contributes 53% (Figures 2D

and 2E). Specifically, IGLV6-57 forms an extensive H-bond

network with the RBD (Figure 2F), whereas a 97WLRG100 motif

at the tip of CDR H3 interacts with the RBD through H-bonds,
1108 Immunity 55, 1105–1117, June 14, 2022
p-p stacking, and hydrophobic interactions (Figure 2G).

Although G100 does not participate in binding, it exhibits back-

bone torsion angles (F = �94�, J = �160�) that are in the

preferred region of Ramachandran plot for glycine, but in the al-

lowed region for non-glycine (Figure S4). Consistently, this
97WLRG100 motif is highly conserved in cluster 7 (Figure 2B).

This analysis substantiates the importance of the light chain in

the public antibody response to SARS-CoV-2 S.

IGHD1-26 contributes to S2-specific public antibody
response
As shown in our previous study, the IGHD gene can drive a public

antibody response (Wu et al., 2018). Here, we found that IGHD1-

26 was highly enriched among S2 antibodies (Figure 3A). These

IGHD1-26 S2 antibodies were predominantly encoded by

IGHV3-30 (Figure 3B), which was one of the most used IGHV

genes among S2 antibodies (Figure 1B). In contrast, the IGK(L)

V gene usage was more diverse among these IGHD1-26 S2

https://www.ebi.ac.uk/pdbe/prot_int/pistart.html
https://www.ebi.ac.uk/pdbe/prot_int/pistart.html
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Figure 3. IGHD1-26 is enriched among SARS-CoV-2 S2 antibodies

(A) The IGHD gene usage in NTD, RBD, S2 antibodies is shown. Error bars represent the frequency range among 26 healthy donors.

(B and C) (B) IGHV gene usage and (C) IGK(L)V gene usage among IGHD1-26 S2 antibodies is shown (n = 157).

(D) The distribution of CDRH3 length (IMGT numbering) in IGHD1-26 S2 antibodies (n = 157), non-IGHD1-26 S2 antibodies (n = 533), and non-S2 S antibodies (n =

5,090) are shown.

(E) The IGHJ gene usage among IGHD1-26 S2 antibodies (n = 157) and other S antibodies with well-defined epitopes (n = 5,623) is shown.

(F) The CDR H3 sequences for IGHD1-26 S2 antibodies (n = 110) are shown as a sequence logo.

(G) Amino acid and nucleotide sequences of the V-D-J junction are shown for three IGHD1-26 S2 antibodies (Graham et al., 2021; Tong et al., 2021; Wec et al.,

2020). While P008_088 and G32M4 were from SARS-CoV-2-infected individuals, ADI-56059 was from a SARS-CoV survivor. Putative germline sequences and

segments were identified by IgBlast (Ye et al., 2013) and are indicated. Somatically mutated nucleotides are underlined. Intervening spaces at the V-D and D-J

junctions are N-nucleotide additions. See also Tables S1 and S2.
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antibodies, although several were more frequently used than

others (Figure 3C), implying that this public antibody response

to S2 was mainly driven by the heavy chain. 70% of these

IGHD1-26 S2 antibodies had a CDR H3 of 14 amino acids,

whereas only <20% of other S antibodies had a CDR H3 of 14

amino acids (Figure 3D). In fact, most members of clusters 6,

9, and 11 in our CDR H3 analysis above (Figure 2B) represented

this public antibody response to S2. While CDR H3 is also en-

coded by the IGHJ gene, the distribution of IGHJ gene usage

in these IGHD1-26 S2 antibodies did not show a strong deviation

from that of other S antibodies in our dataset (Figure 3E).

In our dataset, there were 110 IGHD1-26 S2 antibodies from

17 donors with a CDRH3 length of 14 amino acids. Most of these

110 IGHD1-26 S2 antibodies could cross-react with SARS-CoV,

but withminimal neutralization activity (Table S2). Sequence logo

analysis of these 110 antibodies revealed a conserved 97[S/G]G

[S/N]Y100 motif in the middle of their CDR H3 sequences (Fig-
ure 3F). In-depth analysis of the CDR H3 sequences from three

representative IGHD1-26 S2 antibodies from three different do-

nors (Graham et al., 2021; Tong et al., 2021; Wec et al., 2020)

further indicated that the conserved 97[S/G]G[S/N]Y100 motif

was within the IGHD1-26-encoded region (Figure 3G). Together,

these results show that the public antibody response to SARS-

CoV-2 S also involves the IGHD gene.

SHM analysis reveals a recurring affinity maturation
pathway
Our recent study has shown that VH Y58F is a recurring SHM

among IGHV3-53 antibodies to SARS-CoV-2 RBD (Tan et al.,

2021), indicating that SHM is involved in the public antibody

response to SARS-CoV-2. To identify additional recurring

SHMs in SARS-CoV-2 S antibodies, antibodies from at least

two donors that had the same IGHV/IGK(L)V genes and CDR

H3s from the same CDR H3 cluster were classified as a public
Immunity 55, 1105–1117, June 14, 2022 1109



Figure 4. SARS-CoV-2 S antibodies contain recurring somatic hypermutations (SHMs)

(A and B) For each public clonotype, if the exact same SHM emerged in at least two donors, such SHM is classified as a recurring SHM. Only those public

clonotypes that can be observed in at least nine donors are shown. (A) Recurring SHMs in heavy-chain V genes. (B) Recurring SHMs in light-chain V genes. x axis

represents the position on the V gene (Kabat numbering). y axis represents the percentage of donors who carry a given recurring SHMamong those who carry the

public clonotype of interest. For example, VL S29R emerged in 8 donors out of 26 donors that carry a public clonotype that is encoded by IGHV1-58/IGKV3-20. As

a result, VL S29R (IGHV1-58/IGKV3-20) is 31% (8/26) within the corresponding clonotype. Of note, since each public clonotype is also defined by the similarity of

CDR H3 (see STARMethods), there could bemultiple clonotypes with the same heavy- and light-chain V genes (e.g., IGHV3-53/IGKV1-9). The CDRH3 cluster ID

for each clonotype is indicated with a prefix ‘‘c,’’ following the information of the V genes. For heavy chain, SHMs that emerged in at least 40%of the donors of the

corresponding clonotype are labeled. For light chain, SHMs that emerged in at least 20% of the donors of the corresponding clonotype are labeled. See also

Figure S5 and Table S1.
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clonotype (Figure 4A). SHM that occurred in at least two donors

within a public clonotypes was defined as a recurring SHM. This

analysis led to the identification of several recurring SHMs in

IGHV3-53/3-66-encoded public clonotypes that were previously

characterized, including VH F27V, T28I, and Y58F (Hurlburt et al.,

2020; Scheid et al., 2021; Tan et al., 2021; Figure S5).Many of the

recurring SHMs were not hotspots for activation-induced deam-

inase (AID) (Álvarez-Prado et al., 2018; Di Noia and Neuberger,

2007; Yeap et al., 2015). For example, among the seven recurring

VH SHMs that had high occurrence frequency in IGHV3-53/3-66-

encoded public clonotypes (F27V, F27L, T28I, S31R, S35T,

S35N, and Y58F), only VH T28I and S35N involved deamination,

and only VH S35N was at the hotspot (nucleotide motif RGYW)

for AID (Álvarez-Prado et al., 2018).

VL S29R in a IGHV1-58/IGKV3-20 public clonotype repre-

sented a previously unknown recurring SHM (Figure 4B). VL

S29R emerged in 8 out of 26 (31%) donors that carried this

IGHV1-58/IGKV3-20 public clonotype. Antibodies of this

IGHV1-58/IGKV3-20 public clonotype bind to the ridge region

of SARS-CoV-2 RBD (Figure 5A) and are able to potently
1110 Immunity 55, 1105–1117, June 14, 2022
neutralize multiple variants of concern (VOCs) (Li et al., 2021b;

Schmitz et al., 2021; Wang et al., 2021), including Omicron

(Zhou et al., 2022a). Furthermore, therapeutic antibody tixagevi-

mab is derived from amember of this IGHV1-58/IGKV3-20 public

clonotype, namely COV2-2196 (Dong et al., 2021). Here, we

compared two previously determined structures of IGHV1-58/

IGKV3-20 antibodies in complex with RBD (Dejnirattisai et al.,

2021; Wheatley et al., 2021). One has the germline-encoded VL

S29 (Figure 5B) and the other carries a somatically mutated VL

R29 (Figure 5C). While neither VL S29 nor VL R29 directly interact

with RBD, VL R29 is able to form a cation-p interaction with VL

Y32, which in turn forms a T-shaped p-p stacking with RBD-

F486 and H-bonds with RBD-C480 (Figure 5C). The positioning

of VL R29 can further be stabilized by a salt bridge with another

SHM VL G92D (Figure 5C). The RBD binding affinity of COVOX-

253, which is an IGHV1-58/IGKV3-20-encoded antibody, was

improved >3-fold by the VL S29R/G92D double mutant but

only subtly enhanced or diminished by VL S29R or VL G92D,

respectively (Figure 5D), indicating a synergistic effect between

VL S29R and VL G92D. In fact, VL G92D seemed to have
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Figure 5. Two recurring SHMs synergistically drive the affinity maturation of a IGHV1-58/IGKV3-20 public clonotype

(A) An overall view of SARS-CoV-2 RBD in complexwith the IGHV1-58/IGKV3-20 antibody PDI 222 (PDB 7RR0) (Wheatley et al., 2021). The RBD is shown inwhite,

while the heavy and light chains of the antibody are in dark and light green, respectively. The ridge region (residues 471–491) is shown in pink.

(B and C) Structural comparison between two IGHV1-58/IGKV3-20 antibodies that either (B) carry germline residues VL S29/G92 (COVOX-253, PDB 7BEN) (Dej-

nirattisai et al., 2021) and (C) somatically hypermutated residues VL R29/D92 (PDI 222, PDB 7RR0) (Wheatley et al., 2021). SARS-CoV-2 RBD is in white, while

antibodies are in yellow (COVOX-253) and green (PDI 222). Somatically mutated residues are labeled with bold and italic letters. The T-shaped p-p stacking be-

tween RBD-F486 and VL Y32 is indicated by a purple dashed line. Hydrogen bond and salt bridge are represented by black dashed lines.

(legend continued on next page)
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coevolved with VL S29R, since VL G92D was found in four out of

the 67 antibodies in this IGHV1-58/IGKV3-20 public clonotype

and all four carried VL S29R (Figure 5E). Moreover, a phyloge-

netic analysis showed that VL G92D emerged from a cluster of

antibodies with VL S29R (Figure 5E). These analyses illustrate

that recurring SHMs are associated with the public antibody

response to SARS-CoV-2 S and further suggest the existence

of common affinity maturation pathways that involve emergence

of multiple SHMs in a defined order.
Deep learning enables classification of antibody
specificity
Since many sequence features of public antibody responses to

the S protein could be observed in our dataset, we postulated

that the dataset was sufficiently large to train a deep learning

model to identify S antibodies. To provide a proof of concept,

we trained a deep learning model to distinguish between human

antibodies to S and to influenza HA. Among different antigens,

HA was chosen here because there were a large number of HA

antibodies with published sequences, albeit still lower than the

published SARS-CoV-2 S antibodies. Here, 1,356 unique human

antibodies to HA and 3,000 unique human antibodies to SARS-

CoV-2 S with complete information for all six CDR sequences

were used (Table S3). None of these antibodies had identical se-

quences in all six CDRs. These antibodies to S and HA were

divided into a training set (64%), a validation set (16%), and a

test set (20%), with no overlap between the three sets. The over-

lap of clonotypes was also minimal (Figure S6A). Subsequently,

the training set was used to train the deep learning model. The

validation set was used to evaluate the model performance dur-

ing training. The test set was used to evaluate the performance of

the final model.

Our deep learningmodel had a simple architecture, which con-

sisted of one encoder per CDR followed by three fully connected

layers (Figure 6A). To evaluate the model performance on the test

set, the area under the curves of receiver operating characteristic

(ROC AUC) and precision-recall (PR AUC) were used to measure

the model’s ability to avoid misclassification (Flach et al., 2011;

Saito and Rehmsmeier, 2015). Model performance was the best

when all six CDRs (i.e., H1, H2, H3, L1, L2, and L3) were used

to train the model, which resulted in an ROC AUC and an PR

AUC of 0.88 and 0.93, respectively (Figure 6B; Table S4). Howev-

er, reasonable performance was also observed when the model

was trained by a subset of CDRs (AUCs = 0.75–0.85 and PR

AUCs = 0.84–0.91). These results are consistent with the notion

that the public antibody response to SARS-CoV-2 is composed

of diverse sequence features on both heavy and light chains.

We further tested if a deep learning model could be trained to

distinguish antibodies to different domains of S, namely RBD,

NTD, and S2. Since the numbers of NTD and S2 antibodies
(D) Binding kinetics between COVOX-253 Fabs (wild type or mutants) and SARS-

the response. Blue lines represent the response curves and red lines represent th

the RBDs at 3-fold dilution ranging from 300 to 3.7 nM. The dissociation constan

(E) A phylogenetic tree was constructed for the light-chain sequences of 67 antib

rooted using the germline sequence of IGKV3-20. Each tip represents one antib

residues 29 and 92. Amino acid variants that represent SHM are underlined. Nu

germline-encoded variant at VL residues 29 and 92 (S29, G92), as well as VL SH

this IGHV1-58/IGKV3-20 public clonotype carries S29/N92 and another carries S
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were small, the model was trained by the heavy-chain CDRs

(H1, H2, and H3), so that antibodies without sequence informa-

tion for the light chain could also be used (Table S3). The ROC

AUC and PR AUC of the RBD/NTD/S2 model were 0.79 and

0.62, respectively (Figure S6B), which were much worse than

the S/HA model above. The poorer performance of the RBD/

NTD/S2 model may be attributable to the smaller dataset. Since

most known antibodies to SARS-CoV-2 S were RBD-specific,

we also examined if a deep learning model that was trained to

distinguish RBD and HA antibodies could achieve a better per-

formance than the S/HA model above. Indeed, the ROC AUC

and PR AUC of the RBD/HA model were 0.90 and 0.94, respec-

tively (Figure S6B; Table S3), which were slightly higher than

those of the S/HA model. These observations indicate that the

size of the training dataset is indeed critical for model

performance.

A recent study reported 81 antibodies to SARS-CoV-2 RBD

that were elicited by Beta variant infection, in which 44 could

cross-react with the ancestral Hu-1 strain and 37were Beta-spe-

cific (Reincke et al., 2022). While these 81 antibodies were not

included in the dataset that we assembled (Table S1), they pro-

vided an opportunity to further evaluate the performance of our

deep learning model. Our deep learning model that was trained

on all six CDRs to distinguish between antibodies to S and HA

(see above) successfully predicted that 77 of the 81 (95%) anti-

bodies as SARS-CoV-2 S antibodies (Figure 6C; Table S5). Of

note, since our model was designed to distinguish between an-

tibodies to SARS-CoV-2 S and influenza HA, the prediction on

non-S/non-HA antibodies was expected to be close to random.

Consistent with that expectation, when we applied our model to

691 HIV antibodies from GenBank (Table S6), 46% were pre-

dicted to be S antibodies and 54% were predicted to be HA an-

tibodies (Figure S6C). As different antigenic variants of SARS-

CoV-2 emerge and individuals start to accumulate unique

SARS-CoV-2 immune histories, the antibody response to

SARS-CoV-2 is likely to evolve and diversify. Although our model

still performs well on antibodies that were elicited by the Beta

variant (Figure 6C), it remains to be explored whether this perfor-

mance will hold for antibodies that are elicited by SARS-CoV-2

variants that are more antigenically distinct from the ancestral

Hu-1 strain originally identified in Wuhan.
DISCUSSION

Through a systematic survey of published information on SARS-

CoV-2 antibodies, we identified manymolecular features of pub-

lic antibody responses to SARS-CoV-2. The large amount of

published information has allowed us to explore distinct patterns

of germline gene usages in antibodies that target different do-

mains on the S protein (i.e., RBD, NTD, and S2). Notably, the
CoV-2 RBD were measured by biolayer interferometry (BLI). y axis represents

e 1:1 binding model. Binding kinetics were measured for five concentrations of

t (KD) values ± standard deviations are indicated.

odies in the IGHV1-58/IGKV3-20 public clonotype. The phylogenetic tree was

ody and is colored according to the corresponding amino acid variants at VL

mbers of antibodies in the IGHV1-58/IGKV3-20 public clonotype carrying the

M S29R and G92D (red) are listed in the inset table. Of note, one antibody in

29/V92. However, they are not listed in the table here.
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Figure 6. Specificity of antibodies can be predicted by a sequence-based deep learning model

(A) A schematic overview of the deep learning model architecture.

(B) For evaluating model performance, S antibodies and HA antibodies were considered ‘‘positive’’ and ‘‘negative,’’ respectively. Model performance on the test

set was comparedwhen different input types were used. Of note, the test set has no overlap with the training set and the validation set, both of whichwere used to

construct the deep learning model. True positive (TP) represents the number of S antibodies being correctly classified as S antibodies. False positive (FP)

represents the number of HA antibodies beingmisclassified as S antibodies. True negative (TN) represents the number of HA antibodies being correctly classified

as HA antibodies. False negative (FN) represents the number of S antibodies being misclassified as HA antibodies. See STAR Methods for the calculations of

accuracy, precision, recall, ROC AUC, and PR AUC.

(C) The antigen specificity of 81 RBD antibodies from Reincke et al. (2022) were predicted by a deep learning model that was trained to distinguish between S

antibodies and HA antibodies. See also Figure S6 and Tables S3–S6.
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types and nature of public antibody responses to different do-

mains appear to be quite different. For example, convergence

of CDR H3 sequences can be readily identified in the public anti-

body responses to RBD and S2. In contrast, the public antibody

response to NTD seems to be largely independent of the CDRH3

sequence. Furthermore, an IGHD-dependent public antibody

response was enriched against S2, but not RBD or NTD.

Together, our study demonstrates the diversity of sequence fea-

tures that can constitute a public antibody response against a

single antigen.

The public antibody response to SARS-CoV-2 has also been

examined by a recent data mining study that focused on identi-

fying public clonotypes (Chen et al., 2021). This previous study

defined public clonotypes as antibodies with the same IGHV/
IGHJ/IGK(L)V/IGK(L)V genes and high similarity of CDR H3

(Chen et al., 2021). While multiple public clonotypes were identi-

fied using this stringent definition (Chen et al., 2021), the charac-

terization of public antibody response is likely far from complete.

A public antibody response may not always involve a defined

pair of IGHV/IGK(L)V genes, especially when either IGHV or

IGK(L)V gene-encoded residues only make a minimal contribu-

tion to the paratope. In fact, a well-characterized public antibody

response to the highly conserved stem region of influenza HA

has a paratope that is entirely attributed to the IGHV1-69 heavy

chain (Dreyfus et al., 2012; Ekiert et al., 2009; Lang et al., 2017;

Sui et al., 2009). IGHV3-30/IGHD1-26 antibodies to S2 in our

study may represent a similar type of IGK(L)V-independent pub-

lic antibody response, although it still needs to be confirmed by
Immunity 55, 1105–1117, June 14, 2022 1113
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structural analysis. On the other extreme, RBD antibodies that

are encoded by IGLV6-57 with a 97WLRG100 motif in the CDR

H3 represent a public response that is largely independent of

IGHV gene usage. Given the diverse types of public antibody re-

sponses to SARS-CoV-2 S, we need to acknowledge the limita-

tion of using the conventional strict definition of public clonotype

to study public antibody responses.

Public antibody response to different antigens can have very

different sequence features. For example, IGHV6-1 and

IGHD3-9 are signatures of public antibody response to influenza

virus (Joyce et al., 2016; Kallewaard et al., 2016; Wu et al., 2018,

2020a), whereas IGHV3-23 is frequently used in antibodies to

Dengue and Zika viruses (Robbiani et al., 2017). In contrast,

these germline genes are seldom used in the antibody response

to SARS-CoV-2 as compared with the naive baseline. Since the

binding specificity of an antibody is determined by its structure,

which in turn is determined by its amino acid sequence, the an-

tigen specificity of an antibody can theoretically be identified

based on its sequence. This study provides a proof of concept

by training a deep learning model to distinguish between

SARS-CoV-2 S antibodies and influenza HA antibodies, solely

based on primary sequence information. Technological ad-

vancements, such as the development of single-cell high-

throughput screen using the Berkeley Lights Beacon optofluidics

device (Winters et al., 2019) and advances in paired B cell recep-

tor sequencing (Curtis and Lee, 2020), have been accelerating

the speed of antibody discovery and characterization. As more

sequence information on antibodies to different antigens is

accumulated, we may be able in the future to construct a gener-

alized sequence-based model to accurately predict the antigen

specificity of any antibody.

In summary, the amount of publicly available information on

SARS-CoV-2 antibodies has provided invaluable biological in-

sights that have not been readily obtained for other pathogens.

One reason is that the COVID-19 pandemic has gathered scien-

tists from many fields and around the globe to work intensively

on SARS-CoV-2. The parallel efforts by many different research

groups have enabled SARS-CoV-2 antibodies to be discovered

at unprecedented speed and scale that have not been possible

for other pathogens. We anticipate that knowledge of the molec-

ular features of the antibody response to SARS-CoV-2 will keep

growing as more antibodies are isolated and characterized. Ulti-

mately, the extensive characterization of antibodies to the

SARS-CoV-2 S protein may allow us to address some of the

most fundamental questions about antigenicity and immunoge-

nicity, as well as how the human immune repertoire has evolved

to respond to specific classes of viral pathogens that have coex-

isted with humans for hundreds to thousands of years.

Limitations of the study
Many antibodies in our collection were isolated from SARS-CoV-

2-infected individuals. However, sequence information of the in-

fecting viral variants was not available in the original publications.

Although most of these antibodies were isolated during the early

phase of the COVID-19 pandemic, some antibodies in our

collection may have been elicited by a SARS-CoV-2 variant

rather than the ancestral Hu-1 strain. Relatedly, this study did

not examine the antibody specificity to different variants. By

leveraging the published information on antibody neutralization
1114 Immunity 55, 1105–1117, June 14, 2022
activity to different variants, future analysis could investigate

the relationship between antibody sequence features and

neutralization breadth.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

ExpiCHO Expression System Kit Thermo Fisher Scientific Cat# A29133

Expi293 Expression System Kit ThermoFisher Cat# A14635

Phosphate-buffered saline (PBS) Thermo Fisher Scientific Cat# 14040133

Ni Sepharose excel resin Cytiva Cat# 17371202

CaptureSelect CH1-XL Affinity Matrix Thermo Fisher Scientific Cat# 1943462010

Chemicals and recombinant proteins

Sodium chloride (NaCl) Sigma-Aldrich Cat# S9888

Concentrated hydrochloric acid (HCl) Sigma-Aldrich Cat# H1758

Bovine Serum Albumin (BSA) Sigma-Aldrich Cat# A9418

Tween 20 Fisher Scientific Cat# BP337-500

Critical commercial assays

In-Fusion HD Cloning Kit Takara Cat# 639647

KOD Hot Start DNA Polymerase EMD Millipore Cat# 71086-3

PCR Clean-Up and Gel Extraction Kit Clontech Laboratories Cat# 740609.250

QIAprep Spin Miniprep Kit Qiagen Cat# 27106

NucleoBond Xtra Maxi Clontech Laboratories Cat# 740414.100

Deposited data

Collection of antibody information This study Table S1

Custom scripts This study https://doi.org/10.5281/

zenodo.6370701

Cell lines

ExpiCHO cells Thermo Fisher Scientific Cat# A29127; RRID:CVCL_5J31

Expi293F cells Thermo Fisher Scientific Cat# A14527; RRID:CVCL_D615

Recombinant DNA

phCMV3-COVOX-253 Fab heavy chain This study N/A

phCMV3-COVOX-253 Fab light chain This study N/A

phCMV3-SARS-CoV-2-RBD (Wu et al., 2020b) N/A

Software and algorithms

Octet analysis software 9.0 Fortebio N/A

Python https://www.python.org/ N/A

R https://www.r-project.org/ N/A

IgBLAST (Ye et al., 2013) N/A

Logomaker (Tareen and Kinney, 2020) N/A

ANARCI (Dunbar and Deane, 2016) N/A

MAFFT (Katoh and Standley, 2013) N/A

FastTree (Price et al., 2010) N/A

ggtree (Yu, 2020) N/A

PyIR (Soto et al., 2020) N/A

TensorFlow (Abadi et al., 2016) N/A

Other

Fab-CH1 2nd generation (FAB2G)

biosensors

ForteBio Cat# 18-5019

e1 Immunity 55, 1105–1117.e1–e4, June 14, 2022

https://doi.org/10.5281/zenodo.6370701
https://doi.org/10.5281/zenodo.6370701
https://www.python.org/
https://www.r-project.org/


ll
OPEN ACCESSArticle
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, by the lead

contact, Nicholas C. Wu (nicwu@illinois.edu).

Data and code availability
d The assembled SARS-CoV-2 antibody dataset is in Table S1. The dataset for constructing and testing the deep learning model

is in Table S3. Additional Supplemental Items are available from Mendeley Data at http://doi.org/10.17632/wzdvt6g3cz.1.

d Custom python scripts for all analyses have been deposited to Zenodo at https://doi.org/10.5281/zenodo.6370701.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell cultures
ExpiCHO cells (Chinese hamster ovary cells, female) and Expi293F cells (human embryonic kidney cells, female) were maintained in

ExpiCHO expression medium and Expi293 expression medium, respectively, at 37�C with 8% CO2 according to the manufacturer’s

instructions (Thermo Fisher Scientific).

METHOD DETAILS

Collection of antibody information
Information on themonoclonal antibodies is derived from the original papers (Table S1). Sequences of eachmonoclonal antibody are

from the original papers and/or NCBI GenBank database (www.ncbi.nlm.nih.gov/genbank) (Benson et al., 2013). Putative germline

genes were identified by IgBLAST (Ye et al., 2013). Some studies isolated antibodies from multiple donors, but the donor identity for

each antibody was not always clear. For example, some studies mixed B cells from multiple donors before isolating individual B cell

clones. Since the donor identity cannot be distinguished among those antibodies, we considered them from the same donor with

‘‘_mix’’ as the suffix of the donor ID. In addition, the PBMCs of SARS-CoV survivors in three separate studies were all from NIH/

VRC (Li et al., 2021a; Shiakolas et al., 2021; Wec et al., 2020). Since it is unclear If they are the same SARS-CoV survivor, the

same donor ID ‘‘VRC_SARS1’’ was assigned to them to avoid overestimation of public antibody response. If the neutralization activity

of a given antibody was only measured at a single concentration, 50% neutralization activity or below was classified as non-neutral-

izing. We also downloaded the CoV-AbDab (Raybould et al., 2021) in September 2021 to fill in any additional information. As of

September 2021, there were 2,582 human SARS-CoV-2 antibodies in CoV-AbDab. Information in the finalized dataset was manually

inspected by three different individuals. For antibodies that were shown to bind to S1 but not RBD, they were classified as NTD an-

tibodies. Due to having identical nucleotide sequences, IGKV1D-39*01 was classified as IGKV1-39*01, IGHV1-68D*02 as IGHV1-

68*02, IGHV1-69D*01 as IGHV1-69*19, IGHV3-23D*01 as IGHV3-23*01, and IGHV3-29*01 as IGHV3-30-42*01.

Analysis of germline gene usages
Non-functional germline genes were ignored in our germline gene usage analysis. Except for the analysis presented in Figure 1,

IGHV3-30-3 was classified as IGHV3-30 since they have identical amino-acid sequence in the framework regions, CDR H1, and

CDR H2. To establish the baseline germline usage frequency, published antibody repertoire sequencing datasets from 26

healthy donors (Briney et al., 2019; Soto et al., 2019) were downloaded from cAb-Rep (Guo et al., 2019). Putative germline

genes for each antibody sequence in these repertoire sequencing datasets from healthy donors were identified by IgBLAST (Ye

et al., 2013).

CDR H3 clustering analysis
Using a deterministic clustering approach, antibodies with CDRH3 sequences that had the same length and at least 80%amino-acid

sequence identity were assigned to the same cluster. As a result, CDR H3 of every antibody in a cluster would have >20% difference

in amino-acid sequence identity with that of every antibody in another cluster. A cluster would be discarded if all of its antibody mem-

bers were from the same donor. The number of antibodies within a cluster was defined as the cluster size. Sequence logos were

generated by Logomaker in Python (Tareen and Kinney, 2020). For each cluster, epitope assignment was performed using the

following scoring scheme. Briefly, there were three scoring categories, namely ‘‘RBD’’, ‘‘NTD’’, and ‘‘S2’’.

d 1 point was added to category ‘‘RBD’’ for each antibody with an epitope label equals to ‘‘S:RBD’’ or ‘‘S:S1’’.

d 1 point was added to category ‘‘NTD’’ for each antibody with an epitope label equals to ‘‘S:NTD’’, ‘‘S:S1’’, ‘‘S:non-RBD’’, or

‘‘S:S1 non-RBD’’.

d 1 point was added to category ‘‘S2’’ for each antibody with an epitope label equals to ‘‘S:S2’’, ’’ S:S2 Stem Helix’’,

‘‘S:non-RBD’’.
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The category with >50% of the total points would be classified as the epitope for a given cluster. If no category had >50% of the

total points, the epitope for the cluster would be classified as ‘‘unknown’’.

Identification of recurring somatic hypermutation (SHM)
In this analysis, a public clonotype was classified as antibodies from at least two donors that had the same IGHV/IGK(L)V genes and

CDR H3s from the same CDR H3 cluster (see ‘‘CDR H3 clustering analysis’’ above). For each antibody, ANARCI was used to number

the position of each residue according to Kabat numbering (Dunbar and Deane, 2016). The amino-acid identity at each residue po-

sition of an antibody was then compared to that of the putative germline gene. CDR H3, CDR L3, and framework region 4 in both

heavy and light chains were not included in this analysis. Insertions and deletions were also ignored in this analysis. SHM that

occurred in at least two donors within a public clonotype was defined as a recurring SHM.

Expression and purification of SARS-CoV-2 RBD
SARS-CoV-2 spike receptor-binding domain (RBD) was expressed in mammalian cells and purified as described previously (Wu

et al., 2020b). Briefly, the RBD (residues 319-541) of the SARS-CoV-2 spike (S) protein (GenBank: QHD43416.1) was cloned into

a phCMV3 vector and fused with a C-terminal 6xHis tag. The plasmid was transiently transfected into Expi293F cells using

ExpiFectamine 293 Reagent (Thermo Fisher Scientific) according to the manufacturer’s instructions. The supernatant was collected

at 7 days post-transfection. The protein was purified with Ni Sepharose excel resin (Cytiva) followed by size exclusion

chromatography.

Expression and purification of Fabs
The heavy and light chains were individually cloned into a phCMV3 vector. The plasmids were transiently co-transfected into

ExpiCHO cells at a ratio of 2:1 (HC:LC) using ExpiFectamine CHOReagent (Thermo Fisher Scientific) according to themanufacturer’s

instructions. The supernatant was collected at 7 days post-transfection. The Fabs were purified with a CaptureSelect CH1-XL Affinity

Matrix (Thermo Fisher Scientific) followed by size exclusion chromatography.

Biolayer interferometry binding assay
Binding assays were performed by biolayer interferometry (BLI) using an Octet Red instrument (FortéBio). To measure the binding

kinetics of anti-SARS-CoV-2 Fabs and RBD, Fabs were diluted with kinetic buffer (1x PBS, pH 7.4, 0.01% BSA and 0.002% Tween

20) into 50 mg/ml, then loaded onto Octet FAB2G biosensors and interacted with SARS-CoV-2 RBDs. Binding kinetics were

measured for five concentrations of RBDs at 3-fold dilution ranging from 300 nM to 3.7 nM. The assay consisted of the following

steps. 1) baseline: 1 min with 1x kinetic buffer; 2) loading: 120 seconds with Fabs; 3) wash: 30 seconds wash of unbound Fabs

with 1x kinetic buffer; 4) baseline: 1 min with 1x kinetic buffer; 5) association: 90 seconds with RBDs; and 6) dissociation: 90 seconds

with 1x kinetic buffer. For estimating the dissociation constant (KD), a 1:1 binding model was used.

Phylogenetic tree construction
Amino acid residues 1-94 (Kabat numbering) in the light chain sequences of IGHV1-58/IGKV3-20 antibodies from CDR H3 cluster 3

were aligned using MAFFT (Katoh and Standley, 2013). The phylogenetic tree was generated using FastTree (Price et al., 2010) and

visualized using ggtree (Yu, 2020).

Ramachandran plot
Ramachandran plots were generated using the Ramachandran Plot Server (https://zlab.umassmed.edu/bu/rama/) (Anderson

et al., 2005).

Deep learning model for antigen identification
Model construction

The deep learning model consisted of two networks, namely multi-encoder (ME) and a stack of multi-layered perceptrons (MLP). The

CDR amino-acid sequences were taken as input and passed to ME. Specifically, each CDR amino-acid sequence was described by

a 21-letter alphabet vector x! = ðx1;x2;.;xL�1;xLÞ;x ˛ RL, where L represented the length of sequence, and x represented the amino

acid category. Each of the 20 canonical amino acids was one category, whereas all the ambiguous amino acids were grouped as the

21st category. Before passing toME, tokenized amino acid sequenceswere processed by zero padding, so that the size of each input

was the same. Subsequently, the inputs were mapped to the embedding vectors with additional dimension d. The sinusoidal posi-

tional encoding vectors were added to the embedding vectors to encode the relative position of tokens (i.e. amino acids) in the

sequence. Each embedding vector, x!˛ RL3d, with size of L3 d, was passed into transformer encoder layer by self-attention mech-

anism to learn the sequence feature (Vaswani et al., 2017). All learned sequence features were then concatenated together and

passed to multi-layered perceptron (MLP). Each MLP layer contained leaky rectified linear unit (ReLU) activations to avoid the van-

ishing gradient. Dropout layers were placed after each MLP block to avoid model overfitting (Srivastava et al., 2014). The final output

layer was followed by a sigmoid activation function to predict the probability of different classes. The prediction losses were calcu-

lated by binary cross-entropy loss.
e3 Immunity 55, 1105–1117.e1–e4, June 14, 2022
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Training detail

SARS-CoV-2 S antibodies and influenza HA antibodies with complete information for all six CDR sequences were identified. Se-

quences of each HA antibody were from NCBI GenBank database (www.ncbi.nlm.nih.gov/genbank) (Benson et al., 2013)

(Table S3). If all six CDR sequences were the same between two or more antibodies, only one of these antibodies would be retained.

After filtering duplicates, there were 4,736 antibodies to SARS-CoV-2 and 1,356 to influenza HA. To avoid data imbalance, we further

down-sampled to 3,000 SARS-CoV-2 antibodies. The CDR sequences were identified by IgBLAST and PyIR (Soto et al., 2020; Ye

et al., 2013). This dataset was randomly split into a training set (64%), a validation set (16%), and a test set (20%). The training

set was used to train the deep learning model. The validation set was used to evaluate the model performance during training.

The test set was used to evaluate the performance of the final model. Therewas no overlap of antibody sequences among the training

set, validation set, and test set. The Adam algorithm was used to optimize the model. The following hyper-parameters were used for

model training:

CDR embedding size: 256

The number of attention heads for self-attention on CDR feature learning: 4

The number of encoder layer for CDR encoder: 4

Size of stacking MLP layers: 512, 128, and 64

Learning rate: 0.0001

Batch size: 256

Using the same training set, validation set and test set, the model performance of using the following inputs was compared:

CDR H1 + H2

CDR L1 + L2

CDR H3

CDR L3

CDR H3 + L3

CDR H1 + H2 + H3

CDR L1 + L2 + L3

CDR H1 + H2 + H3 + L1 + L2 + L3

The same procedure was used for training the RBD/NTD/S2 model or the RBD/HA model, except that the prediction losses for

RBD/NTD/S2 model were calculated by categorical cross-entropy loss since it has more than two categories. For the RBD/NTD/

S2model, the number of RBD antibodies were down-sampled to 800. Without down-sampling the RBD antibodies, the model would

be highly biased towards RBD, with very low recall rates of 0.39 and 0.16 for S2 antibodies and NTD antibodies, respectively. For the

RBD/HA model, 3000 RBD antibodies and 1,356 HA antibodies were used.

Performance Metrics

For evaluating model performance, S antibodies and HA antibodies were considered ‘‘positive’’ and ‘‘negative’’, respectively. False

positives (FP) and false negatives (FN) were samples that weremisclassified by themodel while true negatives (TN) and true positives

(TP) were correctly classified ones. The following metrics were computed to evaluate model performance:

accuarcy =
TP+ TN

TP+FN+FP+TN
(Equation 1)
precision =
TP

TP+FP
(Equation 2)
recall =
TP

TP+FN
(Equation 3)

In addition, we also used the receiver operating characteristic (ROC) curve and precision-recall (PR) curve to measure the model’s

ability to avoid misclassification (Flach et al., 2011; Saito and Rehmsmeier, 2015). Area under the curves of ROC (i.e. ROC AUC) and

PR (i.e. PR AUC) were computed using the "keras.metrics" module in TensorFlow (Abadi et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Standard deviation for KD estimation was computed by Octet analysis software 9.0.
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Figure S1. Summary statistics of the antibody dataset, Related to Figure 1. (A) The 

percentages of antibodies in our antibody dataset that bind to different epitopes are shown. S:Unk 

represents spike protein with unknown binding domain. (B) The percentages of antibodies in our 

antibody dataset from different origins are shown. (C) Each data point in the bottom panel 

represents one source (i.e. one of the 88 research publications and 13 patents). The number of 

antibodies from each of the different sources is shown. The distribution of number of antibodies 

per source is also shown as a histogram in the upper panel.   



 
Figure S2. CDR H3 clusters 14 and 17 represent antibodies that bridge two RBDs in the 

same spike trimer, Related to Figure 2. (A-C) Molecular feature of IGHV3-53/3-66 IGLV2-14 

antibodies (cluster 14) that bridges two down RBDs simultaneously in a spike trimer. Cluster 14 

contains 19 antibodies from 3 donors. (A) An overall view of SARS-CoV-2 spike in complex with 

an IGHV3-53/3-66 IGLV2-14 antibody. C144 (PDB 7K90) is used as a representative antibody 

(Barnes et al., 2020). Three protomers of the spike trimer are shown in charcoal, white, and 

transparent white, respectively. Heavy and light chains of C144 are shown in orange and yellow, 

respectively, with CDR H3 highlighted in red. The two RBDs bridged by the antibody are indicated 

in the figure. (B) Sequence logo of CDR H3 of IGHV3-53/3-66 IGLV2-14 antibodies, with residue 



positions labeled according to Kabat numbering. (C) Detailed interactions between C144 and the 

SARS-CoV-2 spike trimer. The color coding corresponds to that in panel A, where the RBD 

residues on protomer 1 is shown in charcoal and the RBD residues on protomer 2 are in white. 

Residue numbers of the RBD on protomer 2 are shown in italic. Hydrogen bonds and salt bridges 

are represented by black dashed lines. The RBD on protomer 1 is recognized by CDRs H1, H2, 

and H3 as well as a few light chain residues, where the RBD on protomer 2 is also targeted by 

CDR H3 of the same antibody molecule. CDR H3, which is encoded by IGHD3-3, contains 

100dFW100e at tip that stacks extensively with aromatic residues in the adjacent RBD. (D-E) 

Molecular features of IGHV4-34/IGKV3-20 antibodies (cluster 17) bridging two RBDs (one up and 

one down) simultaneously in a spike trimer. Cluster 17 contains 13 antibodies from 4 donors. (D) 

An overall view of SARS-CoV-2 spike in complex with an IGHV4-34/IGKV3-20 antibody. C104 

(PDB 7K8U) is used as a representative antibody (Barnes et al., 2020). Three protomers of the 

spike trimer are shown in charcoal, white, and transparent white, respectively. Heavy and light 

chains of C104 are shown in teal and pale cyan, respectively. The two RBDs bridged by the 

antibody are indicated in the figure. (E) A zoomed-in view of the interactions between the CDR 

loops of C104 and the two RBDs that display one-up-one-down conformation. Atomic interactions 

are not shown here as side chains of paratope residues were truncated in the original structure 

due to the low resolution of the structure. CDR H3 was partially truncated in the original 

coordinates.  

  



 

Figure S3. Two IGHV/IGK(L)V pairs are enriched in non-neutralizing RBD antibodies, 

Related to Figure 2. Each data point represents a defined IGHV/IGK(L)V pair. For each 

IGHV/IGK(L)V pair, the number of neutralizing RBD antibodies is plotted against the number of 

non-neutralizing RBD antibodies. Two IGHV/IGK(L)V pairs with a large number of non-

neutralizing antibodies are labeled. 

  



 

Figure S4. VH G100 of antibody S2A4 is in the allowed region of Ramachandran plot for 

non-glycine, Related to Figure 2. VH G100 of antibody S2A4 (PDB 7JVA) (Piccoli et al., 2020), 

which is a representative antibody of cluster 7, is shown as red dots on the Ramachandran plots. 

Black and grey areas represent highly preferred conformations, whereas outlined white area 

represents allowed conformations.  

  



 
Figure S5. IGHV3-53/3-66-encoded public clonotypes have many recurring somatic 

mutations, Related to Figure 4. (A) Recurring somatic mutations in the public clonotype 

encoded by IGHV3-53/3-66 and IGKV1-9 are shown. CC12.1 (PDB 6XC3) is used as an example 

here (Yuan et al., 2020). (B) Recurring somatic mutations in the public clonotype encoded by 

IGHV3-53/3-66 and IGKV3-20 are shown. CC12.3 (PDB 6XC4) is used as an example here (Yuan 

et al., 2020). Paratope residues (defined as buried surface area upon binding > 0 Å2 by RBD) are 

shown in red. 

  



Figure S6. The deep learning model has a robust performance, Related to Figure 6. (A) 

Antibodies with identical heavy and light chain immunoglobulin variable (V) genes, junction (J) 

genes, and belonging to the same CDR H3 cluster are defined as a clonotype. This definition was 

adopted from a recent study on SARS-CoV-2 public clonotypes (Chen et al., 2021). Each 

clonotype was assigned a unique ID. By comparing the distribution of clonotypes IDs in different 

sets, we found that only 12.7% and 15.4% clonotypes in the validation (val) and test sets, 

respectively, overlapped with the training set (train). (B) The performances of different models are 

shown. The RBD/NTD/S2 model was trained by the heavy chain CDRs (H1, H2, and H3), whereas 

the RBD/HA model was trained by all six CDRs. The dataset for the RBD/NTD/S2 model included 

389 NTD antibodies and 674 S2 antibodies with sequence information for all heavy chain CDRs. 

In addition, the number of RBD antibodies was down-sampled to 800 to avoid data imbalance 

(see STAR Methods). For the RBD/HA model, the number of RBD antibodies were down-sampled 

to 3,000, and the same 1,356 HA antibodies as in the S/HA model were used. (C) The S/HA 

model that was trained by six CDRs was applied to a dataset of 691 HIV antibodies with both 

heavy and light chain sequence information available (Table S6). 
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