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Appendix 1: Data acquisition 
We used the STHLM3 register to select subjects whose biopsies we digitized. The first 500 
men who were diagnosed in the STHLM3 trial were selected. This contributed the majority of 
slides, n=5,662. Since it was a screening-by-invitation trial, there were relatively few high-
grade cases in this selection. To increase the coverage of the more rare high-grade cases and 
their associated morphologies, we included all subjects (their positive cores and a randomly 
selected negative core) with at least one core graded as Gleason Score (GS) 4+4 or 5+5, and 
a random selection of 497 subjects with at least one core graded 3+3. To increase the sample 
diversity of benign prostate tissue, we included 139 randomly selected cancer-free subjects 
from which we included one randomly selected core each. At this stage we had selected 1,289 



participants from which we retrieved 8,571 biopsy cores.  Finally, we included all cores in the 
STHLM3 register which had PNI reported which concluded a total of 8,803 slides from 1,427 
subjects. In some of these, the study pathologist did not manage to reproduce the PNI finding. 
This could be due to difficult to judge cases or the difference of using microscopy (the original 
assessment) and digital pathology (the annotation of PNI for this study). These slides were 
included as negative cases. 
 
The study pathologist (L.E.) subsequently highlighted each lesion of PNI pixel-wise in the 
digitized cores that were reported to contain PNI. This was done in the open source pathology 
software QuPath.1 From these annotations we created binary masks, i.e. images indicating 
the presence or absence of PNI for each pixel of the associated whole slide images. The 
binary masks acted as pixel-wise ground truth labels when training and evaluating the 
networks.  
 
There were two types of scanners used for digitizing the slides: Hamamatsu C9600-12 
scanner running NDP.scan software v. 2.5.86 (Hamamatsu Photonics, Hamamatsu, Japan) 
and Aperio ScanScope AT2 scanner running Aperio Image Library v. 12.0.15 software (Leica 
Biosystems, Wetzlar, Germany). At full-resolution (20X) the pixel sizes were 0.45202 µm 
(Hamamatsu) and 0.5032 µm (Aperio). The RGB images were stored at 8-bits per channel in 
NDPI (Hamamatsu) and SVS (Aperio) format. 
 

Appendix 2: Pre-processing 
The scanned images typically contain two consecutive sections from a single biopsy core. The 
annotation of PNI was done on one of these two sections arbitrarily chosen by the study 
pathologist. To only include the annotated section in the training, we semi-automatically 
removed the unannotated one. In the cases where the annotated section was located in its 
entirety within one half of the image, and the unannotated section within the other half, we 
retained the image half containing the annotated section. Otherwise, removal of the 
unannotated section was performed manually. 
 
Images were downsampled by a factor of 16 and converted from RGB to grayscale in 
accordance with the NTSC standard by calculating the weighted sum 0.2989 x R + 0.5870 x 
G + 0.1140 x B for each pixel. The tissue was segmented using Laplacian filtering, followed 
by thresholding the absolute magnitude of the resulting response using Otsu’s method.2 This 
resulted in binary masks indicating the tissue regions. For further details see Supplementary 
of Ström et al.3 
 
To create label masks, that is, masks with values 0 for background, 1 for non-PNI tissue, and 
2 for PNI, we exported binary masks from QuPath for each unique region annotated by the 
pathologist. We also stored the pixel coordinates from which they were extracted. Finally, we 
removed the complementary section in the mask as described above. 
 



Appendix 3: Neural Networks 
Patch extraction 
For classification, we cropped patches with dimensions of 598 x 598 pixels at the highest 
resolution (20X) of the whole slide images, corresponding to roughly 300 µm x 300 µm. The 
patches were then labeled as PNI positive if they contained at least one pixel of PNI based on 
the binary masks. 
 
For segmentation, we only used the slides positive for PNI and cropped patches of size 512 x 
512 pixels at 20X from them, corresponding to 250 µm x 250 µm. The reason for using a 
different patch size than for classification was to match the different network architectures’ 
default input sizes by factors of 2. In addition to cropping the tissue, we also cropped the 
corresponding region from the binary mask. These patches of the masks acted as the target 
variable when training the model for pixel-wise segmentation of PNI. 
 
Since most parts of the image are background, we only considered patches with at least half 
of the pixels containing tissue according to the tissue mask. Patches were systematically 
cropped from all parts of the whole slide images containing tissue, with 50% overlap between 
adjacent patches. Finally, the patches were stored on disk as .jpg using JPEG compression 
with 80% quality.  

Classification network 
The deep neural network (DNN) used for classification of PNI on the patch level was Xception.4 
Ten models were trained in an identical way (except for randomization in initiating the model 
weights and the sampling and sample order of patches), and an average of these models’ 
predictions was used as the final patch level prediction. For slide-level prediction, the 
maximum over the predictions of all patches from a slide was taken to represent the entire 
slide. Similarly, slide-level predictions were aggregated into subject-level predictions by taking 
the maximum over all slides from a given subject.  
 
For training the DNNs we used a batch size of 8, randomly initiated weights, partial class 
balancing via oversampling of the rare positive class (2 PNI-negative patches sampled per 
one PNI-positive patch) to counter the extreme class imbalance of the data, binary 
crossentropy loss, Adam as optimizer with learning rate 0.001 and with other parameters set 
to default values, and trained for 100 epochs.5 We augmented the data with random horizontal 
flips and random rotations of 90, 180, and 270 degrees.  

Segmentation network 
For segmentation we applied Unet on the patches.6 Similarly to the classification models, we 
used an ensemble of 10 DNNs. The prediction patches (i.e. pixel-wise predictions for PNI for 
an image patch) were mapped to their original positions in the image to produce a prediction 
image corresponding to each whole slide image. A threshold was used to generate a binary 
version of the prediction image. 
 
For training the DNNs we used a batch size of 8, randomly initiated weights, partial class 
balancing via oversampling of the rare positive class (4 PNI-negative patches sampled per 



one PNI-positive patch) to counter the extreme class imbalance of the data, Adam as optimizer 
with a learning rate of 0.0001 and other parameters set to default values, focal binary loss and 
trained for 20 epochs.7 We augmented the data with random horizontal flips and random 
rotations of 90, 180, and 270 degrees. Pixel-wise probabilities were averaged across the 
models in the ensemble and scaled from a floating-point range of [0, 1] to an unsigned 8-bit 
integer range of [0, 255]) to store the information as heatmap images. Finally, a pre-specified 
threshold of 75 was used to classify each pixel as positive. The reason that this was lower 
than a corresponding probability of 0.5 was to err on the side of sensitivity rather than 
specificity, since we argue that it is better to highlight additional potential foci rather than too 
few in the case of pixel-wise visualization. 
 

Hardware and software 
Computations were performed on a graphics processing unit (GPU) cluster (Tampere Center 
for Scientific Computing, Tampere, Finland) equipped with 28 x Tesla V100 and 32 x Tesla 
P100 GPUs (Nvidia, Santa Clara, CA, USA) distributed on 15 nodes. The GPUs were running 
Nvidia driver 440.64, CUDA 10.0.130 and cuDNN 7.6.0. The nodes were equipped with either 
a 20-core Xeon E5-2640 v4 or a 24-core Xeon Silver 4116 CPU (Intel, Santa Clara, CA, USA) 
and 254 GB, 385 GB or 785 GB of RAM. Each node was equipped with a local SSD disk. We 
used 32-bit floating point precision for GPU computation. 
 
We used OpenSlide (v. 3.4.1) via the Python interface (v. 1.1.1) to access the images.8 
MATLAB R2017b (The MathWorks, Natick, MA, USA) and python were used to create the 
necessary masks for pixel-wise labeling of tissue and PNI. DNNs were implemented in Python 
3.6.4 and TensorFlow (v 2.0.0).9 
 

Appendix 4: Complementary results 
We evaluated a number of design choices on training data. The evaluation was performed on 
a fixed validation split of 20% of the training data, using the remaining data for training. The 
split was performed on subject level. 
 
For classification we compared several DNN architectures: Inception V3, Xception, ResNet, 
InceptionResNetV2, NASNet, EfficentNet (B7).10–15 Of these, Inception V3 and Xception 
generally had the best performance across various hyperparameter settings and appeared 
most reliable in terms of few severe drops in performance (data not shown). Xception exhibited 
slightly better performance than Inception V3. A comparison between the two architectures is 
shown in Figure S1. 
 
Moreover, we evaluated several patch sizes and resolution combinations (see three well 
performing combinations in Figure S1). In addition, we evaluated different strides for extracting 
patches and observed that a stride of 299 pixels (that is, 50% overlap between patches of 598 
x 598 pixels), was superior to a stride of 150 pixels (data not shown).  
 
For segmentation, we compared several backbones for Unet: VGG16, ResNet, ResNeXt, 
Inceptionv3, and EfficientNet (B7).16 Inception V3 was chosen based on consistent high 



performance on various sampling strategies and learning rates (data not shown). We also 
compared several loss functions (see Figure S2 and S3). 
 

 

 

 



Figure S1: AUC for PNI classification using different patch sizes (598 and 1196 pixels), 
resolution (20X and 10X), and architecture (Inception V3 and Xception). From top: slide level, 
subject level, and patch level. 
 

 
Figure S2: Intersection over union on patch level for various loss functions. (First row; from 
left) binary focal Jaccard loss, binary crossentropy, and Jaccard loss. (Second row; from 
left) binary focal dice loss, dice loss, and binary focal loss. The x-axis is number of epochs. 
 

 



Figure S3: Accuracy on patch level for various loss functions. (First row; from left) binary 
focal Jaccard loss, binary crossentropy, and Jaccard loss. (Second row; from left) binary 
focal dice loss, dice loss, and binary focal loss. The x-axis is number of epochs. 
 

 
Figure S4: Receiver operating characteristics analysis of the AI model’s performance in 
discriminating between PNI and non-PNI cores, evaluated using four reference standards, 
each set by a different pathologist (A-D). The analysis was performed on a subset of the test 
set (N=212, 106 positive and 106 negative for PNI according to original pathology reports) 
independently assessed by the four pathologists. The area under the curve (AUC) is shown 
for each reference standard, with 95% confidence intervals in parentheses. The reference 
standard used in (A) was set by the same pathologist (L.E.) whose diagnoses were used for 
AI training. 
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