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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):  

The paper by Bellmund and colleagues describes a human fMRI study in which subjects 
learned various different sequences of events (images taken from a virtual environment). The 
event sequences were described as different “days” in the virtual world and even sequence had 
its own virtual time. Critically, virtual time covaried with actual time, but was partly dissociable 
because each day had a different “speed.” fMRI data were used to compare the neural 
representations of the individual events before and after learning and a behavioral post-test was 
used to measure the accuracy with which subjects remembered the different sequences and, 
most critically, memory for the timing of events relative to the virtual clock. There are several 
interesting findings in the paper. Behaviorally, subjects successfully learned virtual times, which 
is notable because the virtual time for events had to be inferred by integrating the actual 
elapsed time with the virtual clock (which was never shown when the events actually occurred). 
Additionally, behavioral constructions of virtual time exhibited some biases from the normative 
temporal structure. In other words, memory for a given sequences timing was biased by the 
timing of other events. fMRI data comparing representational structure pre and post learning 
revealed that the hippocampus showed two forms of learning related change. (1) 
representations of events from the same sequence changed such that events nearby in time 
became relatively less similar and (2) representations of events from different sequences but at 
similar timepoints (within the sequence) become relatively more similar. This difference was not 
see in the entorhinal cortex, where there was a representation of virtual time that did not differ 
for within vs. across sequence comparisons. Thus, the hippocampus showed a separation of 
events within a sequence, while simultaneously exhibited a representation of temporal structure 
that generalized across different sequences. Hippocampal representations of virtual time (within 
a sequence) were also related to behavioral biases in that greater hippocampal sequence 
effects predicted less bias from other sequences.  

Overall, this is a very exciting manuscript. The experimental design and analyses are very 
clever and there are multiple interesting results. I have a few comments and questions, but my 
sense is that these are all addressable points and that the manuscript is likely to be of broad 
interest to readers of this journal.  

Comments  

1. On my first pass through the manuscript, it was hard for me to understand the direction of the 
effects reported in Figure 4. I assume that a positive effect meant that events nearby in time 
became more similar. There is a statement on page 7 that says: “Thus, pattern similarity was 
higher for event pairs separated by longer temporal distances than for pairs separated by 
shorter intervals.” I actually thought this must have been a type-o (and that it was supposed to 
say that pattern similarity was higher for SHORTER temporal distances). It was only when I got 
to figure 5 that I fully realized that the within sequence effects are quite surprising (opposite to 
what one would likely predict). To prevent similar confusion for readers, I would recommend 
making some edits. The visualization in 5D is helpful for visualizing the direction of the 
relationship. So, one option would be to show something similar in figure 4. Or, even just to 
emphasize (in the text) that the result was surprising. But, from the Introduction of the paper, 



there is nothing that motivates this idea or leads the reader to expect it. I am not suggesting that 
the Introduction be modified to “predict” this result, but I am just flagging that I think readers will 
be confused.  

2. Related to point 1: It’s a little confusing that “negative correlations between representational 
change and temporal distances” are actually in the prediction you would expect. Negative 
makes one think it’s going to be the opposite of what would be expected.  

3. It was not entirely clear whether it was possible to infer any of the sequence or event 
structure from the images prior to the day learning task. E.g., do events from the same 
sequence have any greater visual or conceptual similarity (in terms of rooms, characters, 
objects, etc.)? This is not necessarily a problem given the pre vs. post design, but it would be 
useful to know.  

4. Would a similar interaction between temporal distance and sequence (within vs. across) be 
found if sequence position or actual clock time were used instead of virtual time? I don’t know 
that it is a problem if the answer is “yes,” but it would be interesting to know. Clearly subjects did 
learn the virtual times, but it is not clear that the surprising within-sequence temporal effects 
critically depend on virtual time.  

5. Two potential accounts of the reduction in similarity for nearby, same-sequence events are 
offered. One is “These findings might support the view that the formation of associations 
between elements of a sequence may have altered how pattern similarity changes relate to 
temporal distances for same-sequence events.” I had difficulty understanding this argument. It 
would be helpful to flesh this out some more. The other account is a differentiation account. The 
current results do have a striking similarity to other examples of hippocampal differentiation of 
similar experiences. However, it is stated that “this interpretation does not directly account for 
the overall correlation of temporal distances and representational change.” I think this statement 
is true, but again could be fleshed out slightly more. I image the point is that a differentiation 
account does not explain the changes for across sequence representations?  

6. One potential account of the generalization results is that they may reflect some form of 
primacy or recency effects within the sequences. Namely, events that were presented at the 
beginning or end of the sequence might be better remembered. Or the first and last events 
might be more likely to trigger associative memory for the whole sequence—i.e., these events 
might be better memory cues for the sequence than events in the middle of the sequence. In 
either of these cases, the hippocampal response to 1st or last images would likely be different in 
a way that generalizes across sequences but without actually reflecting something about 
abstract time or position. In other words, you could observe the generalization effects even if the 
true nature of the hippocampal representation has nothing to do with abstract sequence 
position—it is just something that is correlated with sequence position. I do not see any obvious 
way to rule out this account. While I do view this as a limitation, I don’t think this is a fatal flaw. 
Rather, I think this limitation should be acknowledged in the Discussion.  

7. The within sequence hippocampal effects are reminiscent of a recent preprint from Sherman, 
DuBrow, Winawer, and Davachi 
https://www.biorxiv.org/content/10.1101/2021.08.03.454949v1.full.pdf which found that 



hippocampal pattern similarity within an event sequence was actually lower than across 
sequences. It might be worth acknowledging/citing this paper to add some conceptual support 
for the idea that the hippocampus differentiates events within a sequence.  

8. Related to the MDS reconstruction analysis:  

(a) The reconstructions are really striking. But is this based on the change from pre to post 
learning or just based on the post learning results?  

(b) Also, I initially assumed this was based on the raw pattern similarity values and was stunned 
by the consistency of the reconstructions across different sequences. But it seems the MDS 
was actually applied to modeled data. I did not entirely follow how this was done and, therefore, 
it is hard to ascertain whether the remarkable consistency of the reconstructions across 
sequences simply reflects that structure imposed by the model?  

(c) It’s a bit hard to reconcile the idea that the hippocampus ‘learns’ the sequence 
representation while also systematically showing decreased similarity for nearby events 
compared to far away events. These ideas seem to be at odds. Seeing the the c-shape 
structure in the reconstructions really helps provide some intuition for this in that it seems that 
the start point and end point end up being close(r) together in representational space. Though, it 
is hard to tell (by eye) whether this reconstruction actually captures this effect. If you just 
compute the Euclidean distance between the reconstructed pairs, are temporally nearby events 
actually farther away (greater Euclidean distance) than temporally distant events?  

Minor:  

9. Line 270: “When events at the same sequence position, but in different sequences, took 
place late relative to an event…”. Is this supposed to say “relative to a SEQUENCE”? or maybe 
“relative to other events at the same sequence position”?  

10. Page 8: “we next assessed whether this effect was driven by the constructed event times 
beyond sequence order and real time. We thus included the two additional time metrics as 
control predictors in the model.” I initially interpreted this to mean that the behaviorally-
constructed times from the post-test were used. But I think that what the authors might have 
meant is just the “virtual time.” If so, I would recommend strictly using “virtual time” to refer to 
the objective virtual clock given the potential to confuse the objective virtual time with the 
behaviorally-constructed virtual time. I do understand that virtual time HAS to be constructed, 
but, still, there is the potential for confusion.  

Reviewer #2 (Remarks to the Author):  



Bellmund and colleagues report a functional MRI study in which they sought to shed light on the 
type of temporal memory (i.e. inferred/constructed time, elapsed real time, temporal order) that 
anterior hippocampal and anterior lateral entorhinal representations encode in support of event 
sequence memory. Using a representational similarity approach together with a behavioural 
task that required participants to learn the temporal structure of four different event sequences 
that unfolded in relation to a 'virtual clock', it was found that anterior hippocampal 
representations contained information about constructed time for both within and between 
sequence events. Specifically, events that were further apart in virtual time within the same 
sequence were associated with greater pattern similarity compared to events that were closer 
together. In contrast, events that occurred at comparable virtual times between sequences were 
represented more similarly than those that took place at different virtual times. This latter finding 
points towards the generalization of temporal relations across sequences and reflective of this, 
participants demonstrated a 'generalization bias' in their task responses, with the estimated 
virtual time of any given event being influenced by the time of occurrence of other events in 
other sequences in the same sequence position. In comparison to the anterior hippocampus, 
representations in the anterior lateral entorhinal cortex did not differentiate between same-
sequence and across-sequence temporal relations, with events occurring close together in time 
being associated with greater pattern similarity.  

There has been much interest in how the brain supports the temporal dimension of event 
sequence memory and as such, the current study is very timely, with the potential to be 
conceptually important. The behavioural paradigm is clever, providing a means to disentangle 
constructed time from elapsed time and event order, and broadly speaking, the experimental 
methods and data analyses are solid. Indeed, the authors are to be commended for their use of 
multiple analytical approaches (to provide converging findings) and the implementation of 
certain control analyses to rule out alternative explanations. Overall, I'm quite enthusiastic about 
this paper but have a number of issues that I would appreciate further clarity on.  

1) It is somewhat surprising that a handful of participants performed relatively poorly on the 
sorting task (in the 40 - 60 % correct range) and, in fact, there was quite a range in performance 
across participants. Were the poorest performers on the sorting task also those who produced 
the greatest absolute error on the timeline task? Related to this, it would be interesting to know 
whether there were any discernible patterns in the errors that participants made on the sorting 
task. Specifically, swap errors, in which participants mix-up events occupying the same 
sequence position across sequences (i.e. A1-B2-C1-D1-E1 & A2-B1-C2-D2-E2), may be a 
product of generalization across sequences and could conceivably be related to the 
generalization bias (e.g. greater generalization of temporal structure across sequences may 
lead to a greater number of swap errors and a greater generalization bias).  

2) Was there a significant difference in absolute error on the timeline task between the different 
sequences? While eye-balling Figure 2B suggests that there wasn't, it may still be useful do 
demonstrate this statistically and show that clock speed had no impact on participants' ability to 
construct time.  

3) When examining the representational similarity between events from different sequences in 



the anterior hippocampus (Supplemental Table 5), was an analysis conducted with real time 
and order included as additional control factors? The same applies for the examination of 
representational change in the anterior lateral entorhinal cortex (Supplemental Table 7). The 
findings of these analyses would be important to report.  

4) Given that generalization bias can be quantified for each trial, I'm curious as to whether the 
authors attempted an analysis whereby they examined trial-by-trial fluctuations in BOLD signal 
in relation to this measure (e.g. within a GLM with generalization bias as a regressor)? The 
observation of significant anterior HPC involvement in such an analysis would add further 
weight to the authors' conclusions.  

5) It would be useful if the authors could clarify why they used NMDS to visualize the 
relationship between the different events, sequences and virtual time, as opposed to MDS, and 
how they explored/determined the optimal number of dimensions to account for their data. 
Moreover, to further quantify the output of the NMDS analysis, one could consider using k-
means clustering to examine the clustering of the different events across the different 
sequences.  

Minor:  

In Figures 5D and 6E, it would be useful if the legend could state how temporal distances were 
classified as 'high' vs. 'low'  

It would be helpful for r and p values to be reported in the correlation figures (e.g. Figure 8B, 
Sup. Figure8).  

To test whether within- and across-sequence representations overlap, ROIs were defined using 
a p < 0.01 uncorrected threshold. How was this threshold chosen and do the findings change 
dramatically if a threshold of p < 0.001 uncorrected is adopted?  

Reviewer #3 (Remarks to the Author):  

In this manuscript, Bellmund and colleagues interrogate the creation of temporal sequences in 
the anterior hippocampus and entorhinal cortex. They pursue this through the creation of a well 
designed experimental paradigm wherein subjects watch distinct event sequences from different 
imaginary days in the life of a family. The authors attempt to dissociate ‘virtual time’ in the 
context of the viewed events and the absolute passage of time, doing so by providing 
participants with intermittent clock time cues indicating virtual time. The speed of these virtual 
clocks was manipulated such that the passage of virtual time and absolute time varied across 
simulated days. A pre/post still-frame viewing design is used to ascertain the differences in 
representational similarity for images that were presented both within the same sequence and 
across different sequences. Participants structured their estimates of the temporal structure of 
events strongly in accordance with virtual time, as opposed to mere temporal order or the real 
passage of time. This was mirrored by RSA results in the anterior hippocampus and anterior-



lateral entorhinal cortex. Furthermore, the authors report that more temporally distant events 
within the same sequence become similar in the anterior hippocampus, suggesting that this may 
be due to beginning and end events being more strongly related. Temporally similar events 
across sequences, on the other hand, become more similar suggesting a realignment of 
episodes along a common axis. Conversely, the authors report that the entorhinal cortex 
featured only generalization of sequence structure rather than sensitivity to within versus across 
sequence information, such as they observed in the hippocampus. Finally, multidimensional 
scaling approaches were used to visualize low-dimensional embedding of the sequences of 
events, which I found to be a nice addition over the prior version of the manuscript.  

My overall impression is that this is a very well-designed experiment and a fairly novel approach 
to studying temporal coding in the human medial temporal lobe. The notion of dissociating 
virtual time from real time is especially interesting (though, as I note below, I have some 
questions about the extent to which this is compellingly done). However, there are issues with 
conceptual framing of the results, and clarity about the way this work fits into and adds to the 
various corners of the literature that the authors cite. These points are listed below.  

Lastly, I will note that I reviewed a prior version of this manuscript for a different journal. Though 
the authors addressed a few of the concerns I previously voiced, the authors did not really 
contend with the majority of the points raised from my prior review. Thus, I will largely reiterate 
those points, and note a few places where progress was made in my view over the previous 
version.  

Major Points:  
1. In my prior review, I noted that the framing of the paper was a bit opaque in terms of the 
study’s contributions and scope with regards to the broader literature. Unfortunately, the authors 
do not seem to have changed very much at all from the previous version to address this 
concern. I was previously and still am struggling a bit with understanding the major contributions 
this study makes to changing or solidifying our understanding of the temporal organization of 
memory. A basic take-away from the paper is that the hippocampus and entorhinal cortex 
encode temporal sequences, which has been well-established (e.g., work from the authors’ own 
group, as well as work by the Eichenbaum, Davachi, Ranganath, Howard, Fortin, and Kahana 
labs, among many others). Beyond basic sequence coding, the authors show that this temporal 
coding appears to align with virtual time rather than absolute time. This accords with recent 
work from Shimbo et al (Science Advances, 2021), and is novel in terms of human behavior and 
neural signals in the human brain. However, the framing of the manuscript is a bit scattered and 
does not effectively communicate this. I previously noted that the Discussion was particularly 
problematic in this regard. In this newer version, several minor changes seem to have been 
made which have made the Discussion read better. However, I still believe that the basic issue 
of too many tenuous links to what appear to be ‘hot’ research topics is detracting from rather 
than improving this manuscript.  

2. Following from the above, at a more nuanced level, the authors show that the hippocampus 
shows higher pattern similarity for same-sequence items which are farther apart than items that 
are closer together in time. The opposite pattern is found for different-sequence items. The 
authors note the following: “In contrast to our previous work, participants studied multiple 



sequences. They might have formed strong associations of same-sequence events on top of 
inferring each event’s virtual time, potentially altering how temporal distances affected 
hippocampal pattern similarity.” This is seemingly rephrased from the previous submission, but I 
am having difficulty understanding this point and do not find it to be an improvement. Given that 
the opposing pattern of results for same versus different sequences in the hippocampus is a key 
feature in the data, I think that a clearer discussion of this effect’s directionality (especially given 
that it is perhaps counterintuitive) is necessary.  

3. From my prior review, not addressed: An important aspect of this design and of the results is 
that behavioral and neural data indicate that participants are encoding information on the basis 
of virtual time, rather than real time. Given the design of the experiment and stimuli, I am unsure 
if this should be at all surprising. Participants received any external cue whatsoever about virtual 
time, compared to none about real time. In fact, aside from aiding in one’s understanding of how 
much time has elapsed between virtual clock cues, it does not seem that real time is at all 
relevant to participants’ ability to engage in the task. While I have no doubt that participants are 
tracking the virtual timing of these events, or that they are doing so more strongly than they are 
absolute time, I am not sure how meaningful this comparison really is in the context of the 
experiment. While the authors did vary virtual clock speed in an attempt at dissociating real from 
virtual time, one can still reasonably argue that real time is uncued and simply not relevant to 
completing the task, rendering real time relatively uninformative, and a virtual versus real time 
comparison a strawman. Moreover, one could reasonably argue that participants’ understanding 
of virtual time involves a combination of virtual + real time, further obscuring meaningful 
comparisons with real time only. I think the manuscript needs to address this issue.  

4. From my prior review, not addressed: It is not clear why the authors chose to conduct two 
classes of analyses (summary statistics and mixed effects models) for every family of data. This 
is at best somewhat redundant, and at worst raises questions about correction for multiple 
comparisons when applying these analyses on the same family of data. Some reported effects 
fall between p-values of 0.025 and 0.05, meaning a simple Bonferroni correction would prove 
problematic. If both classes of tests are necessary, a clear case should be made for this 
approach. Otherwise, it may be prudent to choose one approach. If the authors believe that both 
classes of tests are necessary, and that multiple comparisons correction is unnecessary, this 
should be convincingly argued.  

Minor Points:  
5. Following from my final major point above, the figures are somewhat overwhelming, and carry 
seemingly redundant information. For example, in Figure 4 the authors present plots associated 
with a univariate regression and then follow with plots associated with a multiple regression. 
This depends on the authors’ preferred solution to the above concern, but I will note that this 
figure and others would be simpler to parse if they only showed the multiple regression results, 
as they converge on the same conclusion as univariate regression, and as they are the stronger 
analysis via simultaneously evaluating multiple factors. I will note (in somewhat ironic contrast to 
the rest of this comment) that the authors have now added a multidimensional scaling analysis 
plot over the prior version of the manuscript, which while not adding anything terribly unique to 
the results, does provide a nice visualization of sequence representation.  



6. Throughout the text, the authors refer to sequences in temporal memory being “actively 
constructed.” Can claims about temporal relations being actively constructed be made based on 
pre vs. post task RSA? There is clearly some record of task structure in memory, but it is not 
clear that this is indicative of some active (rather than passive) process, or that the word “active” 
is really carrying any meaning here. This is a minor and somewhat nitpicky point, but given the 
repeated use of this phrase, it warrants some clarification or unpacking.  

7. The authors a-priori justification of their ROIs could stand to be fleshed out more. While I 
understand that prior work from this group has highlighted the anterior hippocampus and 
anterior-lateral entorhinal cortex, the logic for this selection warrants better justification. 
Especially given that many of the phenomena the authors allude to in the introduction and 
discussion are often associated with other regions.  

8. For Figure 8, why was the searchlight ROI used and not the anatomical ROI? 
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Reviewer	#1	
The	paper	by	Bellmund	and	colleagues	describes	a	human	fMRI	study	in	which	subjects	learned	various	
different	 sequences	 of	 events	 (images	 taken	 from	 a	 virtual	 environment).	 The	 event	 sequences	 were	
described	as	different	“days”	in	the	virtual	world	and	even	sequence	had	its	own	virtual	time.	Critically,	
virtual	time	covaried	with	actual	time,	but	was	partly	dissociable	because	each	day	had	a	different	“speed.”	
fMRI	 data	were	 used	 to	 compare	 the	 neural	 representations	 of	 the	 individual	 events	 before	 and	 after	
learning	and	a	behavioral	post-test	was	used	to	measure	the	accuracy	with	which	subjects	remembered	
the	different	sequences	and,	most	critically,	memory	for	the	timing	of	events	relative	to	the	virtual	clock.	
There	 are	 several	 interesting	 findings	 in	 the	 paper.	 Behaviorally,	 subjects	 successfully	 learned	 virtual	
times,	which	 is	notable	because	the	virtual	 time	for	events	had	to	be	 inferred	by	 integrating	the	actual	
elapsed	 time	 with	 the	 virtual	 clock	 (which	 was	 never	 shown	 when	 the	 events	 actually	 occurred).	
Additionally,	behavioral	constructions	of	virtual	time	exhibited	some	biases	from	the	normative	temporal	
structure.	In	other	words,	memory	for	a	given	sequences	timing	was	biased	by	the	timing	of	other	events.	
fMRI	data	 comparing	 representational	 structure	pre	 and	post	 learning	 revealed	 that	 the	hippocampus	
showed	 two	 forms	 of	 learning	 related	 change.	 (1)	 representations	 of	 events	 from	 the	 same	 sequence	
changed	such	that	events	nearby	in	time	became	relatively	less	similar	and	(2)	representations	of	events	
from	different	sequences	but	at	similar	timepoints	(within	the	sequence)	become	relatively	more	similar.	
This	difference	was	not	see	in	the	entorhinal	cortex,	where	there	was	a	representation	of	virtual	time	that	
did	not	differ	for	within	vs.	across	sequence	comparisons.	Thus,	the	hippocampus	showed	a	separation	of	
events	within	 a	 sequence,	while	 simultaneously	 exhibited	 a	 representation	 of	 temporal	 structure	 that	
generalized	across	different	sequences.	Hippocampal	representations	of	virtual	time	(within	a	sequence)	
were	also	related	to	behavioral	biases	 in	that	greater	hippocampal	sequence	effects	predicted	less	bias	
from	other	sequences.	

Overall,	this	is	a	very	exciting	manuscript.	The	experimental	design	and	analyses	are	very	clever	and	there	
are	multiple	interesting	results.	I	have	a	few	comments	and	questions,	but	my	sense	is	that	these	are	all	
addressable	points	and	that	the	manuscript	is	likely	to	be	of	broad	interest	to	readers	of	this	journal.	

We would like to thank the Reviewer for their positive evaluation of our manuscript and the constructive 

comments for further improvements. By addressing these comments, we believe that we have made our 

manuscript more accessible for the reader. In particular, we have revised our first main fMRI result figure (Figure 

4) to include the visualization of pattern similarity changes contrasted between temporally close and far events. 

Further, we more clearly point out the surprising nature of this within-sequence effect. Additionally, the results 

of new analyses provide supporting evidence for the interpretation that the differential representation of 

temporal relations in the hippocampus reflects the constructed virtual temporal relations beyond sequence 

order and elapsing real time. Overall, we believe that we have further strengthened the manuscript through 

these changes and additional analyses. Please find our detailed responses below. 

Major	Comments	

Comment	1	
On	my	first	pass	 through	the	manuscript,	 it	was	hard	 for	me	to	understand	the	direction	of	 the	effects	
reported	in	Figure	4.	I	assume	that	a	positive	effect	meant	that	events	nearby	in	time	became	more	similar.	
There	is	a	statement	on	page	7	that	says:	“Thus,	pattern	similarity	was	higher	for	event	pairs	separated	by	
longer	temporal	distances	than	for	pairs	separated	by	shorter	intervals.”	I	actually	thought	this	must	have	
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been	a	type-o	(and	that	it	was	supposed	to	say	that	pattern	similarity	was	higher	for	SHORTER	temporal	
distances).	It	was	only	when	I	got	to	figure	5	that	I	fully	realized	that	the	within	sequence	effects	are	quite	
surprising	(opposite	to	what	one	would	likely	predict).	To	prevent	similar	confusion	for	readers,	I	would	
recommend	making	 some	 edits.	 The	 visualization	 in	 5D	 is	 helpful	 for	 visualizing	 the	 direction	 of	 the	
relationship.	So,	one	option	would	be	to	show	something	similar	in	figure	4.	Or,	even	just	to	emphasize	(in	
the	 text)	 that	 the	 result	was	 surprising.	 But,	 from	 the	 Introduction	 of	 the	 paper,	 there	 is	 nothing	 that	
motivates	this	idea	or	leads	the	reader	to	expect	it.	I	am	not	suggesting	that	the	Introduction	be	modified	
to	“predict”	this	result,	but	I	am	just	flagging	that	I	think	readers	will	be	confused.	

The reviewer comments on the presentation of the same-sequence pattern similarity effect, which was 

characterized by positive correlations of temporal distances and hippocampal pattern similarity. We agree that 

the direction of this effect is surprising. We have followed the recommendations of the reviewer to revise our 

manuscript to provide better guidance for the reader in order to avoid confusion about the direction of this 

effect. Specifically, we now illustrate the direction of the effect by showing the raw pattern similarity differences 

between events separated by low vs. high temporal distances in the revised Figure 4 already (new panel C). 

Further, we explicitly state that the direction of this effect was surprising when describing it in the Results 

section. With respect to the interpretation of the effect, we refer the reader to the extended discussion of 

factors potentially influencing the direction of the association between pattern correlations and temporal 

relations (see our response to Comment 5). We believe that these changes have improved the presentation of 

our results because the manuscript now presents this effect in a way that is more accessible and makes clear 

that the direction of the effect is surprising. Please find the revised figure and the revised section of the 

manuscript below: 

Page 7 
Surprisingly, we observed a positive relationship between similarity changes and temporal distances in both 
the summary statistics (Figure 4B; t27=3.07, p=0.006, d=0.56, 95% CI [0.18, 1.00]; α=0.025, corrected for 
separate tests of events of the same and different sequences) and the mixed model approach (Figure 4CD; 
χ2(1)=9.87, p=0.002, Supplemental Figure 4CD, Supplemental Table 2). This  effect was further characterized 
by higher pattern similarity for event pairs separated by longer temporal distances than for pairs separated 
by shorter intervals (Figure 4C, t27=2.48, p=0.020, d=0.64, 95% CI [0.08, 0.87]). In contrast to our previous 
work21, where we observed negative correlations of pattern similarity and temporal distances, participants 
learned multiple sequences in this study. 
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Figure 4 

Figure 4. Sequence representations in anterior hippocampus reflect constructed event times. A. The 
anterior hippocampus region of interest is displayed on the MNI template with voxels outside the field of 
view shown in lighter shades of gray. Color code denotes probability of a voxel to be included in the mask 
based on participant-specific ROIs (see Methods). B. The Z-values based on permutation tests of 
participant-specific linear models assessing the effect of virtual time on pattern similarity change for event 
pairs from the same sequence were significantly positive. C. To illustrate the effect shown in B, average 
pattern similarity change values are shown for same-sequence event pairs that are separated by low and 
high temporal distances based on a median split. D. Z-values show the relationship of the different time 
metrics to representational change based on participant-specific multiple regression analyses. Virtual time 
predicts pattern similarity change with event order and real time in the model as control predictors of no 
interest. B-D. Circles are individual participant data; boxplots show median and upper/lower quartile along 
with whiskers extending to most extreme data point within 1.5 interquartile ranges above/below the 
upper/lower quartile; black circle with error bars corresponds to mean±S.E.M.; distributions show probability 
density function of data points. ** p<0.01; * p<0.05  

Comment	2	
Related	to	point	1:	It’s	a	little	confusing	that	“negative	correlations	between	representational	change	and	
temporal	distances”	are	actually	in	the	prediction	you	would	expect.	Negative	makes	one	think	it’s	going	
to	be	the	opposite	of	what	would	be	expected.	

Related to the previous comment, the reviewer here points out that the prediction of negative correlations 

between pattern similarity and distances might be unexpected for some readers. We understand this concern 

as the expectation of a negative correlation might seem uncommon. However, a negative correlation between 

pattern similarity and temporal distances is indeed what one would expect. In the temporal domain, this implies 

that representations of events that are separated by a small amount of time are more similar than those events 

that are separated by larger temporal intervals. As a different example, a similar pattern would be expected for 

map-like representations of space, where locations with low distances between them would share similar 

representations, whereas distant positions would have less similar representations. To make the interpretation 
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and expectation of negative correlations between pattern similarity and temporal distances clearer for the 

reader, we have expanded our description of these effects in our prior work in the introduction. 

Please find the changed section of the manuscript below. 

Page 2 
Events closer in time elicited more similar activity patterns relative to events separated by longer intervals, 
resulting in negative correlations between pattern similarity and temporal distances21,27. Within the 
entorhinal cortex, this effect was specific to the anterior-lateral subregion27, consistent with the involvement 
of this area in precise temporal memory recall28,29. Negative correlations between pattern similarity and 
distances are in line with sequence representations akin to cognitive maps of space – positions separated 
by low distances share similar representations, whereas positions with high distances between them are 
represented less similarly, i.e. pattern similarity scales with distance. 

Comment	3	
It	was	not	entirely	clear	whether	it	was	possible	to	infer	any	of	the	sequence	or	event	structure	from	the	
images	prior	to	the	day	learning	task.	E.g.,	do	events	from	the	same	sequence	have	any	greater	visual	or	
conceptual	similarity	(in	terms	of	rooms,	characters,	objects,	etc.)?	This	is	not	necessarily	a	problem	given	
the	pre	vs.	post	design,	but	it	would	be	useful	to	know.	

The reviewer here asks whether task-relevant information about the sequences or the individual event times 

could be inferred from the stimuli. We do not believe that this was possible because of the way our stimuli and 

experiment were designed. The stimuli we created were devoid of contextual cues for the time of day on which 

they would occur. For example, no windows or clocks were visible that could indicate the time of day. Further, 

the event images used in the study were selected to be the most ambiguous with respect to the time of day 

when they might occur from a larger pool of images based on a pilot study. All event images featured the main 

character of the story. Crucially, we randomized across participants which events made up which sequence and 

which position in a sequence the events occupied. Thus, it was impossible to infer specific event times or 

sequence memberships from the stimuli. The randomization makes a systematic effect of visual or conceptual 

image content on our results very unlikely. Indeed, our searchlight analyses (Figure 7) revealed that the 

strongest effects were located in the hippocampus, whereas one would expect effects in visual cortices if they 

were driven by the visual similarity of the images. Further, as correctly pointed out by the reviewer, our analyses 

all focus on assessing representational change from the pre-learning baseline to the post-learning scan. As the 

visual and/or conceptual content of the images does not change, no systematic pattern similarity changes 

would be expected. We are thus confident that our effects are not driven by visual or conceptual similarity. We 

revised our manuscript to make better highlight that stimuli were randomly assigned to sequences and event 

times in the main text. 

Page 4 
Event images with minimal or no indication of time of day (Supplemental Figure 1) were randomly assigned 
to sequences and sequence positions for each participant. Thus it was impossible to infer specific event 
times or sequence memberships from the stimuli. 

Comment	4	
Would	 a	 similar	 interaction	 between	 temporal	 distance	 and	 sequence	 (within	 vs.	 across)	 be	 found	 if	
sequence	position	or	actual	clock	time	were	used	instead	of	virtual	time?	I	don’t	know	that	it	is	a	problem	
if	the	answer	is	“yes,”	but	it	would	be	interesting	to	know.	Clearly	subjects	did	learn	the	virtual	times,	but	
it	is	not	clear	that	the	surprising	within-sequence	temporal	effects	critically	depend	on	virtual	time.	
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The reviewer here asks whether not only virtual time, but also the two other time metrics (sequence order and 

real time) differentially relate to pattern similarity when comparing pairs of events belonging to the same 

sequence or two different sequences. We ran these analyses and observed significant interactions of sequence 

membership with order (χ2(1)=9.98, p=0.002) and real time (χ2(1)=9.27, p=0.002). Given that the three time 

metrics are related, similar interaction of each time metric in isolation can perhaps be expected. We next asked 

whether the interaction of virtual time and sequence membership would remain significant when including the 

other interaction terms in the mixed model. Indeed, virtual time was differentially related to pattern similarity 

for events from the same or different sequences, even when accounting for variance explained by the 

interactions of sequence membership with order and real time (χ2(1)=8.57, p=0.003). These results substantiate 

the interpretation that it is virtual time that underlies the differential representation of the temporal relations of 

the events from the same or different sequences. We have included these findings in the manuscript and report 

the mixed model details in Supplemental Table 8.  

With respect to the last part of the comment, we believe that the data we present strongly argues for the within-

sequence effect reflecting relations in virtual time. Specifically, even when competing for variance with order 

and real time, virtual time was a significant predictor pattern similarity change in the anterior hippocampus 

(summary statistics: t27=2.18, p=0.040, d=0.40, 95% CI [0.02, 0.81], Figure 4D; mixed model: χ2(1)=5.92, 

p=0.015, Supplemental Figure 4EF, Supplemental Table 4). Further, virtual time significantly explained the 

residuals of linear models using order and real time as predictors (Supplemental Figure 5D; t27=2.23, p=0.034, 

d=0.41, 95% CI [0.03, 0.82]). This indicates that systematic pattern similarity changes, which order and real time 

failed to account for, related to virtual temporal distances. In our view, these data back the interpretation that 

the within-sequence effect relates to virtual temporal distances between events. 

The revised sections of the manuscript, which report the additional interaction analyses described above, read 

as follows: 

Page 9 
Similar interactions of sequence membership with order (χ2(1)=9.98, p=0.002) and real time (χ2(1)=9.27, 
p=0.002) were observed, but, crucially, the interaction of sequence membership and virtual time remained 
significant when including interactions of sequence membership with order and real time in the model 
(χ2(1)=8.57, p=0.003, Supplemental Table 8). Thus, the way knowledge about virtual temporal relations was 
represented in the hippocampus depended on whether events belonged to the same sequence or not.  

Comment	5	
Two	potential	accounts	of	the	reduction	in	similarity	for	nearby,	same-sequence	events	are	offered.	One	is	
“These	findings	might	support	the	view	that	the	formation	of	associations	between	elements	of	a	sequence	
may	have	altered	how	pattern	similarity	changes	relate	to	temporal	distances	for	same-sequence	events.”	
I	had	difficulty	understanding	this	argument.	It	would	be	helpful	to	flesh	this	out	some	more.	The	other	
account	is	a	differentiation	account.	The	current	results	do	have	a	striking	similarity	to	other	examples	of	
hippocampal	differentiation	of	similar	experiences.	However,	it	is	stated	that	“this	interpretation	does	not	
directly	account	for	the	overall	correlation	of	temporal	distances	and	representational	change.”	I	think	this	
statement	is	true,	but	again	could	be	fleshed	out	slightly	more.	I	image	the	point	is	that	a	differentiation	
account	does	not	explain	the	changes	for	across	sequence	representations?	

The reviewer here refers to the interpretations of the same-sequence effect where temporal distances 

correlated positively with representational change, resulting in decreased pattern similarity for nearby events 
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relative to increases for distant events. We appreciate the opportunity to clarify the possible interpretations of 

this finding.  

The idea that reliance on associative mnemonic strategies could underlie the surprising direction of the effect 

is grounded in the comparison of the experimental paradigm of the present study and our previous work 

(Deuker et al., eLife, 2016; Bellmund et al., eLife, 2019) as well as prior literature. Whereas participants learned 

when events occurred in only one sequence in our previous work, participants had to learn the times of events 

in four different sequences in the present study. Learning which events belong to the same sequence on top 

of learning the individual event times puts additional demands on the associative memory system. Thus, the 

two-fold nature of our sequence learning task (learning which events belong to the same sequence and learning 

the time of each event) might have altered how the hippocampus represented the temporal relations of events. 

Speculatively, forming associations between events from the same sequence, led to the difference in the 

direction of the correlation in a way where events at the on- and offset of the sequence were represented most 

similarly. Importantly, the same-sequence effect remains when controlling for this effect (Supplemental Figure 

3, see also our response to the subsequent comment).  

In line with these considerations, comparing previous studies from other groups also suggests that the use of 

associative strategies influences how hippocampal multi-voxel patterns relate to temporal memory. Jenkins and 

Ranganath (Hippocampus, 2016) asked participants to encode a stream of images from one category (i.e. one 

sequence) while undergoing fMRI. In a later memory test, participants judged the temporal order of two 

presented images. Hippocampal pattern dissimilarity at encoding was related to successful order memory 

recall. A potential mechanism could be the differentiation of contextual representations over time (Jenkins and 

Ranganath, Hippocampus, 2016; DuBrow & Davachi, Frontiers in Psychology, 2016). This interpretation is in 

line with the negative correlations between pattern similarity and temporal distances we previously observed 

(Deuker et al., eLife, 2016; Bellmund et al., eLife, 2019), where pattern similarity decreased with temporal 

distance. Conversely, the data reported by DuBrow & Davachi (Journal of Neuroscience, 2014) suggest that 

temporal memory can also be related to increased pattern similarity. Again, pattern similarity at encoding was 

assessed as a function of later order discrimination success. However, in this study participants encountered 

stimuli from two different visual categories (famous faces and objects) and were encouraged to use associative 

encoding strategies to remember the order of events. Indeed, participants were more accurate in remembering 

the order of stimuli if they were not separated by category switches, suggesting they associated the images 

presented between two switches to belong to one sequence. Hippocampal pattern similarity was higher for 

stimulus pairs whose order was later remembered correctly and additional analyses demonstrated the 

reinstatement of the stimuli separating the two probe stimuli (DuBrow & Davachi, Journal of Neuroscience 

2014). These findings show that the relationship between hippocampal pattern similarity and temporal memory 

is multi-faceted and can depend on task demands and the encoding strategies participants employ. These 

theoretical considerations and previous findings underlie our interpretation of the positive correlations of 

pattern similarity and temporal distance for same-sequence events being due to the stronger reliance on 

associative encoding strategies compared to our previous work. We have clarified and expanded on this 

interpretation in the revised manuscript. 

A second interpretation of the effect is that the hippocampus differentiates similar events, i.e. events that take 

place at similar times in the same sequence. As noted by the reviewer, this interpretation is in line with previous 

studies demonstrating hippocampal differentiation effects (Schlichting et al., Nature Communications, 2015; 
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Favila et al., Nature Communications, 2016; Chanales et al., Current Biology, 2017; Zeithamova et al., Journal 

of Neuroscience, 2018) and can serve to explain the pattern similarity decreases we observe for nearby events 

from the same sequence. We believe that this is a plausible explanation for this aspect of our results. However, 

a limitation of this interpretation is that it does not readily explain the relative increases in pattern similarity for 

temporally distant events from the same sequence. Likewise, hippocampal differentiation does not offer a 

straightforward explanation of the generalization effect we observed.  

Following the reviewer’s recommendation, we have expanded our considerations of the possible explanations 

of the same-sequence effect in the revised version of the manuscript. Please find the changed text below. 

Page 14-15 
The way temporal relations shaped hippocampal multi-voxel pattern similarity differed between pairs of 
events from the same and different sequences. We observed positive correlations between temporal 
distances and hippocampal representational change, which were characterized by relatively decreased 
pattern similarity for nearby compared to increased pattern similarity for more distant events from the same 
sequence. One possible explanation for the surprising direction of this effect could be that, compared to our 
previous work where participants encountered only one sequence21, participants relied more on associative 
encoding strategies when learning multiple sequences in the present experiment. Possibly, the need to link 
events belonging to the same sequence altered how pattern similarity changes relate to temporal distances 
for these same-sequence events. In line with this interpretation, prior work has shown that the relationship 
of hippocampal pattern similarity and temporal memory can depend on factors like the use of associative 
encoding strategies and the presence of event boundaries marking switches between sequences of images 
from the same category22,82,24. Successful recency discrimination was associated with more similar 
hippocampal representations during encoding when participants were encouraged to use associative 
strategies to encode the order of image sequences from two alternating visual categories22. A different 
study found more dissimilar hippocampal representations for stimuli whose order was later remembered 
correctly24. Thus, the formation of associations between same-sequence events could explain why 
correlations of pattern similarity change were, in contrast to our previous work21, positive. A second possible 
interpretation of this effect is based on observations that the hippocampus differentiates similar 
episodes47,83–86. Hippocampal differentiation could explain the relative decrease of pattern similarity for 
temporally close events from the same sequence. However, the generalization across sequences does not 
directly follow from a differentiation account. 

Comment	6	
One	potential	account	of	the	generalization	results	is	that	they	may	reflect	some	form	of	primacy	or	recency	
effects	within	the	sequences.	Namely,	events	that	were	presented	at	the	beginning	or	end	of	the	sequence	
might	 be	 better	 remembered.	 Or	 the	 first	 and	 last	 events	might	 be	more	 likely	 to	 trigger	 associative	
memory	for	the	whole	sequence—i.e.,	these	events	might	be	better	memory	cues	for	the	sequence	than	
events	 in	 the	middle	of	 the	sequence.	 In	either	of	 these	cases,	 the	hippocampal	 response	 to	1st	or	 last	
images	would	likely	be	different	in	a	way	that	generalizes	across	sequences	but	without	actually	reflecting	
something	about	abstract	time	or	position.	In	other	words,	you	could	observe	the	generalization	effects	
even	 if	 the	 true	 nature	 of	 the	 hippocampal	 representation	 has	 nothing	 to	 do	 with	 abstract	 sequence	
position—it	is	just	something	that	is	correlated	with	sequence	position.	I	do	not	see	any	obvious	way	to	
rule	out	this	account.	While	I	do	view	this	as	a	limitation,	I	don’t	think	this	is	a	fatal	flaw.	Rather,	I	think	
this	limitation	should	be	acknowledged	in	the	Discussion.	

The reviewer here comments on the role of the events located at the first and last sequence positions. We 

agree that that these events might be of special importance when learning the sequences. Per definition, the 
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first and last events occur at the boundaries between sequences and might thus play a role in demarcating the 

sequences. We acknowledge that this is difficult to rule out entirely, but, in our view, both behavioral and neural 

data speak against the first and last event exclusively driving our effects. 

If participants indeed formed stronger memories for the first and last events, we would expect that this would 

impact their memory for which sequence these events are associated with. However, the distribution of errors 

in the sorting task did not deviate from uniformity across sequence positions (χ2=2.55, p=0.635). This indicates 

that participants were no more or less likely to sort the first and last events to the correct sequence than the 

intermediate events. We have included this result in the manuscript and show the corresponding histogram 

below. 

In response to Reviewer 2, Comment 1 we conducted another, more fine-grained analysis of errors in the sorting 

task. We assessed swap errors, defined by participants swapping two events occupying the same sequence 

position between sequences in the sorting task. Again, one would predict these swap errors to occur more for 

the intermediate events, if participants had better memory for the sequence membership of the first and last 

events. However, the distribution of swap errors did not deviate from uniformity across sequence positions 

(χ2=1.07, p=0.899). This result is included in the revised manuscript and the corresponding histogram is shown 

in Supplementary Figure 3F. 

With respect to hippocampal representational similarity, we have conducted new analyses, discussed above in 

response to Comment 4, which show that the interaction between sequence membership and virtual time also 

persists when including interaction terms for sequence membership and order as well as real time (χ2(1)=8.57, 
p=0.003). Furthermore, in response to Reviewer 2, Comment 3 we ran an additional analysis, which revealed 

that virtual time explains hippocampal representational change above and beyond the effects of order and real 

time also for events from different sequences (Summary statistics: t26=-2.62, p=0.015, d=-0.49, 95% CI [-0.92, 

-0.10], mixed model: χ2(1)=4.48, p=0.034; one outlier excluded from these analyses due to a value more than 

1.5 times the interquartile range from the mean). These findings highlight that an ordinal effect, which would 

also capture a strong impact of the first and last events, does not fully account for the hippocampal 

generalization effect we report. 

The above findings do not provide evidence for the notion that the first and last events of the sequence drive 

the generalization effect. We have added these results to the revised manuscript. However, as also alluded to 

by the reviewer, it is difficult to entirely rule out that the first and last events of the sequences are particularly 

relevant for the task, which could potentially impact how the hippocampus generalizes across sequences. We 

now consider this possibility in the discussion section. 

Histogram of the number of sorting errors as a 

function of sequence position. The distribution of 

errors did not deviate from uniformity (χ2=2.55, 

p=0.635). 
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Please find below the revised sections of the manuscript. 

Page 6 
The distribution of sorting errors did not differ from uniformity across sequence positions (χ2=2.55, 
p=0.635). 

Page 9 
Virtual time was a significant predictor of hippocampal pattern similarity change for events from different 
sequences when competing for variance with order and real time (Supplemental Figure 6A-C; summary 
statistics: t26=-2.62, p=0.015, d=-0.49, 95% CI [-0.92, -0.10], mixed model: χ2(1)=4.48, p=0.034, Supplemental 
Table 6; one outlier excluded).  

Page 9 
Similar interactions of sequence membership with order (χ2(1)=9.98, p=0.002) and real time (χ2(1)=9.27, 
p=0.002) were observed, but, crucially, the interaction of sequence membership and virtual time remained 
significant when including interactions of sequence membership with order and real time in the model 
(χ2(1)=8.57, p=0.003, Supplemental Table 8). Thus, the way knowledge about virtual temporal relations was 
represented in the hippocampus depended on whether events belonged to the same sequence or not.   

Page 14 
While it is possible that the first and last events of the sequences are particularly important to sequence 
processing, our data show that virtual time explained representational changes when competing for 
variance with order and real time also for events from different sequences. This makes it unlikely that the 
hippocampal generalization effect was driven exclusively by events at the first or last sequence position. 

Supplemental Figure 3F 

F. The distribution of swap errors over sequence positions did not deviate statistically from uniformity 
(𝝌2(1)= 1.07, p=0.899). 
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Supplemental Figure 6 

Supplemental Figure 6. Virtual time predicts hippocampal pattern similarity change for events from 
different sequences. A. Z-values show the relationship of the different time metrics to representational 
change in the anterior hippocampus based on participant-specific multiple regression analyses for pairs of 
events from different sequences. Circles show participant-specific Z-values from summary statistics 
approach; boxplot shows median and upper/lower quartile along with whiskers extending to most extreme 
data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bars 
corresponds to mean±S.E.M.; distribution shows probability density function of data points. B, C. Parameter 
estimates with 95% confidence intervals (B) and estimated marginal means (C) show the fixed effects of 
the three time metrics from the corresponding mixed model. * p<0.05 after exclusion of one outlier excluded 
based on the boxplot criterion. 

Comment	7	
The	within	sequence	hippocampal	effects	are	reminiscent	of	a	recent	preprint	 from	Sherman,	DuBrow,	
Winawer,	 and	 Davachi	 https://www.biorxiv.org/content/10.1101/2021.08.03.454949v1.full.pdf	 which	
found	 that	 hippocampal	 pattern	 similarity	 within	 an	 event	 sequence	 was	 actually	 lower	 than	 across	
sequences.	It	might	be	worth	acknowledging/citing	this	paper	to	add	some	conceptual	support	for	the	idea	
that	the	hippocampus	differentiates	events	within	a	sequence.	

The reviewer here refers to a recent preprint testing the role of event boundaries for duration judgments 

(Sherman et al., bioRxiv, 2021). Participants judged how long a square was presented on screen while 

undergoing fMRI. The color of the square was either constant across the entire trial or changed within the trial. 

When comparing the similarity of hippocampal multi-voxel patterns between the beginning and end of a trial, 

the authors found that pattern similarity was lower when the square did not change color compared to when it 

did change color. In their preprint, the authors offer two potential explanations for this finding. On the one 

hand, the color change might function as an event boundary that resets the neural population encoding the 

duration of an event. Assuming that neural codes diverge with time and that the same neural code is used at 
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the beginning of the trial and after the color change, this could result in more similar representations for the 

color change condition. On the other hand, the effect could be explained by a differentiation of patterns within 

an event. Given that there are two events in the color change condition, the one long event in the no-change 

condition could result in less similar patterns due to stronger separation over time. As pointed out by the 

reviewer, this latter explanation bears some resemblance with a differentiation of events in a sequence in our 

data.  

We would like to thank the reviewer for pointing us towards this relevant preprint. However, we have decided 

not to reference it in our manuscript because the experiment described in the preprint by Sherman et al. 

(bioRxiv, 2021) does not disentangle the two interpretations and, in our view, also does not provide direct 

evidence for the separation interpretation. Rather, the pattern correlations in both conditions appear positive, 

possibly due to the temporal autocorrelation of the BOLD signal. We believe that this makes it difficult to 

interpret the data as a differentiation or separation effect. In contrast, prior work has interpreted decreases in 

pattern similarity through learning as evidence for hippocampal differentiation (e.g. Milivojevic et al., Current 

Biology, 2015; Chanales et al., Current Biology, 2017). 

Comment	8	
Related	to	the	MDS	reconstruction	analysis:	

(a)	 The	reconstructions	are	really	striking.	But	is	this	based	on	the	change	from	pre	to	post	learning	or	
just	based	on	the	post	learning	results?	

(b)	 Also,	I	initially	assumed	this	was	based	on	the	raw	pattern	similarity	values	and	was	stunned	by	the	
consistency	of	the	reconstructions	across	different	sequences.	But	it	seems	the	MDS	was	actually	applied	
to	modeled	data.	I	did	not	entirely	follow	how	this	was	done	and,	therefore,	it	is	hard	to	ascertain	whether	
the	remarkable	consistency	of	the	reconstructions	across	sequences	simply	reflects	that	structure	imposed	
by	the	model?	

(c)	 It’s	a	bit	hard	to	reconcile	the	idea	that	the	hippocampus	‘learns’	the	sequence	representation	while	
also	systematically	showing	decreased	similarity	for	nearby	events	compared	to	far	away	events.	These	
ideas	seem	to	be	at	odds.	Seeing	the	c-shape	structure	in	the	reconstructions	really	helps	provide	some	
intuition	 for	 this	 in	 that	 it	 seems	 that	 the	 start	 point	 and	 end	point	 end	up	being	 close(r)	 together	 in	
representational	space.	Though,	it	 is	hard	to	tell	(by	eye)	whether	this	reconstruction	actually	captures	
this	effect.	 If	you	 just	compute	 the	Euclidean	distance	between	the	reconstructed	pairs,	are	 temporally	
nearby	events	actually	farther	away	(greater	Euclidean	distance)	than	temporally	distant	events?	

We appreciate the opportunity to clarify how we used multidimensional scaling (MDS) to arrive at the two-

dimensional visualization. In keeping with our main analyses, we focused on pattern similarity change, i.e. 

differences in pattern similarity computed by subtracting similarities in the pre-learning baseline scan from the 

post-learning scan. Because the resulting similarity matrices (one for each participant) can be noisy, we used 

the linear mixed model capturing the interaction effect of virtual temporal distances on hippocampal pattern 

similarity change to generate the input for MDS. Specifically, this is the mixed model including virtual temporal 

distances and a same/different sequence predictor as well as their interaction as fixed effects (Supplemental 

Figure 4IJ, Supplemental Table 7). As described in the results section, the significant interaction of this model 

describes the differential relationship of virtual temporal distances and pattern similarity for events from the 

same compared to events from different sequences. We derived a similarity matrix for all event pairs of our 

design given the virtual temporal distances between the constituting events and their sequence membership 
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from this model. This was done using the ‘predict’-method on the resulting mixed model as implemented in 

the lme4 package for R. This similarity matrix was converted to a distance matrix and then subjected to MDS. 

To make this analysis procedure more accessible to the reader, we have expanded its description in the 

Methods and now show a schematic of the different steps in the new Supplemental Figure 6D. 

The procedure described above is intended to reduce the noise present in hippocampal multi-voxel patterns 

by using a model-derived matrix as input for MDS. As noted by the Reviewer, this implies that the same 

relationship of virtual temporal distances and event similarity is assumed for all comparisons of events from 

different sequences (i.e. temporal distance should have the same effect when comparing events from 

sequences 1 and 2 and when comparing events from sequences 3 and 4). It is possible that this contributes to 

the parallel reconstruction of the different sequences, which we make explicit for the reader in the revised 

manuscript.  

Regarding the last part of the comment, we agree that the exploratory visualization of the different sequences 

based on MDS helps to get an intuition for how the sequences might be arranged in a low-dimensional 

representational space. We contrasted the distances between event pairs in the MDS configuration based on 

a median split of input distances using a t-test for independent samples. Events separated by high input 

distances were separated by larger distances in the configuration resulting from MDS than those events 

separated by lower input distances (t188=9.35, p<0.001, d=1.35, 95% CI [1.03, 1.67]). We also quantified the 

relationship between the input and MDS distances using a Spearman correlation and observed the expected 

positive correlation (r=0.46, p<0.001). Visual inspection of the underlying data points revealed that the 

association was not linear. Distances in the MDS configuration were lower than expected for event pairs 

separated by high input distances. This possibly reflects a limitation of projecting the data into a space with 

only two dimensions for visualization. We have added the analyses and these considerations to the manuscript. 

Please find the revised sections of the manuscript below. 

Page 9 
To explore how event sequences may be arranged in a low-dimensional representational space to give rise 
to the effects described above, we generated a distance matrix from the mixed effects model fitted to 
hippocampal pattern similarity change and subjected it to non-metric multidimensional scaling (see 
Methods, Supplemental Figure 6D). The resulting configuration in two dimensions (Figure 5C), chosen for 
intuitive visualization, exhibited a c-shaped pattern for each sequence. Similar representational geometries 
have previously been described in parietal cortex63–65. Events occurring at similar virtual times occupy 
similar locations, in line with high pattern similarity for events from different sequences that are separated 
by low temporal distances. Thus, the generalization across sequences results in a comparable configuration 
for each sequence. While the observed configuration resulted in stress values significantly lower than those 
obtained in a permutation test (see Methods; z=-3.5, p=0.001, Supplemental Figure 6E), the high 
representational distances between temporally close events from the same sequence are not perfectly 
captured by the c-shaped arrangement (Supplemental Figure 6FG). More than the two dimensions chosen 
for visualization would likely better capture the complex representational structure of the sequences. 

Page 23-24 
Multidimensional Scaling 
We aimed to explore how hippocampal event representations of the different sequences could be 
embedded in a low-dimensional representational space to give rise to the positive and negative correlations 
of pattern similarity change and temporal distances for same-sequence and different-sequence events, 
respectively. For each pair of events, we generated an expected similarity value (Supplemental Figure 6D) 
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using the fixed effects of the mixed model fitted to hippocampal pattern similarity that captures the 
interaction between virtual temporal distances and sequence membership (c.f. Figure 5, Supplemental 
Figure 4IJ, and Supplemental Table 7). Using the predict-method implemented in the lme4-package109, we 
generated model-derived similarity values for all event pairs given their temporal distances and sequence 
membership. We chose this approach over the raw pattern similarity values to obtain less noisy estimates 
of the pairwise distances. Using the smacof-package111, the model-predicted similarities were converted to 
distances and the resulting distance matrix (Supplemental Figure 6D) was subjected to non-metric 
multidimensional scaling using two dimensions. We chose two dimensions to be able to intuitively visualize 
the results. Because MDS is sensitive to starting values, we ran multidimensional scaling 1000 times with 
random initial configurations and visualized the resulting configuration with the lowest stress value. Basing 
this analysis on the model-derived similarities assumes the same relationship of virtual temporal distances 
for all event pairs from different sequences, but we would like to note that not all solutions we observed, in 
particular those with higher stress values, resulted in parallel configurations for the four sequences.  

We tested the stress value of the resulting configuration against a surrogate distribution of stress values 
obtained from permuting the input distances on each of 1000 iterations. Using the mean and standard 
deviation of the resulting null distribution, we obtained a z-value as a test statistic and report the proportion 
of stress values in the null distribution that were equal to or smaller than the observed stress value 
(Supplemental Figure 6E). Additionally, we contrasted the distances between pairs of events in the resulting 
configuration between distances separated by high or low (median split) input distances using a t-test for 
independent samples (Supplemental Figure 6F). Using a Spearman correlation, we quantified the 
relationship of the input distances and the distances in the resulting configuration (Supplemental Figure 
6G). 

Supplemental Figure 6 

D. A linear mixed model capturing the interaction effect of virtual temporal distances and sequence 
membership (Figure 5, Supplemental Figure 4IJ) was fitted to hippocampal representational change. An 
event-by-event similarity matrix was derived from the fixed effects of this model. Similarities were converted 
distances and then used as input for multidimensional scaling (see Methods). E. The stress value observed 
in the MDS analysis (red line) was significantly smaller than the 5th percentile (black dashed line) of a 
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surrogate distribution of stress values obtained from shuffling the dissimilarities before running MDS in 
each of 1000 iterations. F. Pairs of events separated by a large distance in the input distance matrix were 
separated by a larger Euclidean distance in the resulting MDS configuration (t188=9.35, p<0.001, d=1.35, 95% 
CI [1.03, 1.67]). *** p <0.001. G. There was a significant Spearman correlation of input distances and MDS 
configuration distances (r=0.46, p<0.001), but visual inspection reveals a non-linear relationship where very 
high distances are systematically underestimated in the MDS configuration.  This is likely because the data 
were projected onto only two dimensions for visualization. More dimensions would be needed to improve 
the fit of the MDS configuration and the input distance matrix. Distances are shown as ranks because non-
metric MDS was used (high ranks for high distances). 

Minor:	

Comment	9	
Line	270:	“When	events	at	the	same	sequence	position,	but	in	different	sequences,	took	place	late	relative	
to	an	event…”.	Is	this	supposed	to	say	“relative	to	a	SEQUENCE”?	or	maybe	“relative	to	other	events	at	the	
same	sequence	position”?	

We would like to thank the reviewer for flagging that the wording was ambiguous here. We have revised the 

sentence to more clearly describe the generalization effect. 

Page 13 
The constructed virtual time of an event tended to be overestimated when the events occupying the same 
sequence position in the other sequences took place late relative to the event in question, and vice versa 
when the other events occurred relatively early. 

Comment	10	
Page	8:	“we	next	assessed	whether	this	effect	was	driven	by	the	constructed	event	times	beyond	sequence	
order	and	real	time.	We	thus	included	the	two	additional	time	metrics	as	control	predictors	in	the	model.”	
I	initially	interpreted	this	to	mean	that	the	behaviorally-constructed	times	from	the	post-test	were	used.	
But	I	think	that	what	the	authors	might	have	meant	is	just	the	“virtual	time.”	If	so,	I	would	recommend	
strictly	using	“virtual	time”	to	refer	to	the	objective	virtual	clock	given	the	potential	to	confuse	the	objective	
virtual	time	with	the	behaviorally-constructed	virtual	time.	I	do	understand	that	virtual	time	HAS	to	be	
constructed,	but,	still,	there	is	the	potential	for	confusion.	

We indeed refer to virtual times defined by our experimental design in this sentence. We followed the 

recommendation of the Reviewer to consistently use the phrase “virtual time” for this time metric throughout 

the manuscript. Please find the revised section of the manuscript below. 

Page 8 
Having established that hippocampal pattern similarity changes relate to temporal distances, we next 
assessed whether this effect was driven by virtual event times beyond sequence order and real time.  

Reviewer	#2	
Bellmund	and	colleagues	report	a	functional	MRI	study	in	which	they	sought	to	shed	light	on	the	type	of	
temporal	 memory	 (i.e.	 inferred/constructed	 time,	 elapsed	 real	 time,	 temporal	 order)	 that	 anterior	
hippocampal	 and	 anterior	 lateral	 entorhinal	 representations	 encode	 in	 support	 of	 event	 sequence	
memory.	 Using	 a	 representational	 similarity	 approach	 together	with	 a	 behavioural	 task	 that	 required	
participants	to	learn	the	temporal	structure	of	four	different	event	sequences	that	unfolded	in	relation	to	
a	 'virtual	 clock',	 it	was	 found	 that	 anterior	 hippocampal	 representations	 contained	 information	 about	
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constructed	time	for	both	within	and	between	sequence	events.	Specifically,	events	that	were	further	apart	
in	virtual	 time	within	 the	 same	sequence	were	associated	with	greater	pattern	similarity	 compared	 to	
events	that	were	closer	together.	In	contrast,	events	that	occurred	at	comparable	virtual	times	between	
sequences	were	represented	more	similarly	than	those	that	took	place	at	different	virtual	times.	This	latter	
finding	points	 towards	the	generalization	of	 temporal	relations	across	sequences	and	reflective	of	 this,	
participants	demonstrated	a	'generalization	bias'	in	their	task	responses,	with	the	estimated	virtual	time	
of	any	given	event	being	influenced	by	the	time	of	occurrence	of	other	events	in	other	sequences	in	the	
same	 sequence	 position.	 In	 comparison	 to	 the	 anterior	 hippocampus,	 representations	 in	 the	 anterior	
lateral	 entorhinal	 cortex	 did	 not	 differentiate	 between	 same-sequence	 and	 across-sequence	 temporal	
relations,	with	events	occurring	close	together	in	time	being	associated	with	greater	pattern	similarity.	

There	 has	 been	much	 interest	 in	 how	 the	 brain	 supports	 the	 temporal	 dimension	 of	 event	 sequence	
memory	and	as	such,	the	current	study	is	very	timely,	with	the	potential	to	be	conceptually	important.	The	
behavioural	paradigm	is	clever,	providing	a	means	to	disentangle	constructed	time	from	elapsed	time	and	
event	order,	 and	broadly	 speaking,	 the	 experimental	methods	 and	data	 analyses	 are	 solid.	 Indeed,	 the	
authors	 are	 to	 be	 commended	 for	 their	 use	 of	multiple	 analytical	 approaches	 (to	 provide	 converging	
findings)	and	the	implementation	of	certain	control	analyses	to	rule	out	alternative	explanations.	Overall,	
I'm	quite	enthusiastic	about	this	paper	but	have	a	number	of	issues	that	I	would	appreciate	further	clarity	
on.	

We would like to thank the reviewer for their positive evaluation of our manuscript and the helpful suggestions 

for additional analyses. Specifically, we have followed the suggestion to explore systematic swap errors in the 

sorting task. We indeed found at least one swap error, i.e. a swap of events that occupy the same sequence 

position between sequences, in 12 of 14 participants who made errors in the sorting task. In total, swap errors 

accounted for around 57% of errors in the sorting task and were observed more frequently than expected from 

chance based on a permutation test. These findings provide intriguing additional evidence that participants’ 

memory performance exhibits biases indicative of across-sequence generalization. This is paralleled by 

additional analyses of the fMRI data, which support the interpretation that the hippocampal across-sequence 

generalization effect is driven by event relations in virtual time rather than sequence order or real time. In sum, 

we believe that these new results substantially strengthened our manuscript. Please find our detailed responses 

to the individual comments below. 

Major	Comments		

Comment	1	
It	is	somewhat	surprising	that	a	handful	of	participants	performed	relatively	poorly	on	the	sorting	task	(in	
the	40	-	60	%	correct	range)	and,	in	fact,	there	was	quite	a	range	in	performance	across	participants.	Were	
the	poorest	performers	on	the	sorting	task	also	those	who	produced	the	greatest	absolute	error	on	the	
timeline	task?	Related	to	this,	it	would	be	interesting	to	know	whether	there	were	any	discernible	patterns	
in	the	errors	that	participants	made	on	the	sorting	task.	Specifically,	swap	errors,	in	which	participants	
mix-up	events	occupying	the	same	sequence	position	across	sequences	(i.e.	A1-B2-C1-D1-E1	&	A2-B1-C2-
D2-E2),	may	 be	 a	 product	 of	 generalization	 across	 sequences	 and	 could	 conceivably	 be	 related	 to	 the	
generalization	 bias	 (e.g.	 greater	 generalization	 of	 temporal	 structure	 across	 sequences	may	 lead	 to	 a	
greater	number	of	swap	errors	and	a	greater	generalization	bias).	

The reviewer here asks about the relationship between performance levels in the different memory tasks and 

whether participants made systematic errors in the sorting task. We explored whether the number of sorting 
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errors and absolute errors in the timeline task were correlated across participants, but observed no significant 

correlation (Spearman’s r=0.23, p=0.246, Supplemental Figure 3C). However, despite there being variable 

performance in the timeline task, and, as noted by the reviewer, in the sorting task, this correlational analysis is 

limited by the fact that performance in the timeline task was at ceiling for many participants. Specifically, 14 of 

28 participants made no errors in the sorting task, resulting in reduced between-subject variability. To further 

explore a possible relationship between the tasks, we split our sample based on whether participants made no 

or at least one sorting error and contrasted averaged absolute timeline errors using a t-test for independent 

samples. We observed no statistically significant difference when using a two-sided test (t26=1.79, p=0.085, 

Supplemental Figure 3D). We would like to note that the numerical difference was in the expected direction 

and that our sample size does not yield large statistical power for the study of individual differences. 

The reviewer further suggests investigating “swap errors”, where, for events occupying the same position in 

their sequence, participants interchange which sequence the events belong to in the sorting task. We had not 

previously tested for systematic errors in this task and would like to thank the reviewer for proposing this 

intriguing analysis. We defined swap errors as errors in the sorting task, where two or more events from the 

same sequence position were incorrectly sorted to the respective other sequence(s). We observed that 

57.5%±34.3% of all sorting errors were swap errors, with 12 of 14 participants with sorting errors making at 

least one swap error (mean±S.D: 3.1±2.1 swap errors, Supplemental Figure 3E). To test whether participants 

indeed systematically made swap errors we ran a permutation test where we introduced sorting errors for 

randomly selected events. For each of 10000 iterations, we generated a sample of surrogate sorting results 

with the number of randomly introduced sorting errors matching the number of errors made by the participants 

in our sample. We then quantified the proportion of swap errors across the sample, resulting in a chance 

distribution of how many swap errors would be expected if sorting errors were random. The proportion of swap 

errors in our data was larger than what would be expected from random sorting errors (z=5.07, p<0.001, 

Supplemental Figure 3G), indicating that participants indeed systematically interchanged events occupying the 

same sequence position. 

The distribution of swap errors did not differ from uniformity across sequence positions (Supplemental Figure 

3F, 𝝌2=1.07, p=0.899). While the existence of swap errors is in line with participants generalizing across 

sequences also in the sorting task, leading to swaps between events occupying the same position in different 

sequences, we neither observed a statistically significant correlation across subjects between the number of 

swap errors and the generalization bias in the timeline task (Supplemental Figure 3H, Spearman r=0.12, 

p=0.528) nor a difference in the generalization bias between participants who did or did not make at least one 

swap error (Supplemental Figure 3I, t26=0.18, p=0.861). Again, we would like to note that the statistical power 

of these across-subject analyses is limited by the fact that not all participants made sorting errors and the 

relatively small sample size for the investigation of individual differences.  

We would like to thank the reviewer for the suggestion to take a closer look at the errors in the sorting task. 

We believe that the detection of swap errors adds another interesting behavioral finding to our manuscript that 

is in line with the notion that participants generalize across sequences. We have included the above analyses 

in the revised manuscript and show the results in the new Supplemental Figure 3. Please find the new sections 

below. 
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Page 6 
We did not observe an across-subject relationship between the number of sorting errors and mean absolute 
errors in the timeline task (Supplemental Figure 3CD).  

Page 13 
We further explored whether participants made systematic errors in the sorting task that might point 
towards generalization across sequences. Specifically, we searched for swap errors where participants 
interchanged events between sequences that occupied the same sequence position. Indeed, 57.5%±34.3% 
(mean±S.D) of sorting errors were swap errors and 12 of the 14 participants who made sorting errors also 
made swap errors (Supplemental Figure 3EF, mean±S.D of 3.1±2.1 swap errors per participant with sorting 
errors). The proportion of swap errors in our sample was larger than expected from random sorting errors 
(z=5.07, p<0.001, Supplemental Figure 3G), indicating that participants systematically swapped events 
belonging to the same position between sequences. While we did not observe statistically significant 
relationships between swap errors and the generalization bias (Supplemental Figure 3HI), the prevalence of 
these errors is compatible with the view that participants generalized across events occupying the same 
sequence position. 

Page 20 
In an exploratory analysis, we searched for systematic errors in the sorting task. Specifically, we looked for 
swap errors where participants interchanged events occurring at the same position between two or more 
sequences. We used a χ2-test to assess whether the number of swap errors deviated from uniformity across 
sequence positions. To test whether participants made more swap errors than expected from chance we 
ran a permutation test where we introduced sorting errors for randomly selected events. For each of 10 000 
iterations, we generated a surrogate sample of sorting results with the number of randomly introduced 
sorting errors matching the number of errors made by the different participants in our sample. We then 
quantified the proportion of swap errors across this surrogate sample. This resulted in a distribution of the 
proportion of swap errors that would be expected from random sorting errors. We assessed how many 
permutations yielded proportions of swap errors larger or equal to the proportion of swap errors observed 
in the fMRI sample to compute a p-value and further quantified a z-value as the difference between the 
observed swap error proportion and the mean of the chance distribution divided by the standard deviation 
of the chance distribution. We tested whether the number of swap errors was related to absolute errors in 
the timeline task (see below) using Spearman’s correlation and a t-test for independent samples. 
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Supplemental Figure 3 

Supplemental Figure 3. Memory performance. A. A permutation-based repeated measures ANOVA 
revealed a significant effect of sequence on mean absolute errors in the timeline task (F3,81=5.86, p<0.001, 
post hoc contrasts: sequence 1 vs. 2: t27=3.38, p=0.001, sequence 1 vs. 3: t27=-0.12, p=0.912, sequence 1 vs. 
4: t27=2.59, p=0.013, sequence 2 vs. 3: t27=-2.92, p=0.001, sequence 2 vs. 4: t27=-1.15, p=0.271, sequence 3 
vs. 4: t27=2.15, p=0.023). *p < Bonferroni-adjusted alpha-level of 0.008, corrected for 6 pairwise post hoc 
comparisons. B. Mean absolute timeline errors did not differ statistically between sequences with fast and 
slow clock speed (t27=-0.82, p=0.423). C. The number of errors in the sorting task did not correlate with the 
mean absolute error in the timeline task across participants (r=0.23, p=0.246). D. Mean absolute errors in 
the timeline task were not statistically different between participants who made one or more errors (red) or 
no errors in the sorting task (green) in the sorting task (t-test for independent samples, t26=-1.79, p=0.085). 
E. Histogram shows the number of swap errors for participants with (red) and without (green) errors in the 
sorting task. F. The distribution of swap errors over sequence positions did not deviate statistically from 
uniformity (𝝌2(1)=1.07, p=0.899). G. Histogram shows the null distribution of the proportion of swap errors 
expected under random sorting errors. The proportion of swap errors observed in our sample (red line) 
exceeded the 95th percentile of the null distribution (black line). H. The number of swap errors was not 
significantly correlated with the generalization bias (Spearman r=0.12, p=0.528). I. The generalization bias 
in the timeline task was not significantly different between participants who made one or more swap errors 
(red) or no swap errors (green) in the sorting task (t26=0.18, p=0.861).  A, B, D, H. Circles show individual 
participant values; boxplot shows median and upper/lower quartile along with whiskers extending to most 
extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with 
error bars corresponds to mean±S.E.M.; distribution shows probability density function of data points. C, H. 
Each circle shows data from one participant, grey line and shaded region indicate least squares line and 
confidence interval. 
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Comment	2	
Was	there	a	significant	difference	in	absolute	error	on	the	timeline	task	between	the	different	sequences?	
While	 eye-balling	 Figure	 2B	 suggests	 that	 there	 wasn't,	 it	 may	 still	 be	 useful	 to	 demonstrate	 this	
statistically	and	show	that	clock	speed	had	no	impact	on	participants'	ability	to	construct	time.	

The reviewer here asks whether the timeline errors differed between the four sequences and whether timeline 

errors were affected by the clock speed manipulation. We had not previously tested for these differences. A 

permutation-based repeated measures ANOVA with the mean absolute timeline error as the dependent 

variable and sequence as a within-subject factor revealed a significant effect of sequence (F3,81=5.86, p<0.001). 

Pairwise post hoc tests showed this effect to be driven by lower errors for sequence 2 relative to sequences 1 

and 3 (sequence 2 vs. 1: t27=-3.38, p=0.001, sequence 2 vs. 3: t27=-2.92, p<0.001, alpha-level Bonferroni 

adjusted for 6 post hoc comparisons). We next addressed the second part of the question by averaging 

absolute timeline errors for sequences with fast or slow clock speed. Importantly, we did not observe any 

differences between the two conditions (permutation-based paired t-test, t27=-0.82, p=0.418). Because we did 

not find evidence for clock speed affecting the accuracy of inferred event times, we believe that the observed, 

non-systematic differences between sequences do not affect our key analyses, which focused on the 

comparison of different time metrics. 

We have included the above analyses in the revised manuscript and show the results in the new Supplemental 

Figure 3AB. Please find the changed sections of the manuscript below. 

Page 6 
The accuracy of constructed virtual times differed between sequences (F3,81=5.86, p<0.001), but not as a 
function of virtual clock speed (t27=-0.82, p=0.423, Supplemental Figure 3AB). 

Page 20 
We quantified absolute errors across all events (Figure 2C) as well as separately for the five sequence 
positions (Figure 2D), the four sequences (Supplemental Figure 3A) and as a function of virtual clock speed 
(Supplemental Figure 3B).  

Supplemental Figure 3AB 

Supplemental Figure 3. Memory performance. A. A permutation-based repeated measures ANOVA 
revealed a significant effect of sequence on mean absolute errors in the timeline task (F3,81=5.86, p<0.001, 
post hoc contrasts: sequence 1 vs. 2: t27=3.38, p=0.001, sequence 1 vs. 3: t27=-0.12, p=0.912, sequence 1 vs. 
4: t27=2.59, p=0.013, sequence 2 vs. 3: t27=-2.92, p=0.001, sequence 2 vs. 4: t27=-1.15, p=0.271, sequence 3 
vs. 4: t27=2.15, p=0.023). *p < Bonferroni-adjusted alpha-level of 0.008, corrected for 6 pairwise post hoc 
comparisons. B. Mean absolute timeline errors did not differ statistically between sequences with fast and 
slow clock speed (t27=-0.82, p=0.423). 
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Comment	3	
When	examining	the	representational	similarity	between	events	from	different	sequences	in	the	anterior	
hippocampus	(Supplemental	Table	5),	was	an	analysis	conducted	with	real	 time	and	order	 included	as	
additional	control	factors?	The	same	applies	for	the	examination	of	representational	change	in	the	anterior	
lateral	entorhinal	cortex	(Supplemental	Table	7).	The	findings	of	these	analyses	would	be	important	to	
report.	

The reviewer here asks whether virtual time explains pattern similarity changes beyond order and real time for 

the across-sequence effect in the hippocampus and the general effect in the entorhinal cortex. We would like 

to thank the reviewer for suggesting these interesting analyses, which we had not conducted before.  

In the anterior hippocampus, the effect of virtual time was a significant predictor of pattern similarity change 

when competing for variance with order and real time in the across-sequence generalization analysis (Summary 

statistics: t26=-2.62, p=0.015, d=-0.49, 95% CI [-0.92, -0.10], mixed model: χ2(1)=4.48, p=0.034; one outlier 

excluded from these analyses due to a value more than 1.5 times the interquartile range from the mean). As in 

the main analysis, we observed negative associations between virtual temporal distances and representational 

change. These findings provide further evidence that pattern similarity changes for events from different 

sequences were indeed reflective of virtual temporal distances.  

We also conducted an analysis including virtual time, order and real time as predictors of pattern similarity 

change for comparisons both within and across sequences in the anterior-lateral entorhinal cortex. Virtual 

temporal distances did not significantly relate to entorhinal pattern similarity change when competing for 

variance with the other time metrics (summary statistics: t27=-0.7, p=0.495, d=-0.13, 95% CI [-0.51, 0.25], mixed 

model: χ2(1)=1.18, p=0.278). One possible explanation for this is the lower signal-to-noise ratio in the entorhinal 

cortex, which we report in Supplemental Figure 8 of our manuscript. A second potential explanation is that the 

entorhinal cortex holds a representation that rather reflects the order of events or temporal distances based on 

elapsing real time since the start of the sequence. In particular, the latter possibility would be in line with the 

reports of signals varying with elapsing time in the rodent lateral entorhinal cortex (Tsao et al., Nature, 2018). 

However, these considerations remain on the level of speculation because, while real time significantly related 

to entorhinal pattern similarity changes (t27=-2.17, p=0.038), real time was not significant when competing for 

variance with the other time metrics (t27=0.76, p=0.446). 

We have included the analysis of the hippocampal across-sequence effect with all time metrics in the model 

and the corresponding analysis in the entorhinal cortex in the revised manuscript. Please find the changed 

sections of the manuscript below. 

Page 9 
Virtual time was a significant predictor of hippocampal pattern similarity change for events from different 
sequences when competing for variance with order and real time (Supplemental Figure 6A-C; summary 
statistics: t26=-2.62, p=0.015, d=-0.49, 95% CI [-0.92, -0.10], mixed model: χ2(1)=4.48, p=0.034, Supplemental 
Table 6; one outlier excluded). 

Page 9 
The relationship of virtual temporal distances and entorhinal pattern similarity change was not statistically 
significant when competing for variance with distances based on order and real time (Supplemental Figure 
7B-D; summary statistics: t27=-0.7, p=0.495, d=-0.13, 95% CI [-0.51, 0.25], mixed model: χ2(1)=1.18, p=0.278, 
Supplemental Table 10). 
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Supplemental Figure 6 

Supplemental Figure 6. Virtual time predicts hippocampal pattern similarity change for events from 
different sequences. A. Z-values show the relationship of the different time metrics to representational 
change in the anterior hippocampus based on participant-specific multiple regression analyses for pairs of 
events from different sequences. Circles show participant-specific Z-values from summary statistics 
approach; boxplot shows median and upper/lower quartile along with whiskers extending to most extreme 
data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bars 
corresponds to mean±S.E.M.; distribution shows probability density function of data points. B, C. Parameter 
estimates with 95% confidence intervals (B) and estimated marginal means (C) show the fixed effects of 
the three time metrics from the corresponding mixed model. * p<0.05 after exclusion of one outlier excluded 
based on the boxplot criterion. 

Supplemental Figure 7 
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B. Z-values show the relationship of the different time metrics to representational change in the anterior-
lateral entorhinal cortex based on participant-specific multiple regression analyses. Analysis includes all 
pairs of events. C, D. Parameter estimates with 95% confidence intervals (C) and estimated marginal means 
(D) show the fixed effects of the three time metrics from the corresponding mixed model. A,B. Circles show 
participant-specific Z-values from summary statistics approach; boxplot shows median and upper/lower 
quartile along with whiskers extending to most extreme data point within 1.5 interquartile ranges 
above/below the upper/lower quartile; black circle with error bars corresponds to mean±S.E.M.; distribution 
shows probability density function of data points.  

Comment	4	
Given	 that	 generalization	 bias	 can	 be	 quantified	 for	 each	 trial,	 I'm	 curious	 as	 to	whether	 the	 authors	
attempted	an	analysis	whereby	they	examined	trial-by-trial	fluctuations	in	BOLD	signal	in	relation	to	this	
measure	(e.g.	within	a	GLM	with	generalization	bias	as	a	regressor)?	The	observation	of	significant	anterior	
HPC	involvement	in	such	an	analysis	would	add	further	weight	to	the	authors'	conclusions.	

The reviewer here suggests examining fluctuations of the BOLD signal during the picture viewing tasks. This is 

an interesting proposal that we had not previously considered because we optimized our task design for 

representational similarity analyses and obtained our behavioral read-out, which revealed the generalization 

bias, in a post-scan memory test and not during the picture viewing task where fMRI data were collected. In 

this memory test, each event image was arranged on a timeline once, whereas each image was shown multiple 

times in the fMRI picture viewing task. Behavioral analyses revealed a generalization bias quantified by the 

relationship between errors in the memory test and the relative time of the other events occupying the same 

sequence position. To relate this generalization bias to the picture viewing task, we used the relative time of 

other events at the same sequence position as a parametric modulator for specific event presentations. 

To explore BOLD signal fluctuations related to the generalization bias we ran GLMs on the data from the post-

learning picture viewing task for each participant. We included a regressor modeling the presentations of the 

twenty task-relevant event images as well as a parametric modulator for this regressor, which was defined based 

on the absolute difference in virtual time between a given event and the events at the same position in the 

other sequences. The activity pattern of a region that responds more strongly when the shown event is 

associated with a virtual time that deviates more from the average time of other events would be captured by 

this parametric modulation. We ran this GLM using FSL for each block of each participant and included 

additional regressors for the presentation of target pictures requiring a button press and for the motion 

parameters obtained during preprocessing. The z-values of the parametric modulation regressors were 

subjected to spatial smoothing (FWHM 3mm) and averaged across blocks within each participant. We used a 

permutation test (FSL Randomise, 5000 permutations, TFCE) for group-level statistical inference. 

When restricting this analysis to our a priori ROIs, the anterior hippocampus and the anterior-lateral entorhinal 

cortex, we observed a cluster of voxels in the right anterior hippocampus that exhibited the described 

parametric modulation at uncorrected levels (peak voxel at MNI x=22, y=-13, z=-16, t=3.93, psv_uncorrected <0.001, 

see Figure below). However, this cluster was not statistically significant after correction for multiple comparisons 

within our a priori ROIs (psvc=0.173). When including all voxels in our field of view in the analysis, no voxels 

reached a significance threshold of p<0.001 (uncorrected). 

These results provide some evidence for the BOLD fluctuations in line with the generalization bias, but we 

believe they are too preliminary to be included in the manuscript. Our experimental design was optimized for 
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the analysis of representational changes from the pre-learning baseline to the post-learning scan. Keeping the 

pre-learning and post-learning scans as similar as possible precluded us from including a behavioral test of 

participants’ memory for the event times during the picture viewing task. Possibly, the parametric modulation 

of hippocampal activity by the relative time of other events would have been stronger if participants had to 

behaviorally respond to each event image. 

Comment	5	
It	would	be	useful	if	the	authors	could	clarify	why	they	used	NMDS	to	visualize	the	relationship	between	
the	different	events,	sequences	and	virtual	time,	as	opposed	to	MDS,	and	how	they	explored/determined	
the	optimal	number	of	dimensions	to	account	for	their	data.	Moreover,	to	further	quantify	the	output	of	
the	NMDS	analysis,	one	could	consider	using	k-means	clustering	to	examine	the	clustering	of	the	different	
events	across	the	different	sequences.	

We appreciate the opportunity to clarify how we approached the multidimensional scaling analysis (MDS). With 

this method, we hoped to gain insight into how the events could be arranged in a low-dimensional 

representational space given that the RSA results demonstrate representations of temporal relations for event 

pairs from the same and from different sequences. We thus chose two dimensions to be able to intuitively 

visualize the outcome of this exploratory analysis. We have made this explicit in the revised manuscript. 

In our manuscript we show the configuration resulting from non-metric MDS. We also explored how these 

results change when using metric MDS. The configurations from the two methods are shown below. Notably, 

the metric solution is somewhat similar to the one from non-metric MDS in that the events at similar sequence 

positions are located at similar positions, resulting in largely parallel lines when connecting events from the 

same sequence. The results from permutation tests on the two solutions are the reason we chose to include 

the non-metric version in our manuscript. Specifically, we used permutation tests as implemented in the smacof-

package for R to assess the goodness-of-fits for the two variants. On each of 1000 iterations, the input 

dissimilarities were permuted before running metric or non-metric MDS. This procedure yields a null distribution 

of stress values against which the originally observed stress value can be compared. The permutation test 

revealed that the solution of non-metric MDS gave a stress value lower than expected under the null distribution 

(z=-3.5, p=0.001). The results of this permutation test are shown in the new Supplemental Figure 6E of the 

manuscript. For metric MDS, the stress value was not lower than expected from the corresponding null 

distribution (z=3.3, p=0.999). These results indicate that the non-metric, but not the metric, MDS solution 

Results of the parametric modulation analysis. The response of a cluster of voxels in the right anterior 

hippocampus (peak voxel MNI x=22, y=-13, z=-16, t=3.93, psv_uncorrected<0.001) to event images was 

modulated by the relative time of other events at the same sequence position. The statistical image 

is masked for the anterior hippocampus and anterior-lateral entorhinal cortex and thresholded at 

puncorrected<0.05 in these regions. 
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captured the underlying dissimilarities between event pairs, which is why we reported the non-metric version 

in our manuscript. 

The reviewer further makes the interesting suggestion to investigate the resulting configuration further. In 

response to a similar comment by Reviewer 1 (Comment 8) we assessed how closely the distances between 

event pairs were maintained in the non-metric MDS solution. When assessing distances between events in the 

MDS configuration we observed that events separated by large input distances were separated by larger 

distances in the MDS configuration compared to events with low input distances (median split, t188=9.35, 

p<0.001, d=1.35, 95% CI [1.03, 1.67], new Supplemental Figure 6F). Further, there was a significant Spearman 

correlation between input distances and distances in the MDS configuration (r=0.46, p<0.001, new 

Supplemental Figure 6G). Visual inspection of the underlying data point revealed that large input distances 

were systematically underestimated in the two-dimensional MDS solution. Returning to the question about the 

number of dimensions used for MDS, we believe that this is likely due to the complex nature of the hippocampal 

representation of the sequences, which was characterized by positive correlations of pattern similarity and 

virtual temporal distances for same-sequence events and negative correlations for events from different 

sequences. While our non-metric MDS solution results in a fit that is better than chance, projections into higher-

dimensional spaces would be needed to fully capture the structure of the underlying representation.  

In the revised manuscript, we have made explicit that we chose two dimensions for the MDS analysis for intuitive 

visualization. We further added the additional analyses of the resulting configuration and the consideration that 

a larger number of dimensions would be necessary to fully capture the representational structure. 

Page 9 
To explore how event sequences may be arranged in a low-dimensional representational space to give rise 
to the effects described above, we generated a distance matrix from the mixed effects model fitted to 
hippocampal pattern similarity change and subjected it to non-metric multidimensional scaling (see 
Methods, Supplemental Figure 6D). The resulting configuration in two dimensions (Figure 5C), chosen for 
intuitive visualization, exhibited a c-shaped pattern for each sequence. Similar representational geometries 
have previously been described in parietal cortex63–65. Events occurring at similar virtual times occupy 

Results of non-metric (A) and metric (B) MDS. 
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similar locations, in line with high pattern similarity for events from different sequences that are separated 
by low temporal distances. Thus, the generalization across sequences results in a comparable configuration 
for each sequence. While the observed configuration resulted in stress values significantly lower than those 
obtained in a permutation test (see Methods; z=-3.5, p=0.001, Supplemental Figure 6E), the high 
representational distances between temporally close events from the same sequence are not perfectly 
captured by the c-shaped arrangement (Supplemental Figure 6FG). More than the two dimensions chosen 
for visualization would likely better capture the complex representational structure of the sequences. 

Page 23 
We chose two dimensions to be able to intuitively visualize the results.  

Supplemental Figure 6 

D. A linear mixed model capturing the interaction effect of virtual temporal distances and sequence 
membership (Figure 5, Supplemental Figure 4IJ) was fitted to hippocampal representational change. An 
event-by-event similarity matrix was derived from the fixed effects of this model. Similarities were converted 
distances and then used as input for multidimensional scaling (see Methods). E. The stress value observed 
in the MDS analysis (red line) was significantly smaller than the 5th percentile (black dashed line) of a 
surrogate distribution of stress values obtained from shuffling the dissimilarities before running MDS in 
each of 1000 iterations. F. Pairs of events separated by a large distance in the input distance matrix were 
separated by a larger Euclidean distance in the resulting MDS configuration (t188=9.35, p<0.001, d=1.35, 95% 
CI [1.03, 1.67]). *** p <0.001. G. There was a significant Spearman correlation of input distances and MDS 
configuration distances (r=0.46, p<0.001), but visual inspection reveals a non-linear relationship where very 
high distances are systematically underestimated in the MDS configuration. This is likely because the data 
were projected onto only two dimensions for visualization. More dimensions would be needed to improve 
the fit of the MDS configuration and the input distance matrix. Distances are shown as ranks because non-
metric MDS was used (high ranks for high distances).*** p <0.001  
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Minor:	

Comment	6	
In	Figures	5D	and	6E,	it	would	be	useful	if	the	legend	could	state	how	temporal	distances	were	classified	
as	'high'	vs.	'low'	

We agree that this is a relevant methodological detail and have included it in the captions of the revised figures. 

Figure 4C 
C. To illustrate the effect shown in B, average pattern similarity change values are shown for same-sequence 
event pairs that are separated by low and high temporal distances based on a median split. 

Figure 5B 
B. To illustrate the effect shown in A, average pattern similarity change values are shown for across--
sequence event pairs that are separated by low and high temporal distances based on a median split.  

Figure 6C 
C. To illustrate the effect in B, raw pattern similarity change in the anterior-lateral entorhinal cortex was 
averaged for events separated by low and high temporal distances based on a median split.  

Comment	7	
It	would	be	helpful	for	r	and	p	values	to	be	reported	in	the	correlation	figures	(e.g.	Figure	8B,	Sup.	Figure8).	

We would like to thank the reviewer for the suggestion to improve our visualization of the single-subject data 

of the generalization bias. We have incorporated the Pearson correlation values for the individual scatter plots 

in Figure 8B and Supplemental Figure 10. Because we test for statistical significance on the group level and 

not for each individual participant, we have not included p-values in the plots. 

Please find the changed Figures below. 

Figure 8B  

B. The scatterplot illustrates the generalization bias for an example participant. Each circle corresponds to 
one event and the regression line highlights the relationship between the relative time of other events and 
the errors in constructed event times. The example participant was chosen to have a median-strength 
generalization bias. See Supplemental Figure 8 for the entire sample. Correlation coefficient is based on 
Pearson correlation.  
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Supplemental Figure 10 (for space reasons we only show panel A here) 

 
Supplemental Figure 10. Generalization bias in individual participants. A, B. Each panel shows the data 
from one participant. Each circle corresponds to one event. The x-axis indicates the average relative time of 
the events occupying the same sequence position in other sequences. The y-axis shows the signed error of 
constructed event times as measured in the timeline task. The regression line and its confidence interval 
are overlaid in red. Positive slopes of the regression line indicate that constructed event times are biased by 
the average time of events in the other sequences. Correlation coefficients are based on Pearson 
correlation. A shows data from the main sample; B from the replication sample.  

Comment	8	
To	test	whether	within-	and	across-sequence	representations	overlap,	ROIs	were	defined	using	a	p	<	0.01	
uncorrected	 threshold.	 How	 was	 this	 threshold	 chosen	 and	 do	 the	 findings	 change	 dramatically	 if	 a	
threshold	of	p	<	0.001	uncorrected	is	adopted?	

The reviewer here asks about the statistical threshold used to define the region of interest for the analysis of 

representational change in the cluster observed in the searchlight analysis looking for a relationship between 

virtual temporal distance and pattern similarity. We had chosen the threshold of p<0.01 to obtain a cluster with 

a larger number of voxels to obtain stable pattern similarity estimates. In response to this comment, we re-ran 

this analysis with the suggested threshold of p<0.001. We observed no statistical difference between the results 

obtained with the different thresholds (t27=-0.95, p=0.338, test against 0 using the ROI resulting from the 

p<0.001 threshold: t27=-1.98, p=0.056). 

We have added these details to the revised manuscript. 

Page 23 
The results observed using a threshold of p<0.001 were not statistically different from those obtained with 
a threshold of p<0.01 (t27=-0.95, p=0.338; test against 0 using the ROI resulting from the p<0.001 threshold: 
t27=-1.98, p=0.056).  

Reviewer	#3	
In	this	manuscript,	Bellmund	and	colleagues	interrogate	the	creation	of	temporal	sequences	in	the	anterior	
hippocampus	and	entorhinal	cortex.	They	pursue	this	through	the	creation	of	a	well	designed	experimental	
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paradigm	wherein	subjects	watch	distinct	event	sequences	from	different	imaginary	days	in	the	life	of	a	
family.	The	authors	attempt	to	dissociate	‘virtual	time’	in	the	context	of	the	viewed	events	and	the	absolute	
passage	of	 time,	doing	so	by	providing	participants	with	 intermittent	clock	time	cues	 indicating	virtual	
time.	The	speed	of	these	virtual	clocks	was	manipulated	such	that	the	passage	of	virtual	time	and	absolute	
time	 varied	 across	 simulated	 days.	 A	 pre/post	 still-frame	 viewing	 design	 is	 used	 to	 ascertain	 the	
differences	in	representational	similarity	for	images	that	were	presented	both	within	the	same	sequence	
and	across	different	sequences.	Participants	structured	their	estimates	of	the	temporal	structure	of	events	
strongly	in	accordance	with	virtual	time,	as	opposed	to	mere	temporal	order	or	the	real	passage	of	time.	
This	was	mirrored	by	RSA	 results	 in	 the	 anterior	 hippocampus	 and	 anterior-lateral	 entorhinal	 cortex.	
Furthermore,	the	authors	report	that	more	temporally	distant	events	within	the	same	sequence	become	
similar	in	the	anterior	hippocampus,	suggesting	that	this	may	be	due	to	beginning	and	end	events	being	
more	 strongly	 related.	 Temporally	 similar	 events	 across	 sequences,	 on	 the	 other	 hand,	 become	more	
similar	suggesting	a	realignment	of	episodes	along	a	common	axis.	Conversely,	the	authors	report	that	the	
entorhinal	 cortex	 featured	 only	 generalization	 of	 sequence	 structure	 rather	 than	 sensitivity	 to	within	
versus	across	sequence	information,	such	as	they	observed	in	the	hippocampus.	Finally,	multidimensional	
scaling	approaches	were	used	to	visualize	low-dimensional	embedding	of	the	sequences	of	events,	which	
I	found	to	be	a	nice	addition	over	the	prior	version	of	the	manuscript.	

My	 overall	 impression	 is	 that	 this	 is	 a	 very	well-designed	 experiment	 and	 a	 fairly	 novel	 approach	 to	
studying	temporal	coding	in	the	human	medial	temporal	lobe.	The	notion	of	dissociating	virtual	time	from	
real	time	is	especially	interesting	(though,	as	I	note	below,	I	have	some	questions	about	the	extent	to	which	
this	is	compellingly	done).	However,	there	are	issues	with	conceptual	framing	of	the	results,	and	clarity	
about	the	way	this	work	fits	into	and	adds	to	the	various	corners	of	the	literature	that	the	authors	cite.	
These	points	are	listed	below.	

Lastly,	 I	will	note	that	I	reviewed	a	prior	version	of	this	manuscript	 for	a	different	 journal.	Though	the	
authors	addressed	a	few	of	the	concerns	I	previously	voiced,	the	authors	did	not	really	contend	with	the	
majority	of	the	points	raised	from	my	prior	review.	Thus,	I	will	largely	reiterate	those	points,	and	note	a	
few	places	where	progress	was	made	in	my	view	over	the	previous	version.	

We would like to thank the Reviewer for taking the time to again review our manuscript and for the constructive 

criticism. We believe that addressing the comments has helped us to more clearly convey the main findings of 

our experiment in the restructured discussion and to better position our manuscript with respect to existing 

literature. Further, we have expanded our rationale for using two parallel analysis streams, which provide 

converging evidence, throughout our manuscript. In an effort to make the main figures more accessible to the 

reader, we have moved the panels showing the mixed model results to a supplemental figure. Overall, we 

believe that addressing these comments has improved our manuscript. 

Major	Points:	

Comment	1	
In	 my	 prior	 review,	 I	 noted	 that	 the	 framing	 of	 the	 paper	 was	 a	 bit	 opaque	 in	 terms	 of	 the	 study’s	
contributions	and	scope	with	regards	to	the	broader	literature.	Unfortunately,	the	authors	do	not	seem	to	
have	changed	very	much	at	all	from	the	previous	version	to	address	this	concern.	I	was	previously	and	still	
am	struggling	a	bit	with	understanding	the	major	contributions	this	study	makes	to	changing	or	solidifying	
our	understanding	of	the	temporal	organization	of	memory.	A	basic	take-away	from	the	paper	is	that	the	
hippocampus	and	entorhinal	cortex	encode	 temporal	sequences,	which	has	been	well-established	(e.g.,	
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work	 from	 the	authors’	 own	group,	 as	well	 as	work	by	 the	Eichenbaum,	Davachi,	Ranganath,	Howard,	
Fortin,	and	Kahana	labs,	among	many	others).	Beyond	basic	sequence	coding,	the	authors	show	that	this	
temporal	coding	appears	to	align	with	virtual	 time	rather	than	absolute	time.	This	accords	with	recent	
work	from	Shimbo	et	al	(Science	Advances,	2021),	and	is	novel	in	terms	of	human	behavior	and	neural	
signals	 in	 the	 human	 brain.	 However,	 the	 framing	 of	 the	 manuscript	 is	 a	 bit	 scattered	 and	 does	 not	
effectively	communicate	this.	I	previously	noted	that	the	Discussion	was	particularly	problematic	in	this	
regard.	 In	 this	 newer	 version,	 several	minor	 changes	 seem	 to	 have	 been	made	which	 have	made	 the	
Discussion	 read	better.	However,	 I	 still	 believe	 that	 the	basic	 issue	of	 too	many	 tenuous	 links	 to	what	
appear	to	be	‘hot’	research	topics	is	detracting	from	rather	than	improving	this	manuscript.	

The Reviewer here comments on the positioning of our manuscript in the literature and the necessity to more 

clearly communicate the contributions of this study. In our view, our study makes several contributions that 

advance our understanding of how the hippocampus represents sequences of events. We have restructured 

our discussion section along the following lines to more clearly communicate these findings and their relevance: 

First, we show that the similarity of event representations is explained by the relations of events in virtual time. 

Participants constructed these event times from virtual time cues and their experience of elapsing real time. 

While virtual time could not be inferred without tracking real time (as discussed in more detail in our response 

to Comment 3), our results show that the relationship of hippocampal pattern similarity and virtual temporal 

relations extended beyond the contributions of real time and sequence order, demonstrating the impact of 

mnemonic construction on hippocampal representations of a relational structure.  

Second, we demonstrate that the hippocampus forms an integrated representation of the different sequences 

such that temporal relations are generalized across sequences. This finding provides novel evidence for the 

way the hippocampus represents multiple sequences. In particular, it suggests that, in our task, it arranges them 

along one underlying dimension, resulting in the across-sequence generalization of temporal relations. This 

generalization of relational knowledge across sequences is in line with the role of the hippocampus in memory 

integration, inferential reasoning and generalization. Speculatively, this generalization effect could be related 

to a recent observation made in an experiment investigating hippocampal sequence representations in rodents 

(Sun et al., Nature Neuroscience, 2020). In this study, mice were trained to run a number of laps on a maze to 

obtain rewards and the authors report the emergence of lap-specific firing patterns in the hippocampus. 

Intriguingly, these lap-specific representations generalized across sequences of laps on geometrically distinct 

mazes. Consistent with the cross-sequence generalization we report, these findings suggest that the 

hippocampus can form transferable representations of temporal information. 

Third, we show that structural knowledge influences the mnemonic construction of individual event times by 

detecting biases in behavior. This connects the two findings above by demonstrating that mnemonic 

construction and generalized, structural knowledge interact. This finding is in line with structural knowledge 

providing a scaffold for mnemonic construction of specific events. 

The Reviewer further points to the interesting report of temporal scaling of time cell representations in the 

rodent hippocampus (Shimbo et al., Science Advances, 2021). Importantly, as in other reports of time cells, the 

data is assessed as a function of real elapsing time. The authors demonstrate that time cell representations 

compress or stretch depending on how the duration of a delay, during which the animal runs on a treadmill, is 

changed. This shows a remarkable flexibility of the time-cell representation and we do believe that this finding 

could be related to our observations. A difference we would like to note is that in the study by Shimbo et al. 
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time cells scaled to variations of real time intervals, whereas we show that the hippocampal representation 

covaries with mnemonically constructed times of events in sequences that had similar real time durations. Thus, 

the hippocampal representation scaled to this psychological, virtual time rather than changes in real time. The 

memory-based construction of a temporal representation would be difficult to study in animal models of 

temporal coding. In the revised discussion, we have included the possibility that our effects are related to the 

scaling of temporal representations observed in the rodent hippocampus. 

Overall, we have followed the Reviewer’s suggestion to more clearly communicate the key findings of our study 

and to provide a more focused account of their relationship to the existing literature. Please find the revised 

sections of the manuscript below. 

Page 13-14 
Our findings show that hippocampal event representations change through learning to reflect temporal 
relations based on mnemonically constructed event times. Converging region of interest and searchlight 
analyses demonstrate that, on the one hand, the hippocampus forms specific representations of temporal 
relations of the events in a sequence that mirror constructed event times beyond the effects of order and 
real time. On the other hand, temporal relations are generalized across sequences using a different 
representational format. In contrast, the similarity of event representations in the anterior-lateral entorhinal 
cortex scaled with temporal distances for events irrespective of sequence membership. The behavioral data 
demonstrate that the construction of specific event times is biased by structural knowledge abstracted from 
different sequences. 

In our paradigm, participants mentally constructed the times of events relative to a hidden virtual clock. To 
do so, they needed to combine their experience of passing real time with infrequent cues about the current 
virtual time. Thus, real time was critical for the successful construction of event times, despite not being 
cued explicitly. Participants’ responses in a memory test and the similarity structure of hippocampal multi-
voxel patterns were explained by virtual event times beyond the effects of real time and sequence order, 
showing that sequence representations reflect mnemonically constructed time. Recent work demonstrated 
the scaling of time cell representations to different real time intervals in the rodent hippocampus67. 
Temporal scaling of hippocampal representations could potentially underlie our observation that temporal 
distances in virtual time are related to the similarity of event representations even when accounting for the 
effects of real time and order. This finding highlights that the anterior hippocampus maps relational 
knowledge derived from mnemonic constructions. 

The hippocampus constructed an integrated representation that generalized temporal relations across 
sequences. Multi-voxel patterns of events taking place at similar virtual times, but in different sequences, 
were more similar than those of events occurring at different points in time. Thus, representations of events 
from different sequences changed systematically to reflect generalized temporal distances. Speculatively, 
this effect could be related to the observation that, in mice trained to run a number of laps on a maze to 
obtain rewards, lap-specific firing patterns in the hippocampus generalize across sequences of laps on 
geometrically distinct mazes54. While it is possible that the first and last events of the sequences are 
particularly important to sequence processing, our data show that virtual time explained representational 
changes when competing for variance with order and real time also for events from different sequences. 
This makes it unlikely that the hippocampal generalization effect was driven exclusively by events at the 
first or last sequence position. The generalization of temporal distances across sequences in the 
hippocampus is in line with the contribution of constructive mnemonic processes to flexible cognition via 
the recombination of elements across experiences and statistical learning13,40,43,46,48,49,68,69. More generally, 
it is consistent with the role of the hippocampus in forming cognitive maps of relational structures and in 
generalizing structural knowledge to novel situations12,38,51,53,57,70,71. 
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Comment	2	
Following	from	the	above,	at	a	more	nuanced	level,	the	authors	show	that	the	hippocampus	shows	higher	
pattern	similarity	for	same-sequence	items	which	are	farther	apart	than	items	that	are	closer	together	in	
time.	 The	 opposite	 pattern	 is	 found	 for	 different-sequence	 items.	 The	 authors	 note	 the	 following:	 “In	
contrast	to	our	previous	work,	participants	studied	multiple	sequences.	They	might	have	formed	strong	
associations	of	same-sequence	events	on	top	of	inferring	each	event’s	virtual	time,	potentially	altering	how	
temporal	 distances	 affected	 hippocampal	 pattern	 similarity.”	 This	 is	 seemingly	 rephrased	 from	 the	
previous	 submission,	 but	 I	 am	 having	 difficulty	 understanding	 this	 point	 and	 do	 not	 find	 it	 to	 be	 an	
improvement.	 Given	 that	 the	 opposing	 pattern	 of	 results	 for	 same	 versus	 different	 sequences	 in	 the	
hippocampus	 is	a	key	 feature	 in	 the	data,	 I	 think	 that	a	clearer	discussion	of	 this	effect’s	directionality	
(especially	given	that	it	is	perhaps	counterintuitive)	is	necessary.	

The reviewer here asks about the interpretation of the positive relationship between temporal distances and 

hippocampal pattern similarity changes for same-sequence events. We appreciate the opportunity to clarify 

our views on the direction of this effect. In particular, we will compare the experimental paradigm used here to 

our previous work and discuss our findings in the light of previous findings on the role of associative mnemonic 

strategies on the relationship of hippocampal pattern similarity and temporal memory. 

The present paradigm adds additional associative memory demands compared to the design of our previous 

experiment (Deuker et al., eLife, 2016; Bellmund et al., eLife, 2019). In our prior work, participants learned the 

temporal relationships of events that occurred in one sequence. In the present manuscript, participants need 

to learn which events belong to the same sequence in addition to learning the temporal structure of the 

sequences. To distinguish the different sequences, participants might use specific associative strategies, e.g. 

they might have formed links between same-sequence events. This might have altered how the hippocampus 

represented temporal relations within a sequence, resulting in a representational scheme where events at the 

on- and offset of the sequence were represented most similarly. However, please note that the effect of virtual 

temporal distances does not exclusively drive the same-sequence effect, which remains significant when 

including a predictor accounting for variance that is explained by pairs of events located at the first and last 

sequence position (Supplemental Figure 3).  

Consistent with the notion that enhanced reliance on associative memory can alter how pattern similarity relates 

to temporal distances, previous studies from other groups point towards an impact of associative encoding 

strategies on the relationship between hippocampal pattern similarity and temporal memory. In one study 

(Jenkins & Ranganath, Hippocampus, 2016), participants encoded a sequence of images from one category 

while fMRI data were recorded. Subsequently, they judged the order in which pairs of stimuli had been 

presented. Successful temporal memory recall was associated with less similar hippocampal patterns during 

encoding. This is in line with the negative correlations between pattern similarity and temporal distances we 

observed in the across-sequence analysis and also reported previously (Deuker et al., eLife, 2016; Bellmund et 

al., eLife, 2019) and could be due to a differentiation of temporal context representations (Jenkins and 

Ranganath, Hippocampus, 2016; DuBrow & Davachi, Frontiers in Psychology, 2016). A different study however, 

observed successful order memory recall to be associated with increased pattern similarity in the hippocampus 

(DuBrow & Davachi, Journal of Neuroscience, 2014). Here, participants studied sequences of images from two 

different visual categories with a number of same-category images appearing in a row before the visual 

category switched. Importantly, participants were encouraged to use an associative encoding strategy and their 

less accurate order discrimination between stimulus pairs separated by category switches suggests that they 
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indeed remembered successively presented images from the same category as a sequence (DuBrow & Davachi, 

Journal of Neuroscience, 2014). These findings suggest that the relationship between hippocampal pattern 

similarity and temporal memory is modulated by 1) the number of sequences encoded by participants and 2) 

the mnemonic strategies they employ. This could underlie the positive correlations between temporal distances 

and hippocampal pattern similarity that we observe in the present study. We now have significantly expanded 

our discussion of this finding in the revised manuscript to make this interpretation clearer. 

A second potential interpretation of the same-sequence effect is that it might go back to the differentiation of 

(temporally) similar events in the hippocampus. The positive correlation of temporal distances is characterized 

by lower pattern similarity for temporally close events relative to temporally far events (c.f. Figure 4C). This 

could be due to the hippocampus driving representations of events that take place at similar times in the same 

sequence apart. Indeed, prior work has demonstrated that the hippocampus differentiates similar episodes 

(Schlichting et al., Nature Communications, 2015; Favila et al., Nature Communications, 2016; Chanales et al., 

Current Biology, 2017; Zeithamova et al., Journal of Neuroscience, 2018). In our view, this is a plausible 

explanation for the relative decrease in similarity for nearby same-sequence events that contributes to the 

overall positive correlation of pattern similarity and distance. However, a differentiation account does not 

readily provide an explanation for the relative increases in pattern similarity for more distant same-sequence 

events or the generalization across sequences that we describe. 

We have revised the paragraph in which the same-sequence effect is discussed to offer clearer and more 

comprehensive interpretations of this finding. Please find below the revised paragraph. 

Page 14-15 
The way temporal relations shaped hippocampal multi-voxel pattern similarity differed between pairs of 
events from the same and different sequences. We observed positive correlations between temporal 
distances and hippocampal representational change, which were characterized by relatively decreased 
pattern similarity for nearby compared to increased pattern similarity for more distant events from the same 
sequence. One possible explanation for the surprising direction of this effect could be that, compared to our 
previous work where participants encountered only one sequence21, participants relied more on associative 
encoding strategies when learning multiple sequences in the present experiment. Possibly, the need to link 
events belonging to the same sequence altered how pattern similarity changes relate to temporal distances 
for these same-sequence events. In line with this interpretation, prior work has shown that the relationship 
of hippocampal pattern similarity and temporal memory can depend on factors like the use of associative 
encoding strategies and the presence of event boundaries marking switches between sequences of images 
from the same category22,82,24. Successful recency discrimination was associated with more similar 
hippocampal representations during encoding when participants were encouraged to use associative 
strategies to encode the order of image sequences from two alternating visual categories22. A different 
study found more dissimilar hippocampal representations for stimuli whose order was later remembered 
correctly24. Thus, the formation of associations between same-sequence events could explain why 
correlations of pattern similarity change were, in contrast to our previous work21, positive. A second possible 
interpretation of this effect is based on observations that the hippocampus differentiates similar 
episodes47,83–86. Hippocampal differentiation could explain the relative decrease of pattern similarity for 
temporally close events from the same sequence. However, the generalization across sequences does not 
directly follow from a differentiation account. 

Comment	3	
From	 my	 prior	 review,	 not	 addressed:	 An	 important	 aspect	 of	 this	 design	 and	 of	 the	 results	 is	 that	
behavioral	and	neural	data	indicate	that	participants	are	encoding	information	on	the	basis	of	virtual	time,	
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rather	than	real	time.	Given	the	design	of	the	experiment	and	stimuli,	I	am	unsure	if	this	should	be	at	all	
surprising.	Participants	received	any	external	cue	whatsoever	about	virtual	time,	compared	to	none	about	
real	time.	In	fact,	aside	from	aiding	in	one’s	understanding	of	how	much	time	has	elapsed	between	virtual	
clock	cues,	it	does	not	seem	that	real	time	is	at	all	relevant	to	participants’	ability	to	engage	in	the	task.	
While	I	have	no	doubt	that	participants	are	tracking	the	virtual	timing	of	these	events,	or	that	they	are	
doing	so	more	strongly	than	they	are	absolute	time,	I	am	not	sure	how	meaningful	this	comparison	really	
is	 in	 the	 context	 of	 the	 experiment.	 While	 the	 authors	 did	 vary	 virtual	 clock	 speed	 in	 an	 attempt	 at	
dissociating	real	from	virtual	time,	one	can	still	reasonably	argue	that	real	time	is	uncued	and	simply	not	
relevant	to	completing	the	task,	rendering	real	time	relatively	uninformative,	and	a	virtual	versus	real	time	
comparison	a	strawman.	Moreover,	one	could	reasonably	argue	that	participants’	understanding	of	virtual	
time	involves	a	combination	of	virtual	+	real	time,	further	obscuring	meaningful	comparisons	with	real	
time	only.	I	think	the	manuscript	needs	to	address	this	issue.	

The Reviewer asks an important question about the different time metrics that can be used to describe the 

temporal structure of the sequences, in particular about the role of real time in our experiment and its 

relationship to virtual time. The Reviewer correctly points out that participants did not receive cues about real, 

but only about virtual time. Yet, we would like to emphasize that real time is critical to inferring the virtual times 

of events, the central objective of our behavioral paradigm. The task cannot be solved without tracking the real 

time that elapses between virtual time cues to infer the virtual time of events. We have made more explicit in 

the revised manuscript that real time was uncued, but required to infer virtual times. 

Despite the fact that the construction of virtual event times was necessarily based on real time, we believe that 

our analyses of the different time metrics are informative and provide novel insights into hippocampal sequence 

representations. As real time was critical for successful task performance, it was a relevant variable for 

participants to track. There is a substantial body of evidence implicating the hippocampus in representations 

of real time. This includes for example the discovery of so-called time cells, typically described as neurons firing 

at specific time points during a real time interval (e.g., Pastalkova et al., Science, 2008; MacDonald et al., 

Neuron, 2011). Further, we and others have related the real elapsed time between events to pattern similarity 

in the hippocampus and entorhinal cortex (Nielsen et al., PNAS, 2015; Bellmund et al., eLife, 2019; 

Thavabalasingam et al., NeuroImage, 2018; PNAS, 2019). It would thus not be implausible to assume that real 

time underlies the hippocampal representation in our task. Therefore, we believe our demonstration that the 

virtual times of events relate to hippocampal multi-voxel patterns even when accounting for variance explained 

by real time and order advances our understanding of how the hippocampus represents episodic sequences. 

In particular, this shows that, despite the evidence for the hippocampus tracking real time intervals and the 

necessity to track uncued real time intervals in our task, the hippocampal representation is subject to mnemonic 

construction. 

Please find below the revised sections of the manuscript. 

Figure 1 Caption 
Thus, participants had to mentally construct event times by combining their experience of elapsing real time 
with the time cues.  

Page 5 
Participants had to combine their experience of objectively elapsing time (real time) with the virtual time 
cues to construct event times. 
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Page 13-14 
In our paradigm, participants mentally constructed the times of events relative to a hidden virtual clock. To 
do so, they needed to combine their experience of passing real time with infrequent cues about the current 
virtual time. Thus, real time was critical for the successful construction of event times, despite not being 
cued explicitly. Participants’ responses in a memory test and the similarity structure of hippocampal multi-
voxel patterns were explained by virtual event times beyond the effects of real time and sequence order, 
showing that sequence representations reflect mnemonically constructed time. Recent work demonstrated 
the scaling of time cell representations to different real time intervals in the rodent hippocampus67. 
Temporal scaling of hippocampal representations could potentially underlie our observation that temporal 
distances in virtual time are related to the similarity of event representations even when accounting for the 
effects of real time and order. This finding highlights that the anterior hippocampus maps relational 
knowledge derived from mnemonic constructions. 

Page 18 
Participants received no cues about elapsing real time, but had to use their experience of passing real time 
between virtual time cues to infer the event times relative to the hidden virtual clock.  

Comment	4	
From	my	prior	 review,	not	 addressed:	 It	 is	not	 clear	why	 the	authors	 chose	 to	 conduct	 two	 classes	of	
analyses	(summary	statistics	and	mixed	effects	models)	for	every	family	of	data.	This	is	at	best	somewhat	
redundant,	and	at	worst	raises	questions	about	correction	for	multiple	comparisons	when	applying	these	
analyses	 on	 the	 same	 family	 of	 data.	 Some	 reported	 effects	 fall	 between	 p-values	 of	 0.025	 and	 0.05,	
meaning	a	simple	Bonferroni	correction	would	prove	problematic.	If	both	classes	of	tests	are	necessary,	a	
clear	case	should	be	made	for	this	approach.	Otherwise,	it	may	be	prudent	to	choose	one	approach.	If	the	
authors	 believe	 that	 both	 classes	 of	 tests	 are	 necessary,	 and	 that	 multiple	 comparisons	 correction	 is	
unnecessary,	this	should	be	convincingly	argued.	

The reviewer here asks about the statistical analysis approaches we employed in our study. We decided to test 

our hypotheses using both a summary statistics approach as well as linear mixed effects models. The reason 

we opted for this is because both approaches offer distinct strengths. In the analysis of multi-voxel patterns, it 

is often recommended to employ non-parametric, permutation-based statistics (e.g. Stelzer et al., NeuroImage, 

2013). These are readily incorporated in the summary statistics approach, where we run permutation-based 

procedures both on the subject and on the group level. Mixed models are becoming a more and more common 

tool in neuroscience and psychology (e.g. Yu et al., Neuron, 2021) and, because they do not discard within-

subject variability, they have been argued to be more sensitive for effects in the underlying data. Further, they 

make it simple to test more complex interactions, such as the three-way interaction between regions of interest, 

virtual temporal distances, and sequence membership, which we report in the manuscript.  

Importantly, we show that the results from the two analysis approaches converge. We do not believe that this 

is redundant, but rather that it demonstrates the robustness of our effects because they do not depend on the 

specific analysis that is employed, a strength also pointed out by Reviewer 2. Thus - while we understand the 

argument of the Referee - we decided to keep the two analyses approaches in the paper, but have now moved 

the presentation of the mixed model results to the supplements of the paper to make the key findings and 

figures more accessible, see point below. Yet, these analysis approaches cannot be viewed as independent 

because they test the same hypotheses on the same data. This is why we use an alpha-level of 0.05 for the two 

different ways of implementing those tests. We have made this explicit in the revised manuscript. 

Please find the revised section of the manuscript below. 



 

35 

Page 24 
We used a summary statistics approach, which uses permutation-based procedures on the subject-level as 
well as on the group-level, in line with recommendations for the analysis of multi-voxel patterns 105. We also 
implemented our statistical analyses using linear mixed effects models, which capture within-subject 
dependencies using random effects while estimating the fixed of interest on all data points. Mixed effects 
models are well-suited to test more complex interactions. The fact that the results of the two analysis 
approaches converge demonstrates that our findings are robust to the specific statistical technique. We 
used an α-level of 0.05 for both approaches because they are not independent as they are implemented on 
the same data and test the same hypotheses. 

Minor	Points:	

Comment	5	
Following	from	my	final	major	point	above,	the	figures	are	somewhat	overwhelming,	and	carry	seemingly	
redundant	information.	For	example,	 in	Figure	4	the	authors	present	plots	associated	with	a	univariate	
regression	and	then	follow	with	plots	associated	with	a	multiple	regression.	This	depends	on	the	authors’	
preferred	solution	to	the	above	concern,	but	I	will	note	that	this	figure	and	others	would	be	simpler	to	
parse	 if	 they	only	showed	 the	multiple	 regression	results,	as	 they	converge	on	 the	same	conclusion	as	
univariate	regression,	and	as	they	are	the	stronger	analysis	via	simultaneously	evaluating	multiple	factors.	
I	will	note	(in	somewhat	ironic	contrast	to	the	rest	of	this	comment)	that	the	authors	have	now	added	a	
multidimensional	scaling	analysis	plot	over	the	prior	version	of	the	manuscript,	which	while	not	adding	
anything	terribly	unique	to	the	results,	does	provide	a	nice	visualization	of	sequence	representation.	

The Reviewer here comments on the composition of our figures and the sequence of analyses presented for 

the within-sequence analyses of the hippocampus. We are pleased to learn that the Reviewer thinks that the 

multidimensional scaling results provide a helpful visualization of our results. 

We acknowledge that the presentation of results from two parallel analysis streams resulted in multi-panel 

figures, which might have made it more challenging than necessary for the reader to understand our main 

findings. As discussed in response to the previous comment, we decided to keep the mixed model results in 

the manuscript. However, to make our figures less complex, we have moved the presentation of the mixed 

model results to the new Supplemental Figure 4. This figure now provides an overview of the mixed model 

results corresponding to the summary statistics analyses shown in the main figures of the manuscript. In our 

view, this change has made our figures more accessible for the reader. In response to a comment by a different 

Reviewer (Reviewer 1, Comment 1), we have moved the visualization of the raw pattern similarity change values 

for the same-sequence effect from Figure 5 to Figure 4 to better illustrate the direction of the effect. 

With respect to the two analyses presented for the same-sequence effect in Figure 4, we believe that it is 

relevant to first show that virtual temporal distances correlate with hippocampal pattern similarity change before 

demonstrating that this effect holds also when including the other two time metrics in the multiple regression 

model. In terms of the progression of the manuscript, we think it is helpful to first show the effect of one time 

metric on pairs of events from one sequence before moving to the more complex multiple regression analysis. 

Also, we feel that it is necessary from a statistical point of view to demonstrate the effect of virtual time in 

isolation. If the multiple regression result was reported alone, there would be the possibility that the univariate 

regression effect would not be significant. Such a suppression effect could arise if real time and order would 

suppress variance of virtual time that is irrelevant to explaining pattern similarity change (Tzelgov & Henik, 
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Psychological Bulletin, 1991). For these reasons, we have decided to present both the univariate and the 

multiple regression results also in the revised manuscript. 

Please find below the new Supplemental Figure 4, which shows the mixed model results corresponding to the 

summary statistics results shown in the main figures. 

Supplemental Figure 4 

Supplemental Figure 4. Mixed model results. Dot plots show parameter estimates and 95% confidence 
intervals for fixed effects of mixed model analyses. Line plots show estimated marginal means. A, B. 
Remembered times in the time line task are predicted by virtual event times with order and real time in the 
model (c.f. Figure 2B). C, D. Temporal distances in virtual time explain representational change in the 
anterior hippocampus (aHPC) for same-sequence events (c.f. Figure 4B). E, F. Temporal distances in virtual 
time explain representational change in the aHPC for same-sequence events when competing for variance 
with temporal distances based on order and real time (c.f. Figure 4D). G, H. Temporal distances in virtual 
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time explain representational change in the aHPC for different-sequence events (c.f. Figure 5A). I, J. There 
was a significant interaction of virtual temporal distances and sequence membership characterized by a 
differential relationship between temporal distances and aHPC representational change for event pairs from 
the same sequence or from different sequences (c.f. Figure 5A). K, L. Virtual temporal distances explain 
representational change in the anterior-lateral entorhinal cortex (alEC) when collapsing across all event pairs 
(c.f. Figure 6B). M, N. In the aHPC peak cluster of the same-sequence searchlight analysis, virtual temporal 
distances were siginificantly related to representational change for events from different sequences (c.f. 
Figure 7B). O-R. The relative time of events from other sequences predicted signed event time construction 
errors as measured in the timeline task (c.f. Figure 8CD) in the main fMRI sample (O, P) and in the 
independent replication sample (Q, R). 

Comment	6	
Throughout	the	text,	the	authors	refer	to	sequences	in	temporal	memory	being	“actively	constructed.”	Can	
claims	about	temporal	relations	being	actively	constructed	be	made	based	on	pre	vs.	post	task	RSA?	There	
is	clearly	some	record	of	task	structure	in	memory,	but	it	is	not	clear	that	this	is	indicative	of	some	active	
(rather	than	passive)	process,	or	that	the	word	“active”	is	really	carrying	any	meaning	here.	This	is	a	minor	
and	somewhat	nitpicky	point,	but	given	the	repeated	use	of	this	phrase,	it	warrants	some	clarification	or	
unpacking.	

The Reviewer here comments on the use of the phrase “actively constructed” in relation to our RSA analyses, 

which are based on picture viewing tasks. In our view, inferring the virtual times of events requires an active 

constructive process as true virtual times are never shown. This construction likely takes place during the 

learning task and memory for the constructed times is precise in the post-scan memory test. We thus 

understand the concern about using this phrase when referring to data from the pre- and post-learning scan, 

where participants performed a target detection task that was matched between the pre- and post-learning 

scan. We have reworded the relevant sections of the manuscript accordingly to avoid confusion for the reader. 

Please find the changed sections below: 

Page 2 
However, whether event representations in the anterior hippocampus and anterior-lateral entorhinal cortex 
reflect temporal distances based on constructed event times is unclear.  

Page 4 
Here, we combine functional magnetic resonance imaging (fMRI) with a sequence learning task requiring 
the memory-based construction of the times of events forming different sequences.  

Page 5 
Participants had to combine their experience of objectively elapsing time (real time) with the virtual time 
cues to construct event times. 

Page 5 
With this paradigm, we partially  dissociated the virtual time of events from the event order and real time to 
test whether mnemonically constructed event times underlie participants’ memory for the temporal 
structure of the sequences. 

Page 8 
Together, these data show that hippocampal representations of events from the same sequence changed 
to reflect mnemonically constructed event times.  
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Page 15 
In conclusion, our findings show that the similarity of event representations in the hippocampus reflects 
relations between events that go back to mnemonically constructed event times, highlighting the impact of 
mnemonic construction on sequence memory beyond the effects of event order and real elapsing time.  

Comment	7	
The	authors	a-priori	justification	of	their	ROIs	could	stand	to	be	fleshed	out	more.	While	I	understand	that	
prior	work	 from	 this	 group	 has	 highlighted	 the	 anterior	 hippocampus	 and	 anterior-lateral	 entorhinal	
cortex,	 the	 logic	 for	 this	 selection	 warrants	 better	 justification.	 Especially	 given	 that	 many	 of	 the	
phenomena	 the	 authors	 allude	 to	 in	 the	 introduction	 and	 discussion	 are	 often	 associated	 with	 other	
regions.	

We have followed the suggestion by the reviewer to describe in more detail why we chose the anterior 

hippocampus (aHPC) and the anterior-lateral entorhinal cortex (alEC) as our regions of interest. This choice is 

based on our previous work, where we showed that learning-induced pattern similarity changes in these regions 

reflect temporal distances between events in a sequence (Deuker et al., eLife, 2016; Bellmund et al., eLife, 

2019). Further, these regions have been implicated in temporal memory and temporal coding more generally 

(for review: Bellmund et al., JoCN, 2020). Likewise, assessing cross-sequence generalization in the anterior 

hippocampus is supported by evidence and theoretical work suggesting that the hippocampus recombines 

episodic details across episodes (e.g. Preston et al., Hippocampus, 2004; Zeithamova et al., Neuron, 2021; 

Morton et al., PNAS, 2020; Whittington et al., Cell, 2020). We would like to note that our searchlight analyses, 

which test for the reported effects in our entire field of view, show that the strongest effects fall into the anterior 

hippocampus. 

We have extended our description for why we chose the anterior hippocampus and the anterior-lateral 

entorhinal cortex as regions of interest for our analyses. 

Page 7 
We centered our analyses on the anterior hippocampus and the anterior-lateral entorhinal cortex (see 
Methods) based on our previous work implicating these regions in representing sequence relations21,27. 

Page 18 
Our previous work demonstrates representations reflecting the temporal relations of events from one 
sequence in the anterior hippocampus21 and the anterior-lateral entorhinal cortex27. More generally, these 
regions have been implicated in temporal coding and memory (for review, see10). Further, the hippocampus 
has been linked to inferential reasoning and generalization46,48,49,51,53. 

Comment	8	
For	Figure	8,	why	was	the	searchlight	ROI	used	and	not	the	anatomical	ROI?	

To assess the relationship between the behavioral generalization bias and sequence representations observed 

using RSA, we used the results of our searchlight analyses to quantify the strength of participants’ hippocampal 

sequence representations. We based this analysis on the searchlight results because they provide a more 

precise localization of the effect in the hippocampus compared to the anatomically defined region of interest. 

We have clarified this in the revised manuscript. 

Page 23 
We chose this approach because the searchlight analyses provide greater spatial precision than 
anatomically defined region of interest masks. 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):  

I have reviewed the authors' response to my comments and those from the other 2 reviewers. I 
am satisfied with the revisions and do not have further suggestions. Overall, I believe the 
manuscript has been strengthened. Several of the new analyses help strengthen the claims 
(e.g., by more precisely isolating the role of virtual time) and the revised Discussion better 
addresses potential interpretations of the findings. All together, this is a very nice manuscript 
with rigorously analyzed data that will be of broad interest to readers.  

Reviewer #2 (Remarks to the Author):  

The authors are to be commended for considering each of my points carefully and conducting a 
number of additional analyses. The newly reported findings from these analyses have 
satisfactorily addressed my concerns and I have no further issues to raise. Well done to the 
authors for what is, in my opinion, an excellent piece of work that furthers our understanding of 
temporal memory and its representation in the MTL.  

Reviewer #3 (Remarks to the Author):  

The authors have done a fine job of addressing all of my questions and concerns. I commend 
them on a job well done, and have no further issues to raise. 


