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Supplementary Note 1: Calculation of electronic charges

Hinterleitner et al.1 recently calculated the charge transfer in the Fe2VAl compound by means of Bader’s
quantum theory of atoms in molecules. Such Bader charge analysis of the charge transfer ∆qat = qscfat − qsupat ,
with qscfat and qsupat being the self-consistently derived charge density and superposed atomic Bader charges
respectively, showed that there occurs a significant charge transfer towards each Fe atom ∆qFe = −0.75 e
from both V (∆qV = 0.48 e) and Al (∆qAl = 1.03 e) in Fe2VAl. To illustrate the localised nature of Fe
antisite defects, we calculated the charge density and Bader charges for the above mentioned 3 × 3 × 3
rhombohedral supercell (54 Fe, 27 V, 27 Al atoms) containing one Fe/V antisite exchange defect. We found
that the calculated charge transfer of Fe antisite exchanges is almost neglibile (Fe/V defect: −0.14 e for Fe
and V, Fe/Al defect: −0.02 e for Fe and 0.07 e for Al). This clearly shows that the charge is more localised
around these defects, which act as impurities that are isolated from the ordered Fe2VAl host compound.
Our calculations are also consistent with similar calculations of single VFe antisites by Bilc et al.2.

Supplementary Note 2: Reproducibility & stability of measurements

We checked the reproducibility and consistency of our results by preparing an isoelectronic Fe2VAl-based
sample by slightly changing the composition to Fe2V0.95Ta0.05Al. The results for the measured thermopower
and power factor are shown in Supplementary Fig.5. One can see that an almost identical behaviour of the
thermopower upon high-temperature quenching is found further validating the consistency and reproducib-
lity of the temperature-induced disorder in this series of full-Heusler compounds.

Mechanical strength and stability are prerequisites for building reliable thermoelectric devices. Therefore,
we tested the stability of the rapidly quenched sample by measuring the thermoelectric properties during
several heating and cooling cycles. We find that the temperature-dependent thermopower and power factor
(see Supplementary Fig.5a,b) are surprisingly stable and did not degrade during several measurement runs,
in different directions of the sample, with several heating and cooling cycles, despite the rapid quenching
procedure. This confirms that the temperature-induced disorder could be a valid strategy to optimise the
performance of thermoelectric devices, at least when the operating temperature is sufficiently below the
quenching temperature.



Supplementary Note 3: Charge transport model for impurity band at the Anderson transition

The temperature-dependent electrical conductivity, thermopower and electronic thermal conductivity can
be generally expressed as3
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with Lij being the electronic linear response coefficients, which are given by the Chester-Thellung-Kubo-
Greenwood (CTKG) formulation4 as
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Hereby, Σ(E, T ) denotes an energy-dependent transport function that depends on the physics of the system.
It was shown that Σ(E, T ) near the mobility edge or more generally near the transport edge5 of partly
localised electronic systems, usually follows
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where Σ0(T ) is an energy-independent prefactor, Ec is the critical energy for delocalisation, i.e., the mobility
or transport edge and s is an exponent that determines the shape of the transport function and is usually
material-dependent. For the Anderson transition the critical exponent s is between 0.5 and 2 depending
on compensation and band hybridisation6. We extended this concept to impurity bands with two mobility
edges (see Supplementary Fig.9a) and developed a model where the transport function increases following
Eq.5 at the first mobility edge and decreases in the same manner at the second mobility edge. Thus, the
total energy dependence of the transport function is given by its width W , height Σ0 and exponent s (see
Supplementary Fig.9a). By numerically evaluating the integrals in Eqs.2−4, we can model the temperature
dependencies of the thermoelectric transport properties from such an impurity band. For normal parabolic
bands with dominant acoustic phonon scattering the transport properties can be written as7,8

σ(T ) = σ0(T )F0(η, T ), (6)

S(T ) =
kB
e

[
η − F1(η, T )

F0(η, T )

]
, (7)

κe(T ) =
3F0(η, T )F2(η, T )− 4F 2

1 (η, T )

F 2
0 (η, T )

σ(T )T, (8)

where η = E−µ
kBT is the reduced chemical potential and Fj(η, T ) represent the Fermi integrals9
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In contrary to σ and κ the thermopower does not depend on the absolute magnitude of the transport
function, i.e., the transport height. The same is true for the parabolic band expression where one can see
that S(T ) only depends on the Fermi integrals. The electrical conductivity on the other hand includes
an energy-independent σ0(T ), which does not cancel out and holds information about the band masses,
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band degeneracies and scattering mechanisms. Thus, when modelling temperature-dependent transport,
one should start by modelling the thermopower, which is a more direct probe of the energy-dependent
electronic structure and significantly reduces the number of model parameters10. We started by making
a qualitative analysis and simulated the temperature-dependent thermopower with a simple parabolic two
band model with a tiny band gap, where the Fermi level is positioned near the valence band edge. Such
scenario is expected to be likely the case for the ordered Fe2VAl compound1,11. We then introduced an
impurity band near EF and increased the width of its extended states, i.e., delocalised it. We already
found a good qualitative agreement by just increasing the transport width (delocalisation), which gives the
sign reversal of the thermopower over the whole temperature range without even shifting the Fermi level
or adjusting the band masses. To further test the applicability of our model towards the measured data,
we developed a least-squares fit model. Supplementary Fig.9b shows the measured temperature-dependent
thermopower from 4K to 800K together with least-squares fits from a simple two-parabolic band model
as well as our extended model containing the impurity band. A remarkable agreement and improvement
over the entire temperature range is found for the latter, while the former yields poor agreement, especially
at higher temperatures. The inset shows the predicted thermopower at room temperature as a function of
the reduced chemical potential, predicting a sign reversal due to the delocalised impurity band, which was
confirmed in our experiments. By continuously varying the disorder parameter W , which corresponds to the
width of the electronic transport function, we are able to reproduce our experimentally observed trends of
the thermopower almost perfectly, even though the energy gaps are only slightly varied. Our model confirms
that W approaches zero for a quenching temperature Tquench ≈ 950− 1050 ◦C, which is consistent with all
conclusions drawn from our resistivity and Hall effect experiments.
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Supplementary Fig. 1 a Calculated effective pair interactions in the bcc Fe0.5V0.25Al0.25 alloy. b V-Al effective pair
interactions in the bcc Fe0.5V0.25Al0.25 alloy and in theB2 partially ordered alloy on theFe andV–Al sublattices ·
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Supplementary Fig. 2 a,b Spin-polarised density of states (DOS) of the single-impurity VFe and c,d FeAl antisite defects,
compared to the DOS of pristine Fe2VAl; calculated within the EMTO-CPA method.
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Supplementary Fig. 3 Total electronic density of states (DOS) for both spin channels of a the pristine 3× 3× 3 primitive
supercell (108 atoms) of Fe2VAl b with one uncorrelated Fe/V antisite exchange defect (defect concentration: x ≈ 1.9%) and
c with two uncorrelated Fe/V antisite exchange defects (x ≈ 3.7%); Supercell electronic structure calculations were calculated
in VASP using standard GGA-PBE functionals. A broadening of the localised in-gap states occurs when increasing the defect
concentration. Sketch (right panel) shows the supercells used for the calculations.
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Monte-Carlo snapshots
(1024 atoms supercells)

Number of antisites
at high temperatures

Calculate magnetic moments

FeV 2.2 μB

FeAl 2.7 μB

VFe 0.9 μB

T [K] Calculation [μB /f.u.] Experiment [μB /f.u.]

1100 M = 0.05 Msat = 0.05

1200 M = 0.23 Msat = 0.21

1300 M = 0.31 Msat = 0.22

Comparison with experiments

T = 1100 K

T = 1300 K ..

T = 1200 K

...

Supplementary Fig. 4 Schematic of the procedure for calculating the magnetisation of high-temperature-disordered Fe2VAl.
1024 atoms supercells were created from Monte-Carlo snapshots of high-temperature-disordered Fe2VAl. The number of
antisites were evaluated and their magnetic moments were calculated in VASP and compared with experimental data, yielding
fairly good agreement.
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Supplementary Fig. 5 a Measured thermopower of Fe2V0.95Ta0.05Al, furnace cooled and quenched at 1350 ◦C. A sign
reversal, similar to the one shown in the main article for Fe2VAl, could be observed illustrating the reproducibility of this effect.
Reasonably consistent results from various measurement runs above room temperatures with several heating and cooling cycles
confirm a surprisingly good stability for the thermopower of the quenched sample. b Power factor of Fe2V0.95Ta0.05Al from
various measurement runs above room temperatures with several heating and cooling cycles.
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Supplementary Fig. 6 a Normalised intensities of XRD powder patterns for Fe2VAl samples analysed in this work. b
Magnificantions of the (111) peak at ≈ 27 ◦ and (200) peak at ≈ 31 ◦ in the left panel as well as the (422) peak at approximately
≈ 82 ◦ in the right panel. c−e Scanning electron microscopy images of a polished surface for as-cast, furnace-cooled and
1250 ◦C-quenched Fe2VAl. Images were taken at different magnificantions using a back-scattered electron detector to search
for potential impurity phase precipitation.
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Supplementary Fig. 7 a,b Isothermal, field-dependent magnetisation curves for furnace-cooled and 1050 ◦C-quenched
Fe2VAl, respectively. c,d Corresponding Arrot plots for furnace-cooled and 1050 ◦C-quenched Fe2VAl.
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Supplementary Fig. 8 a Absolute temperature-dependent Hall carrier concentration for as-cast, furnace-cooled and 1250 ◦C-
quenched Fe2VAl compared to as-cast Fe2VAl0.9Si0.1. The increase of the evaluated carrier concentration above ≈ 100K for
1250 ◦C-quenched Fe2VAl is presumably a measurement artifact due to the anomalous Hall effect. b Temperature-dependent
thermal conductivity with electronic and phonon contributions of as-cast and 1380 ◦C-quenched Fe2VAl. Dashed lines represent
the electronic contribution κe.

Supplementary Fig. 9 a Schematic density of states N(E) for the impurity band with Anderson-localised band tails and
extended states in the center of the band. The width of the extended states is given by the mobility edges Ec1 and Ec2 . The
energy-dependent transport function Σ(E) with a transport width W = |Ec2 −Ec1 | takes only finite values inside the extended
states (i.e. within the delocalised regime). b Temperature-dependent thermopower of 1380 ◦C-quenched Fe2VAl from our
experiments modelled with a parabolic two-band model and an enhanced model including the impurity band. The inset shows
the predicted thermopower as a function of the reduced chemical potential, which gives a sign reversal due to the impurity
contribution.
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Supplementary Fig. 10 Temperature-dependent thermopower and least-squares fit model results. With increasing disorder,
the width of the delocalized states of the narrow impurity band increases and reproduces the observed temperature-dependent
behaviour of the thermopower.

Supplementary Fig. 11 a Temperature-dependent behaviour of the electrical resistivity below T = 16K for as-cast Fe2VAl.
Variable range hopping conduction can best describe the low-temperature upturn in the electrical resistivity as compared
to other considered activation laws. b Temperature-dependent thermopower of as-cast Fe2VAl below 300K. Inset shows an
excellent fit to a square-root tempendence of S(T ). Red solid line indicates the temperature-dependence expected from a
parabolic two-band model analysis, which linearly approaches 0 as T → 0K.
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Supplementary Fig. 12 Calculated optimal energy width of the thermoelectric transport function as a function of the
”background” conductivity contributions, e.g., from valence and conduction bands in a semiconductor. When the electronic
states of the pristine material contribute strongly to the total electrical conductivity the optimal energy width increases, whereas
a delta-distribution-like transport function (Mahan and Sofo) yields the best thermoelectric performance when the conductivity
of the background is neglibile. Inset shows a sketch of the transport function of valence and conduction bands as well as the
transport function of a narrow delocalised impurity band at the metallic side of the Anderson transition.
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