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Materials and methods  

Cell culture  

WS (WRN−/−) human embryonic stem cells (hESCs), HGPS (LMNAG608G/+) hESCs and WT 

hESCs (Line H9, from WiCell Research) were differentiated into WRN−/− hMSCs, 

LMNAG608G/+ hMSCs, and WT hMSCs as previously described (Wu et al., 2018; Zhang et 

al., 2015). The hESCs were maintained in mitomycin C-inactivated mouse embryonic 

fibroblasts (MEFs) in hESC culture medium (Cheng et al., 2019) comprised of 80% 

DMEM/F12 (Gibco), 20% Knockout serum replacement (Gibco), 2 mM GlutaMAX (Gibco), 

0.1 mM non-essential amino acids (NEAA, Gibco), 10 ng/mL FGF2 (Joint Protein Central) 

and 55 µM β-mercaptoethanol (Invitrogen). hESCs were also cultured in Matrigel (BD Bio-

sciences) with mTeSR medium (STEMCELL Technologies, Vancouver). All hESC-derived 

hMSCs and physiologically aged (PA) hMSCs isolated from gingiva of a 61-year-old 

individual were cultured in MSC culture medium containing 90% MEM-α with GlutaMAX 

(Gibco), 10% fetal bovine serum (FBS, Lot 42F1190K, Gibco), 1% penicillin/streptomycin 

(Gibco), and 1 ng/mL FGF2 (Joint Protein Central). Human arterial endothelial cells 

(hAECs) were cultured in endothelial cell growth medium (CC-3162, Lonza). No 

mycoplasma contamination was detected during cell culture. 

Differentiation of hMSCs  

As previously described (Duan et al., 2015; Fu et al., 2016; Wang et al., 2018a; Wang et 

al., 2018b; Yan et al., 2019; Zhang et al., 2015), embryoid bodies were cultured with hMSC 

differentiation medium until confluent MSC-like cells appeared. Then, hESC-derived 

hMSCs were stained with hMSC-specific markers (CD73, CD90 and CD105) and sorted 

for CD73, CD90, and CD105 triple- positive cells using fluorescence-activated cell sorting 

(FACS) (BD FACS Aria IIIu). Differentiation of WS hMSCs into osteoblasts, chondrocytes, 

and adipocytes followed previously described protocols (Pan et al., 2016; Zhang et al., 

2015); Von Kossa (80045.3, GMS), toluidine blue (89640, Sigma) and oil red O staining 

(O1391, Sigma) were used to identify osteoblasts, chondrocytes and adipocytes, 

respectively. 

FDA-approved drug library screening 

The FDA-approved drug library (L1300, Selleck) included 1,622 drugs approved by the 

FDA, China Food and Drug Administration, National Drug Code, European Medicines 

Agency, and other drug management organizations or included in pharmacopoeia. The 

effect was screened in WS hMSCs (passage 6) with compounds at a final concentration of 

1 μM. Product numbers, compound names, solvent, and screening results for the FDA-

approved drugs library are listed in Table S1. WS hMSCs with a density of 3,000 cells per 
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well were seeded in gelatin-coated 96-well plates and incubated with various drugs-

containing hMSC medium, which was changed every other day for six days. During 

treatment, cell growth curves were recorded and cell density was evaluated by phase 

object confluence (percent) using the IncuCyte S3 live-cell imaging system (Essen 

BioScience, MI USA) (Matin et al., 2019). Cell proliferation was quantified by normalizing 

cell intensity values (Day 6) of drug treatment wells to the vehicle control wells (n = 3) and 

ranked. 

To optimize the drug intervention concentration, we performed a secondary screen of the 

top 20 drugs that emerged from our primary screen using a gradient of doses: 3 nM, 10 

nM, 30 nM, 100 nM, 300 nM, 1 μM, 3 μM, and 10 μM using the same screening protocol. 

The compound names and chemical formulae of the top 20 drugs are listed in Table S2.  

Clonal expansion assay 

The single-cell clonal expansion assay was performed as previously described (Fu et al., 

2019). Cells were seeded in 12-well plates with a density of 2,000 cells per well and treated 

with either vehicle or the drug on the second day. Freshly prepared vehicle or drug-

containing hMSC medium was changed every other day for about 12 days. The harvested 

cells were fixed with 4% paraformaldehyde (PFA) and stained with 10% crystal violet 

(C0520, Biohao) for 1 hr. The relative cell density was measured using ImageJ software 

(version: 1.8.0). 

Senescence-associated β-galactosidase staining 

SA-β-Gal staining was followed as previously described (Ren et al., 2019). In brief, 

harvested cells were fixed in 2% formaldehyde and 0.2% glutaraldehyde at room 

temperature for 5 min and then incubated with SA-β-Gal staining solution at 37°C overnight. 

The SA-β-Gal positive cells were analyzed using ImageJ software (version: 1.8.0).  

Western blot analysis 

Cells were lysed with 2× SDS buffer (Sigma-Aldrich). Then BCA kit (Thermo Fisher 

Scientific) was used to measure protein concentration. For western blot detection, 20 μg 

protein per sample was subjected to SDS-PAGE electrophoresis and transferred onto the 

PVDF membrane (Millipore). 5% milk (BBI Life Sciences) was used for blocking, the 

membrane was incubated with specific primary antibodies at 4°C overnight followed by 

HRP-Conjugated secondary antibodies at room temperature for 1 hr. Protein bands were 

captured using Image Lab software (ChemiDoc XRS+ system, Bio-Rad) and quantified 

with ImageJ (version: 1.8.0).  

Flow cytometry analysis 
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For analysis of cell apoptosis levels, Annexin V-FITC/PI apoptosis detection kit (A211-02, 

Vazyme) was used. For detection of total intracellular ROS, living cells were incubated with 

CM-H2DCFDA (C6827, Invitrogen) for 30 min at room temperature. For measurement of 

mitochondrial ROS levels, cells were stained with fluorescent probe MitoSOX (M36008, 

Invitrogen) for 20 min at 37°C. Cell cycle analysis was conducted using propidium iodide 

staining for 30 min at 37°C. Mitochondrial membrane potential (MMP) was analyzed using 

the Cell Meter™ JC-10 mitochondrion membrane potential assay Kit (22801, AAT 

Bioquest). MMP levels were calculated using specific fluorescence intensities Ex/Em = 

490/590 nm (JC-10 aggregate emission) and 490/530 nm (JC-10 monomer emission) 

(FL590/FL530). Mitochondrial mass was measured by staining cells with 10 μM nonyl 

acridine orange (NAO, A1372, Invitrogen) for 20 min at room temperature.  

The above measurements were performed using the LSR Fortessa cell analyzer (BD), and 

the data were analyzed with the FlowJo software (TreeStar, Ashland, OR). 

Quantitative real-time PCR (RT-qPCR) 

For DNA analysis, genomic DNA was extracted with a DNA extraction kit (TIANGEN). Then 

RT-qPCR was performed with THUNDERBIRD SYBR qPCR mix (Toyobo) in a CFX384 

Real-Time PCR system (Bio-Rad). Results were calculated with the ΔΔCq method. RT-

qPCR primers are listed in Table S3. 

RNA-seq library construction and sequencing 

Total mRNA was isolated for RNA-seq using the NEBNext® Poly (A) mRNA Magnetic 

Isolation Module. To construct sequencing libraries, we used the NEBNext® Ultra™RNA 

Library Prep Kit for Illumina and then sequenced libraries on Illumina HiSeq X-Ten 

platforms with paired-end 150-bp sequencing. Quality control and sequencing were 

achieved by Novo-gene Bioinformatics Technology. 

RNA-seq data processing 

RNA-seq data were processed on the “Era” petascale supercomputer of the Computer 

Network Information Center of CAS. Raw data were trimmed using Trim Galore (version 

0.5.0) to remove low-quality reads and Illumina reads with adapters. The clean data were 

mapped to the human reference genome (hg19) using HISAT2 (version 2.0.4) (Kim et al., 

2015). Mapped data were determined using HTSeq (version 0.11.0) (Anders et al., 2015). 

Differentially expressed genes (DEGs) were calculated using the R package DESeq2 

(Love et al., 2014) (version 1.26.0) with the cutoff of Benjamini-Hochberg adjust P value 

less than 0.05 and absolute log2 (fold change) more than 0.5. The DEGs are listed in Table 

S4. Terms and pathways enrichment analysis was performed using Metascape 

(http://metascape.org/gp/) (Zhou et al., 2019). The aging-related genes were obtained from 

http://metascape.org/gp/
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Aging Atlas database (https://bigd.big.ac.cn/aging/index) (Aging Atlas, 2021). Gene set 

enrichment analysis (GSEA) was performed using the R package clusterProfiler (version 

3.14.3) (Yu et al., 2012).  

ATAC-seq library preparation and sequencing 

The ATAC-seq libraries were prepared according to previous descriptions (Buenrostro et 

al., 2013; Wang et al., 2019; Wu et al., 2016). Later on, 30,000 cells of vehicle- and GA-

treated WS hMSCs at passage 9 were lysed with 50 μL ice-cold lysis buffer (10 mmol/L 

Tris-HCl (pH 7.4), 10 mmol/L NaCl, 3 mmol/L MgCl2 and 0.5% NP-40) for 10 min. The 

nuclei were then obtained through centrifugation at 500 g for 5 min, and incubated with the 

Tn5 transposome in the tagmentation buffer at 37 °C for 30 min (TD501, Vazyme Biotech). 

Subsequently, we purified fragmented DNA with 100 μL (2×) AMPure XP beads (A63882, 

Beckman Coulter) and amplified with the following PCR conditions: 72 °C for 3 min, 98 °C 

for 30 sec, thermocycling at 98 °C for 15 sec, 60 °C for 30 sec, and 72 °C for 30 sec for 12 

cycles, followed by 72 °C for 5 min. When PCR amplification was completed, libraries were 

purified and selected by using 0.55× /1.3×AMPure XP beads. Finally, the sequencing of 

libraries was achieved on Nova platform. 

ATAC-seq data processing 

The ATAC-seq raw data were trimmed using Trim Galore (version 0.4.4_dev) to remove 

low-quality reads and reads with adapters. The clean data were mapped with the human 

reference genome (hg19) using Bowtie2 (version 2.2.9) (Langmead and Salzberg, 2012) 

software. To prevent the influence of sequencing bias and depth, we merged all the 

replicates of each sample and randomly selected the same number of reads (45 million) 

for subsequent analysis. Next, we used Samtools (version 1.9) (Li et al., 2009) to remove 

the mapped mitochondrial DNA and Y chromosome reads as well as low-quality reads. 

Duplicate reads were further removed using Picard (version 1.119) software. The black list 

regions were removed from the above results using Bedtools (version 2.24.0) (Quinlan and 

Hall, 2010). We extended each read by 250 bp and normalized read counts by RPKM for 

each 10 bp using the bamCoverage function, then calculated and drawn using 

computeMatrix, plotHeatmap and plotProfile function in DeepTools (version 3.3.0) 

(Ramírez et al., 2016). In addition, we used Macs2 (version 2.1.1) to call peak and used 

the annotatePeaks function of HOMER (version 4.10.3) (Heinz et al., 2010) software to 

annotate the peak. To identify overlapped peaks in vehicle- and GA-treated WS hMSCs 

and determine their relative openness, we used Diffbind (version 2.10.0) (FDR < 0.05 and 

absolute Fold > 1) for analysis. 

Immunofluorescence microscopy 

For immunofluorescence, harvested cells on coverslips (Thermo Fisher Scientific) were 

https://bigd.big.ac.cn/aging/index


5 

 

washed with PBS, fixed in 4% PFA for 30 min, permeabilized with 0.4% TritonX-100 (Sigma) 

for 30 min, and blocked for 1 hr with 5% donkey serum (Jackson Immuno Research) diluted 

with PBS. The cells were then incubated with primary antibody at 4°C overnight. 

Subsequently, the cells were incubated with the corresponding secondary antibody and 

Hoechst 33342 (Thermo Fisher Scientific) at room temperature for 1 hr. Images were taken 

using the Leica SP5 confocal microscope. 

In vivo stem cell retention analysis 

The WS hMSC implantation analysis was performed as previously described (Zhang et al., 

2015). 5×105 WS hMSCs expressing luciferase were pretreated with vehicle or 1 μM GA 

for 30 days and injected into the tibialis anterior muscle of male nude mice aged 5-6 weeks. 

The mice were then injected with D-luciferin solution (Gold-Bio, luck-500) and imaged by 

the IVIS Spectrum system (PerkinElmer) to detect luciferase activity. Luminescence 

intensity was analyzed using Living Image® 4.3. 

Antibodies 

The primary antibodies used for flow cytometry analysis were anti-CD73 (550741, 1:100) 

and anti-CD90 (555595, 1:200) from BD Biosciences, anti-CD105 (17-1057, 1:100) from 

eBioscience. The primary antibodies used for Western blot analysis were anti-P21 (2947S, 

1:1,000) from Cell Signaling Technology, anti-LAP2β (cat 611000, 1:2,000), and anti-P16 

(550834, 1:500) from BD Biosciences, anti-Lamin B1 (Ab16048, 1:1,000), and anti-

Werner’s syndrome helicase WRN (Ab200, 1:500) from Abcam, anti-GAPDH (sc-

365062,1:5000), and anti-Progerin (sc-81611, 1:100) from Santa Cruz Biotechnology. The 

primary antibodies used for immunofluorescence were anti-Ki67 (ZM-0166, 1:500) from 

ZSGB-Bio, anti-Lamin A/C (sc-376248, 1:500) from Santa Cruz Biotechnology, anti-LAP2β 

(cat 611000, 1:500) from BD Biosciences, anti-H3k9me3 (Ab8898,1:500) from Abcam, anti-

ɣ-H2AX (05-636, 1:400) from Millipore and anti-53BP1 (A300-273A, 1:600) from Bethyl 

Laboratories. 

Statistical analysis 

All data in our study were presented as the means ± SEM. GraphPad Prism 8 software 

was used to conduct the two tailed Student's t-test. P value < 0.05 was considered 

statistically significant. *, ** and *** indicate P < 0.05, P < 0.01 and P < 0.001, respectively.  

Data availability 

RNA-seq and ATAC-seq data sets generated in this study have been deposited in Gene 

Expression Omnibus (GEO) database with accession number GSE181445. RNA-seq data 

have also been deposited in the Aging Atlas database (https://bigd.big.ac.cn/aging/index)  

(Aging Atlas, 2021). 

https://bigd.big.ac.cn/aging/index
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Supplemental Figure Legends 

Supplemental figure 1. GA exerts geroprotective effects on WS hMSCs and HGPS 

hMSCs. 

(A) Immunoblotting analysis of WRN in WT and WS hMSCs (passage 7). (B) Analysis of 

P16, P21, Lamin B1, and LAP2β protein levels in vehicle- and GA-treated WS hMSCs 

(passage 8). Data are shown as means ± SEM. n = 3 biological replicates. *P < 0.05, **P 

< 0.01, ***P < 0.001 (t-test). (C) The statistical analysis of relative cellular ROS in vehicle- 

and GA-treated WS hMSCs (passage 9). Data are shown as means ± SEM. n = 3 biological 

replicates. ***P < 0.001 (t-test). (D) Detection of relative mitochondrial membrane 

potentials (MMPs) with JC-10 in vehicle- and GA-treated WS hMSCs (passage 9). Data 

are shown as means ± SEM. n = 3 biological replicates. ***P < 0.001 (t-test). (E) FACS 

measurement of mitochondrial mass by NAO in vehicle- and GA-treated WS hMSCs 

(passage 9). Data are shown as means ± SEM. n = 3 biological replicates. ***P < 0.001 (t-

test). (F) FACS measurement of mitochondrial ROS by MitoSOX in vehicle- and GA-treated 

WS hMSCs (passage 9). Data are shown as means ± SEM. n = 3 biological replicates. *P 

< 0.05 (t-test). (G) Quantitative analysis of cross-sectional areas of chondrocyte spheres 

(lateral section) (n = 11 spheres), Von Kossa-positive areas (n = 3 biological replicates), 

and Oil Red O-positive areas (n = 3 biological replicates). Data are shown as means ± 

SEM. *P < 0.05, ***P < 0.001 (t-test). (H) Confirmation of the heterozygous mutation of 

LMNA by DNA sequencing in WT and HGPS hMSCs (passage 7). (I) Immunoblotting 

analysis of Progerin in vehicle- and GA-treated HGPS hMSCs (passage 9). Data are 

shown as means ± SEM. n = 3 biological replicates. **P < 0.01 (t-test). (J) Clonal expansion 

analysis in vehicle- and GA-treated HGPS hMSCs (passage 8). Data are shown as means 

± SEM. n = 3 biological replicates. **P < 0.01 (t-test). (K) Analysis of SA-β-Gal staining in 

vehicle- and GA-treated HGPS hMSCs (passage 9). Scale bar, 100 μm. Data are shown 

as means ± SEM of ≥ 300 cells from three biological replicates. **P < 0.01 (t-test). (L) 

Analysis of P16 and LAP2β protein levels in vehicle- and GA-treated HGPS hMSCs 

(passage 9). Data are shown as means ± SEM. n = 3. **P < 0.01, ***P < 0.001 (t-test). (M) 

Quantification of abnormal nuclei in HGPS hMSCs (passage 9), Scale bar, 20 μm. White 

dashed lines represent the nuclear boundaries of cells. Data are presented as means ± 

SEM of ≥ 100 cells from three biological replicates. *P < 0.05 (t-test). (N) Immunostaining 

of H3K9me3 in vehicle- and GA-treated HGPS hMSCs (passage 9), Scale bar, 20 μm. 

Data are shown as means ± SEM of ≥ 100 cells from three biological replicates. ***P < 

0.001 (t-test). (O) Immunostaining of LAP2β in vehicle- and GA-treated HGPS hMSCs 

(passage 9), Scale bar, 20 μm. Data are shown as means ± SEM of ≥ 100 cells from three 

biological replicates. ***P < 0.001 (t-test).  

Supplemental figure 2. GA delays senescence across various human cell models of 
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aging. 

(A) Clonal expansion analysis of vehicle- and GA-treated RS hMSCs (passage 12). Data 

are shown as means ± SEM. n = 3 biological replicates. *P < 0.05 (t-test). (B) Analysis of 

SA-β-Gal staining in vehicle- and GA-treated RS hMSCs (passage 13). Scale bar, 100 μm. 

Data are shown as means ± SEM of ≥ 300 cells from three biological replicates. ***P < 

0.001 (t-test). (C) Analysis of P21, LAP2β, and Lamin B1 protein levels in vehicle- and GA-

treated RS hMSCs (passage 14). Data are shown as means ± SEM. n = 3 biological 

replicates. *P < 0.05, **P < 0.01 (t-test). (D) FACS measurement of ROS levels by staining 

with the probe H2DCFDA in vehicle- and GA-treated RS hMSCs (passage 13). 

Representative result of three biological replicates. (E) Immunostaining of Ki67 in vehicle- 

and GA-treated PA hMSCs (passage 4), Scale bar, 20 μm. Data are shown as means ± 

SEM of ≥ 100 cells from three biological replicates. *P < 0.05 (t-test). (F) Analysis of SA-

β-Gal staining in vehicle- and GA-treated PA hMSCs (passage 7). Scale bar, 100 μm. Data 

are shown as means ± SEM of ≥ 300 cells from three biological replicates. *P < 0.05 (t-

test). (G) Analysis of SA-β-Gal staining in vehicle- and GA-treated WT hMSCs (passage 

10) after UV irradiation. Scale bar, 100 μm. Data are shown as means ± SEM of ≥ 300 cells 

from three biological replicates. **P < 0.01, ***P < 0.001 (t-test). (H) Clonal expansion 

ability analysis in vehicle- and GA-treated WT hMSCs (passage 9) after treatment with UV 

irradiation. Data are shown as the means ± SEM. n = 3 biological replicates. *P < 0.05, 

***P < 0.001 (t-test). (I) Immunostaining of γ-H2AX and 53BP1 in vehicle- and GA-treated 

WT hMSCs (passage 10) after treatment with UV irradiation, Scale bar, 20 μm. White 

dashed lines represent the nuclear boundaries of cells. Data are shown as means ± SEM 

of ≥ 100 cells from three biological replicates. *P < 0.05, ***P < 0.001 (t-test). (J) Analysis 

of SA-β-Gal staining in vehicle- and GA-treated WT hMSCs (passage 9) after treatment 

with 50 μM H2O2. Scale bar, 100 μm. Data are shown as means ± SEM of ≥ 300 cells 

from three biological replicates. *P < 0.05, **P < 0.01 (t-test). (K) Clonal expansion ability 

analysis in vehicle- and GA-treated WT hMSCs (passage 9) after treatment with H2O2 (50 

μM). Data are shown as means ± SEM. n = 3 biological replicates. P = 0.49, **P < 0.01 (t-

test). (L) FACS measurement of cellular ROS by H2DCFDA in vehicle- and GA-treated WT 

hMSCs (passage 9) after treatment with 50 μM H2O2. Representative result of three 

biological replicates. (M) SA-β-Gal staining analysis in vehicle- and GA-treated hAECs 

(passage 9). Scale bar, 100 μm. Data are shown as means ± SEM of ≥ 300 cells from 

three biological replicates. *P < 0.05 (t-test). (N) Clonal expansion ability analysis in 

vehicle- and GA-treated hAECs (passage 9). Data are shown as the means ± SEM. n = 3 

biological replicates. *P < 0.05 (t-test). 

Supplemental figure 3. RNA-seq analysis of vehicle- and GA-treated WS hMSCs. 
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(A) Heatmap showing the Euclidean distance between RNA-seq replicates of vehicle- and 

GA-treated WS hMSCs. (B) Volcano plot showing the number of upregulated and 

downregulated genes upon GA treatment of WS hMSCs. (C) Heatmaps showing 

transcriptional levels of genes enriched in each representative GO term or pathway of GA-

treated WS hMSCs compared to vehicle (passage 9). (D) Gene set enrichment analysis 

(GSEA) plots showing representative GO terms related to the functions of GA in WS 

hMSCs. (E) Heatmap showing downregulated DEGs associated with SASP upon GA 

treatment in WS hMSCs. (F) Heatmap showing upregulated and downregulated DEGs 

associated with aging upon GA treatment in WS hMSCs.  

Supplemental figure 4. RNA-seq analysis of vehicle- and GA-treated HGPS hMSCs. 

(A) The bar plot showing the percentage of C to T transition at 1824 nucleotide of LMNA 

gene in HGPS hMSCs. (B) Heatmap showing the Euclidean distance between RNA-seq 

replicates of vehicle- and GA-treated HGPS hMSCs. (C) Volcano plot showing the number 

of upregulated and downregulated genes upon GA treatment in HGPS hMSCs. (D) 

Heatmaps showing transcriptional levels of genes enriched in each representative GO term 

or pathway of GA-treated HGPS hMSCs compared to vehicle (passage 8). (E) Heatmap 

showing upregulated and downregulated DEGs associated with aging upon GA treatment 

in HGPS hMSCs.  

Supplemental figure 5. ATAC-seq analysis of vehicle- and GA-treated WS hMSCs. 

(A) Heatmap showing the Euclidean distance between ATAC-seq replicates of vehicle- and 

GA-treated WS hMSCs (passage 9). (B) The distribution of ATAC-seq peaks at different 

genomic regions in vehicle- and GA-treated WS hMSCs (passage 9). (C) Scatter plot 

showing the differential ATAC-seq peaks identified by Diffbind in GA-treated WS hMSCs 

compared to vehicle-treated WS hMSCs (passage 9). Red and green dots represent the 

opened and closed ATAC-seq peaks in GA-treated WS hMSCs, respectively. (D) ATAC-

seq analysis showing the chromatin accessibility of vehicle- and GA-treated WS hMSCs 

within differentially opened ATAC peaks. ***P < 0.001 (Wilcoxon test). (E) Violin plots 

showing ATAC signals of repetitive sequence regions within differentially opened ATAC 

peaks in vehicle- and GA-treated WS hMSCs (passage 9). ***P < 0.001 (Wilcoxon test).  

Supplemental figure 6. GA exhibits better geroprotective effects than EGCG in WS 

hMSCs. 

(A) Analysis of SA-β-Gal staining in vehicle-, EGCG- and GA-treated WS hMSCs (passage 

7). Scale bar, 100 μm. Data are shown as means ± SEM of ≥ 300 cells from three biological 

replicates. **P < 0.01 (t-test). (B) Immunostaining of Ki67 in vehicle-, EGCG-, and GA-

treated WS hMSCs (passage 7), Scale bar, 20 μm. Data are shown as means ± SEM of ≥ 

100 cells from three biological replicates. *P < 0.05, ***P < 0.001 (t-test). 
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Supplemental table legends 

Table S1. Screening results of FDA-approved drug library. 

Table S2. Top 20 candidates from FDA-approved drug library screening. 

Table S3. Primer sequences. 

Table S4. Differentially expressed genes in GA-treated WS hMSCs or HGPS hMSCs 
compared to vehicle control. 
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