Supplementary materials for

A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in *Bacillus subtilis*

Wenwen Yu^{1,2}, Ke Jin^{1,2}, Yaokang Wu^{1,2}, Quanwei Zhang^{1,2}, Yanfeng Liu^{1,2}, Jianghua Li^{1,2}, Guocheng Du², Jian Chen², Xueqin Lv^{1,2}, Rodrigo Ledesma-Amaro³, Long Liu^{1,2†}

¹ Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.

² Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.

³ Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.

[†]Corresponding author: Long Liu, Tel.: +86-510-85918312, Fax: +86-510-85918309, E-mail: longliu@jiangnan.edu.cn

	-				
Primer	Sequence				
futc-F1	AGAGGCGATTATGTTGGCATTG				
futc-R1	CGGATAGCCCAGATCCAGATT				
manB-F1	TGGCGGCATTGAAGTTACC				
manB-R1	TCATCAACGGGAGGGAAGTC				
ndk-F1	TCAGAGCCGTGGATGATGTT				
ndk-R1	ACCTGTATTCGCAATGGTGTG				
gmk-F1	CCAAGAGAGGGCGAAGTGA				
gmk-R1	AAGCGTCTGTTCAACATAATCG				
zwf-F1	AGCACACGCACAGCCAAT				
zwf-R1	CTCCAAGAAAGGGCAACTTCAT				
pfkA-F1	GGTCAGCAGCACTCGGAGAA				
pfkA-R1	GCGGCAAGAAGCACAGTATT				
lytC-F1	GACTTCTTTCTCAAGGAGTCC				
lytC-R1	GAAACACTCCTGCCGTAAG				
FL-hbs-F	CGTTCACGCACCTCGAAGTTACC				
FL-hbs-R	CGGTTGCAGAAGCAAGCGAATTG				
amye-D-F	CGGAAGAAACATTTGGCTAATTCCCCATTGAGGGCAAG				
amye-D-R	TGTGAAGGAACTGTTCTTTTCTTT				
amye-F	CTGGATTTTTATTGCTGTTTCATTT				
amye-R	AGTTCAGCTCAGTGATACCTG				
amye-S-F	GATAGCTTCTCGTTCAGGCGAGCGGATAACAATTTCACACAG				
amye-S-R	TCTTTTTGTTGACATGTGTACATTTCACCTCCTTTG				
amye-U-F	GCAAAACGATTCAAAACCTCTT				
amye-U-R	GTGAAATTGTTATCCGCTCGCCTGAACGAGAAGCTATC				
CI857-F	CAAAGGAGGTGAAATGTACACATGTCAACAAAAAAGAAACCGC				
CI857-R	CCCTCAATGGGGAATTAGCCAAATGTTTCTTCCGG				
Dvog-NE1	AACACCTTATTAACGTTGATATNAACACCGTGCGTGTTNACATACCTCT				
Fveg-INF1	GGCGGTGATAA				
Pveg-NF2	AACACCTTATTAACGTTGATATTNNNNNCGTGCNNNNNGACATACCTCT				
	GGCGGTGATAA				
	AACACCTTATTAACGTTGATATTAACACNNNNNGTGTTGACATACCTCT				
Fveg-NF3	GGCGGTGATAA				
Pveg-NR	AATATCAACGTTAATAAGGTGTTAGATATTTAT				

Table. S1 Primers used in this study

H-Pveg5-F	CATGGATGAACTGTACAAATAACTGCAGGTCGACGTCC
H-Pveg5-R	CGCACGGTGTTAATATCAACGTTAATAATAGAGCGCAACGCAATTAATG
Pveg5-F	CATTAATTGCGTTGCGCTCTATTATTAACGTTGATATTAACACCGTGCG
Pveg5-R	GTCGACCTGCAGTTATTTGTACAGTTCATCCATGCCA
npre-F	CTTGCGGCAGCCATCTTCAC
npre-R	GCCATCGTCACCCACTTA
ganA-F	GTGATGTCAAAGCTTGAAAAAACG
ganA-R	TTTTCCAAAGCAATAACGCTGGA
bpr-F	TTAGGCGCATTAACAGTCGGC
bpr-R	GGATGAATAATCGCGTCAAACT
epr-F	TTGTGCAGACTCTGAAAAGGT
epr-R	ACTGAAGCCGACTAAAATCGGC
apre-F	AACATCAGGATGCTGACAAATAAAA
apre-R	AGAGGGTAAAGAGTGAGAAGC
ldh-R	TTGAAGGCAGGAAGGCT
ldh-F	GCAACAAAATTGCCTGATGG

Table. S2 Plasmids used in this study

Plasmid	Characteristics	Ref.	
nHT-0	CoIE1 Amp ^r , Cm ^r , <i>E. coli-B. subtilis</i> shuttle vector, ∆P _{grac} .:	Lab stock	
рптао	egfp		
pHTa1	pHTa0 derivate, P _R - <i>egfp</i>	This work	
pHTa1-2	pHTa0 derivate, Pveg egfp	This work	
pHTa2	pHTa0 derivate, P _{veg1} - egfp	This work	
pHTa3	pHTa0 derivate, P _{veg2} - egfp	This work	
pHTa4	pHTa0 derivate, P _{veg3} - egfp	This work	
pHTa5	pHTa0 derivate, P _{veg4} - egfp	This work	
pHTa6	pHTa0 derivate, P _{veg5} - egfp	This work	
nP42 mCharny	ColE1 Ampr, RepB Kmr, E. coli-B. subtilis shuttle vector,	This work	
pr43-moneny	mCherry expressed from P ₄₃		
nl CT dCnf1	pMB1 Spec ^r , Cm ^r P _{veg5} -dCpf1 integrant expression at <i>nprE</i>	This work	
peor-aopri	locus of <i>B. subtilis</i>		
nl CT2-dCnf1	pMB1 Spec ^r , Cm ^r P _{veg} -dCpf1 integrant expression at <i>ganA</i>		
	locus of <i>B. subtilis</i>		

Name Sequence						
P _{veg}	TTATTAACGTTGATATAATTTAAATTTTATTTGACAAAAATGGGCTCGTGTT					
	GTACAATAAATGT					
P _{veg1}	TTATTAACGTTGATATAATTTAAATTTTAATTTGACATAACACCGTGCGTG					
	GTACAATAAATGT					
	TTATTAACGTTGATATTAACACCGTGCGTGTTGACAAAAATGGGCTCGTGT					
P _{veg2}	TGTACAATAAATGT					
	TTATTAACGTTGATATAATTTAAATTTTATTTGACAAAAATGGGCTCGTGTT					
P _{veg3}	GTACAATAAATGTAGTAACACCGTGCGTGTTG					
	TTATTAACGTTGATATTAACACCGTGCGTGTTGACAAAAATGGGCTCGTGT					
P _{veg4}	TGTACAATAAATGTAGTACCTCTGGCGGTGATAA					
P _{veg5}	TTATTAACGTTGATATTAACACCGTGCGTGTTGACATACCTCTGGCGGTGA					
	TAATACAATAAATGT					
	TTATTAACGTTGATATTTATTGCGTGCATGTTGACATACCTCTGGCGGTGA					
P _{veg32}	TAATACAATAAATGT					
P _{veg34}	TTATTAACGTTGATATTAACACGGGTAGTGTTGACATACCTCTGGCGGTGA					
	TAATACAATAAATGT					
-	TTATTAACGTTGATATTGGCGGCGTGCTCGTTGACATACCTCTGGCGGTG					
Pveg37	ATAATACAATAAATGT					
zwf-						
crRNA1	GCAAAACGAAAATTGTATCCGTC					
zwf-	TECECEACAATATCATECTEET					
rRNA2						
zwf-	GIGAAAGACGGCTTACACTGGTG					
rRNA3						
pfkA-	CAACGGATACGCGGGATTGATCA					
crRNA1						
pfkA-	CATGTGTAGGTGTACCGGGTACA					
crRNA2						
pfkA-	AAGAAGAAACAAATCTTGAAACT					
crRNA3						
lytC-	GCCGATAACTCAGTGAAAAGAGT					
crRNA1						
lytC-	AACGGCTTCTTATATGCAGACGC					

crRNA2

*lytC*crRNA3

CI857

TCAGTATACATGCAAATGCTAAT

ATGTCAACAAAAAGAAACCGCTGACACAAGAACAACTGGAAGATGCAAG AAGACTGAAAGCAATTTATGAAAAAAGAAAAAGAAAATGAACTGGGCCTGTCACA AGAATCAGTTGCAGATAAAATGGGCATGGGCCAAAGCGGCGTTGGCGCA CTGTTTAATGGCATTAATGCACTGAATGCATATAATGCAGCACTGCTGACA AAAATTCTGAAAGTTTCAGTTGAAGAATTTTCACCGTCAATTGCAAGAGAA ATTTATGAAATGTATGAAGCAGTTTCAATGCAACCGTCACTGAGAACAGAA ATTTATGAAATGTATGAAGCAGTTTCAATGCAACCGTCACTGAGATCAGAA CTGAGAACATTTACAAAAGGCGATGCAGAAAGATGGGTTTCAACAACAAA AAAAGCATCAGATTCAGCATTTTGGCTGGAAGATGGGCTTTCAACAACAAA AAAAGCATCAGATTCAGCATTTGGCTGGAAGTTGAAGGCAATTCAATGA CAGCACCGACGGGCTCAAAACCGTCATTTCCGGATGGCATGCTGATTCTG GTTGATCCGGAACAAGCAGTTGAACCGGGCGATTTTTGCATTGCAAGACT GGGCGGCGATGAATTTACATTTAAAAAACTGATTAGAGATAGCGGCCAAG TTTTTCTGCAACCGCTGAATCCGCAATATCCGATGATTCCGTGCAATGAAT CATGCTCAGTTGTTGGCAAAGTTATTGCATCGCGGAAGAAACA TTTGGCTAA

ATGCTAACTTGCTTTAAAGCTTATGATATTCGCGGGAAACTAGGCGAAGAA CTGAATGAAGATATCGCCTGGCGCATTGGGCGTGCCTATGGCGAATTTCT CAAACCGAAAACCATTGTGTTAGGCGGTGATGTCCGCCTCACCAGCGAAA CCTTAAAACTGGCGCTGGCGAAAGGTTTACAGGATGCGGGCGTCGATGT GCTGGATATCGGTATGTCCGGCACCGAAGAGATCTATTTCGCCACGTTCC GGATTATAACGGCATGAAACTCGTGCGCGAGGGGGCTCGCCCGATCAGC GGGGATACCGGACTGCGCGATGTCCAGCGTCTGGCAGAAGCCAACGACT CGTGACGCTTACGTTGATCACCTGTTCGGTTATATCAACGTCAAAAACCTC ACGCCGCTCAAGCTGGTGATTAACTCCGGGAATGGCGCGGGGGGGCCG GTGGTGGACGCCATTGAAGCCCGCTTTAAAGCCCTCGGCGCACCGGTGG AATTAATCAAAGTACACAACACGCCGGACGGCAATTTCCCCCAACGGTATT CCTAACCCGTTGCTGCCGGAATGCCGCGACGACACCCGTAATGCGGTCA TCAAACACGGCGCGGATATGGGCATTGCCTTTGATGGCGATTTTGACCGC TGTTTCCTGTTTGACGAAAAAGGGCAGTTTATCGAGGGCTACTACATTGTC GGCCTGCTGGCAGAAGCATTCCTCGAAAAAAATCCCGGCGCGAAGATCA

manB

TCCACGATCCGCGTCTCTCCTGGAACACCGTTGATGTGGTGACCGCCGC GGGCGGCACTCCGGTGATGTCGAAAACCGGACACGCCTTTATTAAAGAA CGTATGCGCAAGGAAGACGCCATCTACGGTGGCGAAATGAGCGCCCACC ACTATTTCCGTGATTTCGCTTACTGCGACAGCGGCATGATCCCGTGGCTG CTGGTCGCCGAACTGGTGTGTCTGAAAGGAAAAACGCTGGGCGAACTGG TGCGCGACCGGATGGCGGCGTTTCCGGCAAGCGGTGAGATCAACAGCAA ACTGGCGCACCCGTTGAGGCGATTAATCGCGTCGAACAGCATTTTAGCC GCGAGGCGCTGGCGGTGGATCGCACCGATGGCATCAGCATGACCTTTGC CGACTGGCGCTTTAACCTGCGCTCCTCCAACACCGAACCGGTGGTGCGG TTGAATGTGGAATCGCGCGGTGATGTACCGCTGATGGAAGAAAAGACAAA ACTTATCCTTGAGTTACTGAACAGTAA

ATGGCATTTAAGGTTGTTCAGATTTGCGGGGGGGTTAGGGAATCAGATGTT TCAATATGCGTTTGCGAAAAGCCTGCAAAAACACTCAAATACGCCGGTTC TGCTGGATATTACGTCGTTTGATTGGTCAGATAGAAAAATGCAACTGGAAC TGTTTCCGATCGATCTGCCATATGCAAGCGAAAAAGAAATTGCAATCGCA AAAATGCAACATCTGCCTAAACTGGTGAGAGATGCGCTGAAATGCATGGG ATTCGACCGCGTTTCAAAAGAAATTGTTTTTGAATACGAGCCGGAACTGCT GAAACCGTCAAGACTGACATACTTCTATGGTTACTTCCAAGATCCGAGATA TTTTGATGCGATCAGTCCTCTGATTAAACAAACATTTACACTGCCGCCGCC GCCGCCTGAAAATGGCAACAATAAAAAGAAAGAAGAAGAGGAATATCACCGCA AATTAGCACTGATTCTGGCAGCAAAAAATTCAGTTTTTGTTCATATTAGAA GAGGCGATTATGTTGGCATTGGCTGCCAACTGGGCATTGATTATCAAAAA TTTTGCGAAGATCTGACATTTACACAAAATCTGGATCTGGGCTATCCGTTT ATGGATATGACAACAAGAGATAAAGAAGAAGAAGCATATTGGGATATGCT GCTGATGCAATCATGCCAACATGGCATTATTGCAAATTCAACATATTCATG GTGGGCAGCATATCTGATTAATAATCCGGAAAAAATTATTATTGGCCCGAA ACATTGGCTGTTTGGCCATGAAAATATTCTGTGCAAAGAATGGGTTAAAAT

TGAATCACATTTTGAAGTTAAATCACAAAAATATAATGCATAA ATGAAAGAAAGAGGGTTATTAATCGTTCTCTCAGGTCCCTCAGGAGTTGG TAAAGGAACGGTTCGACAAGCGATCTTTTCGCAGGAAGACACAAAATTTG AATATTCGATTTCAGTAACCACAAGAAGTCCAAGAGAGGGGCGAAGTGAAC GGAGTCGATTATTTTTTCAAAACAAGAGACGAATTCGAGCAAATGATTGCG GACAACAAGCTGCTTGAATGGGCAGAGTATGTCGGCAATTATTACGGCAC GCCAGTCGATTATGTTGAACAGACGCTTCAAGATGGAAAAGACGTCTTTTT

futC

gmk

AGAAATTGAAGTTCAAGGGGCTCTTCAAGTGAGAAATGCTTTCCCGGAAG GCCTGTTTATTTTCCTTGCGCCTCCAAGCCTTTCTGAACTGAAAAACAGAA TCGTGACACGAGGAACAGAAACAGACGCTCTGATTGAAAATCGAATGAAA GCCGCAAAAGCTGAGATCGAAATGATGGATGCTTATGACTATGTCGTTGA AAACGATAATGTCGAAACGGCTTGCGATAAAATCAAAGCAATCGTTCTTGC TGAACATTTGAAGCGTGAACGCGTTGCACCAAGATATAAGAAAATGCTGG AGGTTGAATAA

ATGATGGAAAAGACTTTTATCATGGTGAAACCAGACGGTGTCCAACGTCA GCTCATTGGGGACATTTTATCTAGATTCGAACGTAAGGGCTTACAATTAGC TGGCGCCAAGTTAATGAGAGTGACTGAACAAATGGCTGAGAAACACTACG CCGAACATCAAGGTAAGCCTTTCTTCGGAGAGCTCGTTGAGTTTATTACTT CAGGACCTGTATTCGCAATGGTGTGGGAAGGCGAAAATGTCATTGAAGTG ACGAGACAGCTGATCGGGAAAACAAACCCTAAAGAAGCTTTACCTGGTAC GATTCGTGGGGATTATGGCATGTTTGTCGGAAAAAACATCATCCACGGCT CTGATTCTCTCGAAAGTGCAGAACGCGAGATTAACATTTTCTTTAAGAATG AAGAATTAGTATCATATCAGCAGCTTATGGCAGGCTGGATCTATTAATCAT TGTGAAAATAAGCAACAGAGCCGGCAACATATAACGCCGCCGGTTTTTGT TCTGTTTTGTAAAGGTTTACATTAAAGTGAATAAAGGGTTGAATGGCAGTG TGCATCAGACCTCTGCCTTTCCCAACGATCTAAAATCAGCTGAAAAGCTG ATTTTTTTATTGAAACAATACAATTTCCTGATAAAACAAGCTATACTAGGAC ACAACGAAATGGAAACAATTAACCGGAGTCGATTTAACACTATATAAAGAA GCACAAATGAAGAGAAGGCTAACGTCACTTTATGAGAAAAAGGGGTTCCA AAGCTTTAAGGACTTTGCTGCGGCATTGGAAAAGGATCAAGCTCTCTTAA ATGAAACATTGGACAGAATGACGATCAATGTTTCAGAATTTTATCGTAATT ATAAAAGATGGGAAGTTCTTGAGACTGCAATTCTGCCGTTAATCAAGACCT ATACACGCTTGCCATGCTTTTGGACCAGCAAAAAGGTCTTCCGGGCTATC AGATTTTAGCGACGGATATTGATGAAAAAGCATTGGAAAAAGCGAAAAAA GGCGTTTATCAGGAGCGGTCTTTACA

ndk

			0	U	
Promoter	Y min	y max	K	п	R^2
$P_{\textit{veg5}}$	19.97805 ±	2378.71118 ±	38.21927 ±	62.02255 ±	0 00050
	14.5704	29.95501	0.04872	2.92182	0.99959

Table S4 Hill-equation fitting parameters of gene expression fine-tuning

Figure S1 (A) Modular OR₂ sequence, including endmost sequence module (T and G), palindrome sequence module (AACAC and GTGTT) and middle region sequence module (CGTGC). (B) Three type of promoter mutation libraries at the OR₂ region.

Figure S2 Sequence features at OR₂ region of promoter variants with different transition points (30, 32, 34 and 37 °C).

Figure S3 The switching effects of bifunctional temperature-responsive genetic circuits. The control group was cultured under constant temperature fermentation at 32 °C for 12 h and the experimental group was cultured by using single-switch control (0-8 h at 32 °C and 8-12 h at 39 °C).

Figure S4 The sucrose concentration of strain MT1, MT2 and MT3 under different bioprocesses, including constant temperature fermentation at 37 °C for 60 h and single-switch control (0-12 h at 30 °C and 12-60 h at 37 °C).

Figure S5 The cell growth and 2'-FL titer of strain MT3 (*manB* and *futC* were driven by P_{veg34}) under single-switch control from 30 to 37 °C with different switching times (6, 9, 12, 15 and 18 h). The statistical analysis is based on Student's *t*-test. All data were the average of three independent studies with standard deviations. ^{**}*P* < 0.01.

Figure S6 OD₆₀₀ and 2'-FL titer of strain MT3, MT4 and MT5 with single-switch control (0-12 h at 30 °C and 12-60 h at 37 °C). The strain MT4 was obtained by knocking out gene *ganA* of strain MT3, and MT5 was obtained by knocking out *yesZ* of strain MT4. 'N' means no knockout and '-' means knockout. All data were the average of three independent studies with standard deviations.

Figure S7 The fermentation process of strain MT3. Trends of OD_{600} and 2'-FL titer in shake flask with single-switch control. Data are presented as mean \pm s.d. of three replicates.

Figure S8 OD₆₀₀ and 2'-FL titer of strain MT14 under different control strategies, including

single-switch control and ordered control (0-12 h at 30 °C ,12-18 h at 34 °C and 12-60 h at 37 °C). The statistical analysis is based on Student's *t*-test. All data were the average of three independent studies with standard deviations. ^{**}P < 0.01.

Figure S9 The OD₆₀₀ and 2'-FL titer of strain MT17 for 84 h. All data were the average of three independent studies with standard deviations.

Figure S10 (A) The OD₆₀₀ of recombinant strains with knocking out or knocking down *lytC* in shake flask. (B) The 2'-FL production of recombinant strains in shake flask. "N" means the native gene *lytC* was not engineered. " \triangle " means the gene *lytC* was knocked out. The strain MT19 was obtained by knocking out *lytC* directly from the control strain MT17. Three crRNAs that targeted to different positions on *lytC*, driven by the promoter P_{veg5}, were integrated into the genome of MT17, resulting in the strains MT20 (crRNA1), MT21 (crRNA2) and MT22 (crRNA3), respectively. All data were the average of three independent studies with standard

deviations.

Figure S11 Relative normalized expression of genes *manB*, *futC*, *ndk*, *gmk*, *lytC*, *zwf* and *pfkA* in strain MT17 by using multi-modular ordered control (0-12 h at 30 °C, 12-18 h at 34 °C and 18-80 h at 37 °C). Data are presented as mean ± s.d. of three replicates.

Figure S12 The cell growth and 2'-FL titer of GTP recycling-modified strains, including MT17, and the recombinant strains with constitutive overexpression of GTP supply by promoter P_{43} . The statistical analysis is based on Student's *t*-test. All data were the average of three independent studies with standard deviations.