List of Contents

Table S1. List of 62 herbs	S3
Table S2. ¹ H NMR (600 MHz) data for actinomycin D (9) and V (10) in CDCl ₃	S4
Table S3. ¹³ C NMR (150 MHz) data for actinomycin D (9) and V (10) in CDCl ₃	S5
Table S4. 1 H NMR (600 MHz) data for actinomycin X _{0β} (11) in CDCl ₃	S6
Table S5. ¹ H NMR (600 MHz), and ¹³ C NMR (150 MHz) data for berberine (12) in MeOH- d_{4}	S7
Table S6. ¹ H NMR (600 MHz), and ¹³ C NMR (150 MHz) data for palmatine (13) in MeOH-d4	S8
Table S7. ¹ H NMR (600 MHz), and ¹³ C NMR (150 MHz) data for coptisine (14) in MeOH-d4	S9
Figure S1. Calibration curve analysis (UV peak area) of 4 intercalators and 1 groove binder	S10
Figure S2. EIC analysis of the 4 individual intercalators in the assay	.S11
Figure S3. EIC analysis of bisbenzimide (H33258), melphalan, and 4 intercalators mixture	.S12
Figure S4. Annotation and mirror plot of actinomycin D using GNPS	S13
Figure S5. Annotation and mirror plots of the two analogues of actinomycin D using GNPS	S14
Figure S6. Results of the high throughput LLAMAS development	S15
Figure S7. Confirmation of the DNA binding activities of fangchinoline (15), tetrandrine (16),	
daurisoline (17), and dauricine (18)	. S16
Figure S8. ¹ H NMR (600 MHz) spectrum of actinomycin D (9) in CDCl ₃	.S17
Figure S9. ¹³ C NMR (150 MHz) spectrum of actinomycin D (9) in CDCl ₃	S18
Figure S10. ¹ H NMR (600 MHz) spectrum of actinomycin V (10) in CDCl ₃	S19
Figure S11. ¹³ C NMR (150 MHz) spectrum of actinomycin V (10) in CDCl ₃	S20
Figure S12. ¹ H NMR (600 MHz) spectrum of actinomycin X _{0β} (11) in CDCl ₃	S21
Figure S13. ¹ H NMR (600 MHz) spectrum of berberine (12) in MeOH- d_4	S22
Figure S14. ¹³ C NMR (150 MHz) spectrum of berberine (12) in MeOH-d ₄	S23
Figure S15. ¹ H NMR (600 MHz) spectrum of palmatine (13) in MeOH-d ₄	S24
Figure S16. ¹³ C NMR (150 MHz) spectrum of palmatine (13) in MeOH-d ₄	S25
Figure S17. ¹ H NMR (600 MHz) spectrum of coptisine (14) in MeOH-d4	S26
Figure S18. ¹³ C NMR (150 MHz) spectrum of coptisine (14) in MeOH-d ₄	S27
Figure S19. ¹ H NMR (500 MHz) spectrum of fangchinoline (15) in CDCl ₃	S28
Figure S20. ¹ H NMR (500 MHz) spectrum of tetrandrine (16) in CDCl ₃	S29
Figure S21. ¹ H NMR (500 MHz) spectrum of daurisoline (17) in CDCl ₃	S30
Figure S22. ¹ H NMR (500 MHz) spectrum of dauricine (18) in CDCl ₃	S31

Sample #	Common Name	Genus and species
1	Vetivert root	Vetiveria zizanioides
2	Canada snakeroot	Asarum canadense
3	Atractylodes	Atractylodes macrocephala
4	Schizandra berries	Schisandrae chinensis
5	Stone root	Collinsonia canadensis
6	Elecampane	Inula helenium
7	Lady's mantle	Alchemilla vulgaris
8	Butterbur	Petasites frigidus
9	Danshen	Salvia miliorrhiza
10	Osna root	
11	Cinnamon sticks	Cinnamomum cassia Zi-inhua ininha
12	Dehmennie root	Zizipnus jujuoa Dolumannia alutinoaa
15	Muiro puemo	Renmannia giuinosa Dipohopetalum olaooides
14	Kaya root	Piper methysticum
15	Fo Ti (He Shou Wu)	Polygonum multiflorum
17	Valerian root	Valeriana officinalis
18	Rhue malva	Malva officinalis
19	Boldo	Poumus holdus
20	Alkanet root	Alkanna tinctoria
21	Honeysuckle flowers	Lonicera japonica
$\frac{1}{22}$	California poppy	Eschscholzia californica
23	Chinese Licorice	Glycyrrhiza uralensis
24	Chrysanthemum flowers	Chrysanthemum morifolium
25	Horney Goat Weed	Epimedium brevicornum
26	Chaparral	Larrea divaricata
27	Oakmoss	Evernia furfuracea
28	Dong Quai	Angelica sinensis
29	Wakame	Alaria marginata
30	Astragalus	Astragalus membranaceus
31	Magnolia bark	Magnolia officinalis
32	Bai Zhi	Angelica dahurica
33	Peony root	Paeonia lactiflora
34	Chuan Xin Lian	Andrographis paniculata
35	Poke root	Phytolacca americana
36	Ajwain seed	Apium graveolens
37	Deer's Tongue leaf	Trilisa odoratissima
38	Kelp	Nereocystis sp.
39	Eleuthero	Eleutherococcus senticosus
40	Burloumm	Copus chinensis
41	Chasta Traa harry	Dupleurum chinense Vitex gapus gastus
42	Codeponsis	Vilex agnus-casias Codenonsis pilosula
44	Lycii (Goii herry) herries	Lycium chinense
45	Calamus root	Acorus calamus
46	Quassia	Quassia amara
47	Orris root	Iris germanica var. Florentina
48	Papava leaf	Carica papava
49	Angelica	Angelica archangelica
50	Tansy flowering tops	Tanacetum vulgare
51	Corydalis root	Corydalis yanhusuo
52	Isatis	Brassicaceae sp.
53	Pau D'arco	Tabebuia impetiginosa
54	Pygeum	Pygeum africanum
55	Gymnema sylvestre	Gymnema sylvestre
56	Tonka bean	Dipteryx odorata
57	Chuan xiong	Ligusticum wallichii
58	Blue flag	Iris versicolor
59	Job's tears	Coix lacryma-jobi
60	Skullcap	Scutellaria baicalensis
61	Reishi mushroom	Ganoderma lucidum
62	High John the Conqueror	Ipomea jalapa

Table S1. List of 62 herbs.

No.	9	10
3	7.59, d (7.7)	7.59, d (7.7)
4	7.35, d (7.8)	7.36, d (7.7)
2'	4.51, dd (7.1, 2.5)	4.58, m
4′	3.53, dd (9.5, 6.0)	3.59, m
5'	2.16, m	2.13, m
6'	1.09, d (6.6) ^b	1.13, d (6.8) ^b
7′	0.85, d (6.6) ^b	0.91, d (6.8) ^b
9'	3.70, m; 3.95, m	3.98, d (19.5); 4.54, m
10'	2.07, 2.23, m	
11′	1.80, m; 2.61, m	2.34, d (17.5); 3.65 d (17.2)
12'	5.98, d (9.2)	6.56, d (10.0)
14'	2.85, s	2.90, s ^d
15'	3.63, d (17.5); 4.71, d (17.5)	3.71, m; 4.59, m
17′	2.91, s	2.93, s
18'	2.67, d (9.4)	2.66, m ^c
19′	2.61, m	2.64, m
20'	0.72, d (6.6) ^a	0.75, d (6.0) ^a
21′	0.92, d (6.5) ^a	0.95, d (6.0) ^a
23'	5.19, dd (6.5, 2.4)	5.25, dd (5.6, 2.2)
24′	1.22, d (6.3)	1.26, d (6.7)
NH-2′	7.15, d (7.0)	7.17, d (7.3)
NH-4′	8.19, d (6.0)	7.76, d (5.8)
2″	4.61, dd (6.7, 2.5)	4.52, m
4″	3.56, dd (10.0, 6.0)	3.70, m
5″	2.12, m	2.23, m
6″	1.08, d (6.6) ^b	1.15, d (6.8) ^b
7″	0.87, d (6.6) ^b	0.90, d (6.8) ^b
9″	3.67, m; 3.81, m	3.73, m; 3.91m
10″	2.07, 2.23, m	2.21, m; 2.27, m
11″	1.84, m; 2.90, m	1.86, m; another H not detected
12″	5.9, d (9.2)	5.94, d (9.2)
14″	2.85, s	2.89, s ^d
15″	3.60, d (17.5); 4.79, d (17.5)	3.65, d (17.4); 4.71, d (17.5)
17″	2.90, s	2.91, s
18″	2.67, d (9.4)	2.71, m ^c
19″	2.61, m	2.63, m
20″	0.72, d (6.6) ^a	0.74, d (6.0) ^a
21″	0.94, d (6.5) ^a	0.98, d (6.0) ^a
23″	5.15, dd (6.5, 2.4)	5.17, dd (6.2, 2.2)
24″	1.22, d (6.3)	1.12, d (6.6)
NH-2″	7.7, d (6.6)	7.68, d (5.8)
NH-4″	8.01, d (6.2)	8.23, d (6.0)

Table S2. ¹H NMR (600 MHz) data for actinomycin D (9) and V (10) in $CDCl_3$

^{a-d} The data with the same labels in each column may be interchanged.

* The reported NMR data refers to Zhang, X. F.; Ye, X. W.; Chai, W. Y.; Lian, X. Y.; Zhang, Z. Z. Mar. Drugs 2016, 14, 181

No.	9	10	No.	9	10
1	129.2	129.3	17′	39.3	39.5
2	132.5	132.2	18″	71.2	71.3
3	125.8	126.2	18′	71.4	71.6
4	130.4	130.5	19″	27.0	27.2
5	127.8	128.1	19′	27.1	27.1
6	140.6	140.7	2″	54.9	55.1
7	145.2	145.2	2'	55.2	54.9
8	113.6	113.8	20″	19.1	19.2
9	179.1	179.2	20'	19.2	19.2
10	147.7	147.5	21″	21.7	21.9
11	101.7	101.9	21'	21.6	21.7
12	145.9	146.1	22″	167.8	167.6
13	15.1	15.2	22'	167.7	167.6
14	7.8	7.9	23″	75.1	74.9
1″	166.6	166.4	23'	75.0	74.8
1′	166.7	166.4	24″	17.8	17.8
10″	22.9	23.1	24'	17.4	17.3
10'	23.1	208.9	3″	169.1	169.2
11″	31.4	31.2	3'	168.7	169.1
11'	31.0	42.0	4″	58.8	57.4
12″	56.6	56.7	4'	58.9	58.8
12'	56.4	54.5	5″	31.9	32.1
13″	173.4	173.7	5'	31.6	31.9
13'	173.4	172.9	6″	19.1	19.1
14″	35.0	35.2	6'	19.1	19.0
14′	35.1	35.0	7″	19.3	19.4
15″	51.4	51.5	7'	19.4	19.3
15'	51.4	51.5	8″	173.7	173.5
16″	166.7	166.7	8'	173.3	174.2
16′	166.4	166.0	9″	47.7	47.6
17″	39.2	39.2	9′	47.4	53.0

Table S3. ¹³C NMR (150 MHz) data for actinomycin D (9) and V (10) in CDCl₃

* The reported NMR data refers to Zhang, X. F.; Ye, X. W.; Chai, W. Y.; Lian, X. Y.; Zhang, Z. Z. *Mar. Drugs* **2016**, *14*, 181

No.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$
3	7.65, d (7.7)
4	7.35, d (7.8)
2'	4.83, dd (6.2, 2.2)
4'	3.57, m
6'	1.12, d (6.7) ^d
7'	0.88, d (6.7) ^d
12'	6.07, dd (9.3, 2.7)
14'	2.88, s
15'	3.60, m; 4.54, d (17.6)
17'	2.93, s ^a
18'	2.68, (9.1)
19'	2.66, m
20'	0.74, d (6.7) ^b
21'	0.96, d (6.7) ^b
23'	5.25, m
24'	1.29, d (6.2) ^c
NH-2'	7.46, d (6.2)
NH-4′	7.51, d (6.9)
2″	4.5, d (6.2, 2.5)
4″	3.74, t
6″	$1.14, d (6.7)^{d}$
7″	0.91, d (6.7) ^d
12″	5.99, d (9.2)
14″	2.88, s
15″	3.66, d (17.2); 4.73, d (17.3)
17″	2.94, s ^a
18″	2.72, (9.3)
19″	2.66, m
20"	0.75, d (6.7) ^b
21″	0.97, d (6.7) ^b
23″	5.25, m
24″	1.26, d (6.2) ^c
NH-2″	7.91, d (6.3)
NH-4″	8.19, d (5.6)

Table S4. ¹H NMR (600 MHz) data for actinomycin $X_{0\beta}$ (11) in CDCl₃

^{a-d} The data with the same labels may be interchanged.

* The reported NMR data refers to Zhang, X. F.; Ye, X. W.; Chai, W. Y.; Lian, X. Y.; Zhang, Z. Z. Mar. Drugs 2016, 14, 181

No.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$ (ppm)
1	7.64, s	105.3
2		148.7
3		150.8
4	6.94, s	108.2
4a		130.7
5	3.24, t (6.4)	27.0
6	4.91, t (6.4)	56.0
8	9.75, s	145.2
8a		122.1
9		144.6
9-OMe	4.18, s	61.3
10		151.0
10-OMe	4.09, s	56.4
11	7.98, d (8.4)	126.8
12	8.10, d (8.3)	123.3
12a		134.0
13	8.69, s	120.3
13a		138.5
13b		120.7
OCH ₂ O	6.09, s	102.5

Table S5. ¹H NMR (600 MHz), and ¹³C NMR (150 MHz) data for berberine (12) in MeOH-d₄

* The reported NMR data refers to Jung, H. A.; Yoon, N. Y.; Bae, H. J.; Min, B. S.; Choi, J. S. *Arch. Pharm. Res.* **2008**, *31*, 1405-1412.

No.	$\delta_{ m H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$ (ppm)
1	7.67, s	109.9
2		150.9
3		153.8
4	7.05, s	112.2
5	3.28, m	27.8
6	4.94, m	56.7
8	9.77, s	146.4
9		145.8
10		151.9
11	8.12, d (8.9)	124.4
12	8.01, d (9.0)	128.1
13	8.81, s	121.3
10-OMe	3.94, s	57.6
12a		135.3
13a		139.8
13b		123.3
2-OMe	3.99, s	57.3
3-OMe	4.11, s	57.0
4a		130.1
8a		120.5
9-OMe	4.21, s	62.5

Table S6. ¹H NMR (600 MHz), and ¹³C NMR (150 MHz) data for palmatine (13) in MeOH-d₄

* The reported NMR data refers to Jung, H. A.; Yoon, N. Y.; Bae, H. J.; Min, B. S.; Choi, J. S. *Arch. Pharm. Res.* **2008**, *31*, 1405-1412.

No.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$ (ppm)
1	7.65, s	106.4
2		149.3
3		150.0
4	6.96, s	109.4
5	3.25, m	28.1
6	4.89, m	57.2
8	9.72, s	145.8
9		145.3
10		152.2
11	7.88, d (8.5)	121.9
12	7.86, d (8.5)	123.1
13	8.74, s	122.3
12a		134.4
13a		139.0
13b		122.5
4a		131.8
8a		113.7
OCH ₂ O	6.47, s	106.2
OCH ₂ O	6.11, s	103.7

Table S7. ¹H NMR (600 MHz), and ¹³C NMR (150 MHz) data for coptisine (14) in MeOH-d₄

* The reported NMR data refers to Jung, H. A.; Yoon, N. Y.; Bae, H. J.; Min, B. S.; Choi, J. S. *Arch. Pharm. Res.* **2008**, *31*, 1405-1412.

Figure S1. Calibration curve analysis (UV peak area) of 4 intercalators (1-4) and 1 groove binder (5)

Figure S2. EIC analysis of the 4 individual intercalators (1-4) in the assay.

Figure S3. EIC analysis of bisbenzimide (H33258) (5), melphalan (7), and 4 intercalators (1-4) mixture.

m/z	1255.75	
RT (min)	8.64	
annotation	actinomycin D	
cosine score	0.96	
<i>m/z</i> error (Da)	0.11	
reference Spectrum ID	CCMSLIB0000006871	

Figure S4. Annotation and mirror plot of actinomycin D (9) using GNPS.

m/z	1269.67	1271.75
RT (min)	8.64	7.77
annotation	actinomycin D+14 Da	actinomycin D +16 Da
cosine score	0.92	0.91
<i>m/z</i> error (Da)	0.1	0.12
reference Spectrum ID	CCMSLIB00000081798	CCMSLIB0000006871

Figure S5. Annotation and mirror plots of the two analogues of actinomycin D (9) using GNPS.

Figure S6. Results of the high throughput LLAMAS development. **A**) Performance of the 8 DNA binding agents including: 4 intercalators [9-aminoacridine (**1**, 34 μ M), ellipticine (**2**, 54 μ M), methapyrilene (**3**, 45 μ M), and chlorpheniramine (**4**, 34 μ M)], 2 groove binders [bisBenzimide (H 33258) (**5**, 125g μ M), and neomycin (**6**, 157 μ M)], and 2 covalent binders [melphalan (**7**, 44 μ M) and carmustine (**8**, 62 μ M)] in the assay. The DNA binding capability of neomycin was confirmed by analysis of the EIC trace (*m*/*z* of 615.09-615.51); while other compounds were examined by using PDA-derived data. **B**) Performance of the mixture of 4 DNA intercalators (**1**-**4**) in the assay. **C**) DNA intercalators 9-aminoacridine (**1**) and ellipticine (**4**) were successfully detected in a complex mixture of wild herbaceous plant extract [spike-in ratio, 1:5:250 (w:w:w)].

Figure S7. Confirmation of the DNA binding activities of fangchinoline (15), tetrandrine (16), daurisoline (17), and dauricine (18). UV chromatogram (monitored at $\lambda 200$ nm) revealed that the compounds were retained by the DNA.

Figure S8. ¹H NMR (600 MHz) spectrum of actinomycin D (9) in CDCl₃

S17

Figure S9. ¹³C NMR (600 MHz) spectrum of actinomycin D (9) in CDCl₃

Figure S10. ¹H NMR (600 MHz) spectrum of actinomycin V (10) in CDCl₃

Figure S11. ¹³C NMR (600 MHz) spectrum of actinomycin V (10) in CDCl₃

Figure S12. ¹H NMR (600 MHz) spectrum of actinomycin $X_{0\beta}$ (11) in CDCl₃

Figure S13. ¹H NMR (600 MHz) spectrum of berberine (12) in MeOH-d₄

Figure S15. ¹H NMR (600 MHz) spectrum of palmatine (13) in MeOH-d₄

Figure S16. ¹³C NMR (600 MHz) spectrum of palmatine (13) in MeOH-d₄

Figure S18. ¹³C NMR (150 MHz) spectrum of coptisine (14) in MeOH-*d*₄

Figure S19. ¹H NMR (500 MHz) spectrum of fangchinoline (15) in CDCl₃

Figure S21. ¹H NMR (500 MHz) spectrum of daurisoline (17) in CDCl₃

Figure S22. ¹H NMR (500 MHz) spectrum of dauricine (18) in CDCl₃

