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Supplementary information appendix 

Supplementary materials and methods 

(I) Telomere measurement: additional information. 

Nest monitoring and sample collection. 

Between 2007-2011 and 2016-2018, social groups were checked weekly for signs of nesting, and 

once found, nests were checked every three days (1–3). At seven days after hatching (range 4-9), 

nestlings were banded with a unique combination of colour bands and a numbered metal band from 

the Australian Bird and Bat Banding Scheme. For DNA analysis, blood was taken from the brachial 

vein using a 25g needle and a heparinised capillary tube which was then centrifuged (4, 5). For 

individuals bled in 2007-2011, red blood cells were stored in Longmire’s lysis buffer and in 2016-

2018 red blood cells were stored in 100% ethanol. Samples were stored at 4°C until processed in the 

laboratory. 

Quantifying telomere length. 

To extract high quality DNA, we used a modified QIAamp DNA kit (Qiagen) and automated the 

process using a QIAcube HT instrument. DNA purity and concentration was assessed using a 

NanoDrop (ND-1000) and DNA integrity was assessed on an agarose gel (5).  

A qPCR method based on Criscuolo et al., (6) and validated for use in M. coronatus by 

Eastwood et al., (5) was used to measure telomere length (TL) relative to a control gene. In brief, 

qPCR reactions were prepared by automation in an EpMotion 5075 on 96-well plates. The total 

reaction volume of 25 µl included 12.5 µl of SYBR Green I (Roche), 300 nM of both the normalising 

control gene (glyceraldehyde-3-phoshate dehydrogenase; GAPDH) primers or 400 nM of both 

telomere primers (Integrated DNA Technologies) and 10 ng of sample DNA (except the two-fold 

serial dilution containing 40, 20, 10, 5 and 2.5 ng of DNA). Samples and controls were run in 

duplicate. The telomere primers were Tel1b 5’ - CGG TTT GTT TGG GTT TGG GTT TGG GTT TGG GTT 

TGG GTT - 3’ and Tel2b 5’ - GGC TTG CCT TAC CCT TAC CCT TAC CCT TAC CCT TAC CCT - 3’ (8). The 

GAPDH primers were GT2-GAPDH-forward 5’ - CCA TCA CAG CCA CAC AGA AG - 3’ and GT2-GAPDH-

reverse 5’ - TTT TCC CAC AGC CTT AGC AG - 3’ (7). Reactions were run on a LightCycler 480 (Roche) 

machine on separate plates as follows: telomere (95°C for 15 minutes, followed by 35 cycles of 15 

seconds at 95°C, 30 seconds at 56°C, 30 seconds at 72°C) and GAPDH (95°C for 15 minutes, followed 

by 40 cycles of 15 seconds at 95°C, 30 seconds at 60°C, 30 seconds at 72°C). A melt-curve analysis 

followed both reactions to ensure the correct product was amplified. Efficiencies and intra- and 
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inter-assay repeatabilities were high (5). qPCR quality control and the calculation of relative 

telomere length were as Eastwood et al., (5). 

Using unscaled relative TL estimates, variation in this study’s dataset and that described in 

Eastwood et al. 2019 are comparable with overlapping distributions. This study: mean = 1.18, sd = 

0.18, min = 0.59, max = 1.72. Eastwood et al. 2019: mean = 1.24, sd = 0.15, min = 0.87, max = 1.56. 

(II) Statistical analysis: additional information. 

The statistical analysis investigating temperature related effects on early-life telomere length 

included controlling variables accounting for individual, ecological, and methodological factors that 

may also explain early-life telomere length. Below we discuss our justifications for including them in 

the statistical model and provide additional methodological details. 

Individual factors: age, sex and body size. 

It was necessary to control for age at sampling because it was not feasible to sample all nests on day 

seven. In other species, telomere shortening rate is faster during nestling growth period due to the 

high rates of cell replication (8). Therefore, large differences between nestlings may occur within 

short time periods (sampling completed between 4-9 days). Similarly, body mass (mean = 7.77 ± 1.11 

sd g) and tarsus length (mean = 17.44 ± 1.95 sd mm) are included in the model to account for body 

size variation. Body size has been associated with nestling telomere length in other species (8, 9) and 

is related through either variability in growth and cell replication or body condition. Sex differences 

in telomere length are also well documented across the tree of life (10), and necessary to control for 

in the analysis. 

Nest level factors: parental effects, group size, brood size and year. 

Purple-crowned fairy-wrens are cooperative breeders (1, 11, 12), where subordinate group 

members help the dominant breeding pair raise offspring and defend the territory against predators 

and interlopers (3, 13, 14). Previous work in this species demonstrated that territories with more 

helpers provisioned nestlings at higher rates and fledge more young (11). The variability of care 

between territories with different group sizes may contribute to nestling telomere variation. In 

addition, cooperative breeding may be able to compensate for environmental stressors (15, 16, but 

see 17) for an example where group size was not able to compensate under hot conditions). 

Therefore, we include group size as a controlling factor. The number of helpers within a group varies 

(categorical: 0, 1, 2 and 3+), with the category 3+ rare in this population (<10%; although this 

percentage may fluctuate with population size). Over the study period (2008-2021), there is a weak 
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relationship between the number of groups with 3+ helpers within a territory and annual population 

size (scaled; regression estimate = 0.06, se = 0.02, P = 0.04). 

 Brood size is known to negatively affect TL, and has been demonstrated experimentally by 

manipulating brood size (18–20). Therefore, brood size (nest mean = 2.53 ± 0.84, median = 3, range 

= 1-4 nestlings) was also included as a covariate as it controls for potential costs related to the 

number of nestlings.  

We included maternal and paternal ID as random effects in the linear mixed effects model to 

account for parental experience, genetic or epigenetic effects (21–24). Nest ID was included as a 

random effect to control for the independence of nesting environment. Paternal ID as a random 

factor explained less than 1% of the variance and was subsequently removed from further analyses. 

It is also conceivable that year (Austral year, running from June to July) could account for possible 

cohort effects independent of the weather variables, Tmax, Tmin, season and rainfall. However, due to 

our sampling structure and the high correlation between year and weather, the inclusion of year as a 

random term was not feasible without producing spurious results. Although, the conclusions 

remained similar.  

Methodological factors: blood storage buffer and qPCR plate. 

The qPCR method used to measure telomere length in this study was previously optimised for use in 

purple-crowned fairy-wrens (5). Eastwood et. al. (5), found that telomere length varied according to 

which blood storage buffer was used. Telomeres were longer on average when blood was stored in 

ethanol compared to Longmire’s buffer. Therefore, blood storage buffer was included in the model 

as a fixed factor to control for mean differences between samples stored in Longmire’s buffer or 

ethanol. 

In addition, qPCR plate ID was included in the model to account for reaction variation 

between each qPCR run. Multiple runs were necessary because of the limited number of samples 

that fit on each plate. 

Territory quality. 

Habitat and the conditions where individuals develop are likely to explain a proportion of telomere 

length variation (24). In this study, territory quality was based on an estimate of Pandanus aquaticus 

cover in each territory because M. c. coronatus is completely dependent on this vegetation for 

habitat (4, 12, 25–27). As previously described, at each territory an observer assigned a Pandanus 

quality score between 0 and 10 for each bank of the river every 50m, scores for both sides were then 

combined to create a score of 0 to 20. A total score of 0 for one bank indicates absence of Pandanus, 

a score of ~10 indicates patchy Pandanus (~14m2 of mature Pandanus per 20m of river/creek), a 

score of ~20 indicates high-quality dense Pandanus (~50m2 of mature Pandanus per 20m of 
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river/creek)(4, 27). Scores were then spatiotemporally matched with territories using QGIS (version 

2.18.16). Territory quality was measured intermittently during the study period (4, 12) but was 

relatively stable within each territory, changing slowly over time. Therefore, missing values were 

interpolated. For this study, scores were averaged into a single score for each territory per year. 

Territory quality was included in the linear mixed effects model as a fixed covariate and in an 

interaction with average maximum temperature (Tmax) to account for possible buffering effects of 

the Pandanus vegetation. Territory quality varied substantially, and averaged 10.9 ± 5.1 sd, range 0-

19 unit scores. Previous work has shown that this method of territory quality scoring is biologically 

important as lower territory quality has been associated with a higher risk of nest failure (28), and 

females may divorce partners to move to a higher quality territory (27). Moreover, territory quality 

affects male and female phenotype (colour; (29–31)), although these effects are quite subtle 

compared to the effect on nest failure.  

Feeding rate and average prey size. 

Nutrition is associated with growth and condition which could influence telomere dynamics (32). 

Altricial nestlings are wholly dependent on parental provisioning, which declines when conditions 

are hot and dry both because prey becomes more elusive and parental activity is reduced (33). 

Hence, we determined parental provisioning rate and average prey size of items delivered to 

nestlings for all nests, as previously described (1, 3, 11). Observers were concealed approximately 10 

m away and watched for one hour while recording the number of visits. A feed was recorded when a 

bird approached the nest and appeared to feed one of the nestlings. Each nest was observed 2.85 

times on average (standard deviation = 1.12) and usually on consecutive days. Observations took 

place either in the early morning (am; between 0530 and 1130) or afternoon (pm; 1400 to 1800). 

Nestlings were between 4 and 10 days old during the nest watches (34). To control for this variation 

in nest observations we fitted a linear mixed effects model and included feeding rate per nestling as 

the dependent variable. Nest id was included as a random effect with time of day (am/pm) and age 

of nestlings as fixed effects. An interaction between the fixed effects was included because females 

tended to brood young nestlings in the mornings (34). Provisioning rate repeatability was ICC = 0.46. 

The model predicted values were saved without the random effect and averaged for each nest 

(hereafter, ‘provisioning rate’). These values were then included in the primary analyses predicting 

nestling telomere length (provisioning rate average = 5.14 ± 1.50 sd number of feeds per hour per 

nestling). Provisioning rate was included in the linear mixed effects model as a fixed covariate. In 

addition to provisioning rate, the amount of nutrition provided to the nestlings may vary with the 

size of prey items. During nest observations, whenever possible, the size of the food (invertebrates) 

was noted relative to the size of the bill of the bird providing food. The prey size estimates were 
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then averaged (average prey size: average 1.19 ± 0.35 sd prey size relative to feeder bill). Average 

prey size was included in the model as a fixed covariate. 

Excluding nests with extra pair offspring. 

The Malurus genus is known for high rates of extra-pair paternity (EPP) (35). However, purple-

crowned fairy-wrens are one exception with less than 5% EPP in the wild (36, 37). Therefore, the 

number of nests with EPP was low and these were excluded from this study because of the lack of 

statistical power to detect any relationship with telomere length. Genetic microsatellite 

identification and parentage analysis to identify extra-pair young are described in (27). 

 

(III) Relationship between air temperature and nest temperature. 

In this study, we used air temperatures (Tmax and Tmin) from nearby weather stations as predictors in 

our analyses (see materials and methods). These estimates are broad indicators of local 

temperature. However, it is important to understand how much variation exists between air 

temperature and temperature experienced within the nest (i.e. the microclimate). Nestling purple-

crowned fairy-wrens may experience different microclimates due to variation in vegetation, nest 

position and construction, or territory location, which may not necessarily be reflected in ambient 

air temperatures measured from weather stations. Therefore, we conducted a study to investigate 

the relationship between weather station air temperature and nest temperature. 

To assess the relationship between air temperature and in-nest temperature, black bulb 

thermometers (hereafter black bulbs, n = 46) were placed in empty nests after nestlings had either 

fledged or the nest had failed from February – July in 2021. Black bulbs are matte black copper 

spheres, 0.8mm x 30 mm in diameter, containing a DS1921G-F5# Thermochron iButton (Sunnyvale, 

CA, USA) (hereafter iButtons). They were placed as soon as nests were empty and left for between 6-

8 days, after which the data was downloaded using a DS1402D-DR8+ iButton Reader with a LinkUSB 

- 1-Wire USB Interface adaptor. iButtons recorded temperature in 20 minute intervals. Black bulb 

measurements do not reflect the exact temperature experienced by nestlings, as this would include 

metabolic heat production, the influence of their nest-mates, parental brooding, and plumage. 

Rather, black bulbs provide a body with standard thermal properties that incorporate the effect of 

wind and solar radiation into a single temperature measurement (38, 39). They are therefore 

appropriate to compare microclimates (40, 41) such as nest interiors. Assessment of maximum 

temperatures recorded in nests revealed that during daylight hours, black bulbs occasionally spike in 

temperature for short periods, but these spikes do not appear at night. Spikes were presumably 
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caused by a fleeting exposure of the black bulbs to solar radiation, possibly through the nest opening 

or holes in the top of the nest. Because this analysis concerns the microclimate rather than the 

magnitude of brief temperature spikes, which do not reflect nest microclimate, mean daily 

temperature during the hottest part of the day (12:00 to 15:00) was used as a metric of maximum 

daily nest temperature. This metric and daily maximum temperature from local weather stations 

(calculated as previously described, see materials and methods) were averaged over the in-nest 

sampling period (Tmax_nest and Tmax_air, respectively). In a linear regression model, we assessed the 

relationship between Tmax_nest (dependent variable, log10 transformed to improve normality of the 

model residuals) and Tmax_air whilst controlling for three environmental conditions: Wet season with 

rain, Wet season without rain, and Dry season without rain. No data were available during the Dry 

season with rain. We also included an interaction between Tmax_air and environmental condition to 

test whether the direction or magnitude of the relationship between nest and air temperature varies 

with environment. Furthermore, we performed a second model using a similar structure but 

replacing the temperature variables with Tmin_nest (dependent variable; in-nest average daily 

minimum temperature °C) and Tmin_air (independent variable; weather station average daily 

minimum temperature °C). However, model interactions were not significant (P > 0.05) and were 

removed from the regression. Tmax_air and Tmin_air significantly predicted Tmax_nest and Tmin_nest, 

respectively (P < 0.001, SI appendix Table S2 and Fig. S3), confirming that the use of air temperature 

in this study broadly reflects the temperatures nestlings experience within the nest. 

(IV) Post hoc statistical analysis of potential confounding variables and mechanisms. 

Because the effect of high temperature on nestling TL (Table 1) could possibly be (partly) explained 

by broader ecological or social factors, we decided to explore possible alternative mechanisms or 

confounding interactions that could explain these findings.  

Social and environmental interactions. 

Temperature may interact with ecological and social variables in a way that can either mitigate or 

exacerbate the effects of temperature on nestling telomere length. However, despite having a large 

sample size we lack the statistical power to include all possible interactions in the model 

simultaneously. We therefore adopted an approach where each interaction was included in the 

LMM Table 1 separately as a post hoc test to identify possible associations for future research. The 

following variables were included in an interaction with temperature: food provisioning rate, which 

tests for possible differences in feeding rate under hot conditions (42); the number of helpers, which 

tests for potential compensation of larger groups under suboptimal conditions (17);  brood size and 

temperature, because larger broods could have a reduced capacity to thermoregulate within nests; 
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sex, as temperatures may differentially influence males and females; and territory quality, because 

the amount of vegetation may affect microclimate or other factors. No interactions were found to 

be significant (P > 0.26). It is conceivable that three-way interactions or greater are biologically 

plausible. However, they were not included in the model because the required sample size is not 

currently feasible.  

Parental TL effects on nestling TL. 

Parental TL at the time of breeding may account for variation in nestling TL. In addition, it may 

confound the effects of temperature and season if parental TL is related to the timing of breeding. 

We conducted a post hoc examination of this by including maternal and paternal TL into the final 

model presented in Table 1, thereby controlling for parental TL directly. From 175 nests, telomere 

measurements were available from n= 116 mothers and n = 118 fathers (234 out of 350 total 

parents), with n = 100 nests having both parents sampled. Telomeres were measured using the same 

qPCR method described above. We used the closest parental TL measure within one year to nestling 

hatch date. To account for methodological variation, we used the predicted parental TL values from 

a linear mixed effects model including relative TL as the dependent variable, qPCR run ID as a 

random effect and blood storage buffer as a fixed factor. Maternal and Paternal TL were each scaled 

to have a mean of zero and standard deviation of one. Missing values were replaced with zero so 

that the full dataset and model could be compared. Maternal and Paternal TL were then re-scaled. 

When controlling for maternal and paternal TL as covariates in the statistical model, the 

conclusions of this study did not change. The effect of temperature and its interactions with season 

and rainfall remained highly similar and significant (SI appendix Table S1). Neither maternal nor 

paternal TL were significantly associated with nestling TL. Based on AIC values the original model is 

more parsimonious (AICc = 1147.68) compared to the model including parent TL (AICc = 1154.53), 

delta AICc = 6.85. Therefore, we have retained our original model in the main manuscript and 

present these findings in Table S1. 

  



10 
 

Supplementary results 

(V) Supplementary figures 

 

 

 

Figure S1: Frequency of average Tmax over the nestling period (n = 175 nests). Organised by A) 

whether it rained during the nestling period, or B) whether nesting was during the wet or dry 

season. 
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Figure S2: Frequency distribution of cumulative rainfall over the nestling period (n = 175 nests). 
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Figure S3: Air temperature predicts nest temperature. A) shows the positive relationship between 

Tmax_nest (mean black bulb temperatures between 12:00 to 15:00 each day, averaged over 

deployment period) and Tmax_air (average maximum daily air temperature recorded from nearby 

weather stations over the same period). B) shows the positive relationship between Tmin_nest (average 

daily black bulb minimum temperature over deployment period) and Tmin_air (average minimum daily 

air temperature recorded from nearby weather stations over the same period). Linear regression 

models confirm that air temperatures are strongly predicted by nest temperatures (P<0.001, Table 

S2). 
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(VI) Supplementary tables 

Table S1: Maternal and paternal telomere length have no effect on early-life TL (n = 417 
individuals) when inserted into the environmental determinants model from Table 1. Parental 
telomere lengths were estimated within a year from conception of the nestlings. Shown are results 
from the linear mixed effects model with TL (z-score transformed) as dependent variable; all 
continuous explanatory variates were mean centred. Daily maximum (Tmax) and minimum 
temperature (Tmin) were averaged across the nestling period (from hatching to day seven). Bold 
indicates significant predictors (p<0.05). Model residuals and predictor covariance estimates were 
examined to confirm that the model assumptions were met. AICc = 1155.53, including fixed 
predictors only R2

m = 0.09, including random and fixed predictors R2
c = 0.62. 

Parameter Estimate (se) df t  p 

Intercept -0.147 (0.277) 153.039 -0.531 0.596 

Tmax -0.157 (0.048) 123.685 -3.266 0.001 

Tmin -0.006 (0.028) 130.374 -0.230 0.819 

Rainfall (Rain) 0.156 (0.161) 140.732  0.971 0.333 

Season (wet) 0.090 (0.193) 124.855 0.466 0.642 

Rainfall (Rain) × Tmax  0.101 (0.047)  141.648  2.136 0.034 

Season (wet) × Tmax 0.133 (0.062)  156.615  2.149 0.033 

Maternal telomere length -0.033 (0.058) 145.102 -0.563 0.574 

Paternal telomere length 0.062 (0.060) 163.067 1.041 0.299 

Parental provisioning rate 0.094 (0.048)  173.958  1.973 0.050 

Prey size 0.070 (0.176) 139.097 0.399 0.691 

Territory quality 0.021 (0.016) 112.599 1.351 0.180 

Number of helpers (1) 0.072 (0.129) 130.534 0.555 0.580 

                          (2) -0.122 (0.165) 150.156 -0.739 0.461 

                            (3+) -0.549 (0.187) 114.169 -2.937 0.004 

Sex (male) 0.204 (0.079) 343.311 2.572 0.011 

Mass (g) -0.124 (0.078)  351.646 -1.579 0.115 

Tarsus length (mm) 0.026 (0.048)  353.323 0.539 0.591 

Brood size (range 1-4) 0.046 (0.075)  153.721 0.613 0.541 

Age at sampling (5-9 days) 0.073 (0.067)  194.101 1.089 0.277 

Blood storage buffer 

(Longmire’s) 
0.052 (0.236)  102.640 0.218 0.828  

     

Variance components (sd)     

Nest ID 0.084 (0.289)    

Maternal ID 0.312 (0.559)     

qPCR Run ID 0.232 (0.481)    

Residual  0.445 (0.667)    
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Table S2: Air temperatures predict in-nest temperatures. Model A includes Tmax_nest as dependent 

variable and Tmax_air, environmental condition, and their interaction as predictor variables. Model B 

replaces maximum temperature variables with Tmin_nest as the dependent variable with Tmin_air as a 

predictor variable. Note, the interactions between season and air temperature (Tmax_air and Tmin_air) 

were not significant and were removed from each final model. 

 

Parameter Estimate (se) t  p 

Model A: Log10(Tmax_nest)    

Intercept 2.507 (0.228) 11.000 <0.001 

Tmax_air 0.026 (0.007) 3.832 <0.001 

Season (Wet without rain) 0.042 (0.026) 1.628 0.111 

Season (Wet with rain) -0.054 (0.035) -1.526 0.135 

    

Season (Wet without rain) × Tmax_air -0.018 (0.017) -1.079 0.287 

Season (Wet with rain) × Tmax_air -0.006 (0.019) -0.307 0.761 

    

Model B: Log10(Tmin_nest)    

Intercept 2.595 (0.062) 33.621 <0.001 

Tmin_air 0.043 (0.005) 10.497 <0.001 

Season (Wet without rain) 0.077 (0.015) 5.013 <0.001 

Season (Wet with rain) 0.039 (0.041) 0.952 0.346 

    

Season (Wet without rain) × Tmin_air -0.001 (0.010) 0.088 0.930 

Season (Wet with rain) × Tmin_air -0.052 (0.041) -1.257 0.216 
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(VII) Evolutionary modelling: parameter estimates. 

 

Table S3: Estimates for each water availability condition used in the evolutionary modelling and an 

explanation of how they were derived. A breakdown of the observed effect of maximum 

temperature (Tmax) on nestling telomere length (TL) for each of the four water availability conditions 

(p1, p2, p3, and p4) was obtained from the model presented in Table 1. N is the number of nestlings 

and p the proportion of nestlings in each of the four conditions. The weighted effect sizes were 

calculated by multiplying the proportion of nestlings with the effect size of Tmax. The proportions of 

nestlings in each category, Ncurrent were calculated using only years when both the complete Wet and 

complete Dry season were sampled to avoid any sampling bias. The overall weighted effect of Tmax 

on TL is the sum of weighted effect sizes which equals -0.008. A projected estimate for the future 

number of nestlings to experience each of the four environmental conditions, Nfuture, was calculated 

according to rainfall projections for the Kimberley region found in Moise et al. (43). Wet season 

rainfall is estimated to increase by 3% whilst Dry season rainfall is expected to decrease by 15%. 

Therefore, we adjusted the number of nestlings within each season according to those values. i.e., 

Wet season with rainfall +3%, Wet season without rainfall -3%, Dry season without rainfall +15%, 

and Dry season with rainfall -15%. On top of that, the two categories without rainfall were increased 

by a further 20% and the categories with rainfall reduced by 20%. This 20% approximately adjusts for 

predictions that the number of days without rain will increase. 

 

Water 

availability 

condition 

Season 

(Wet/Dry) 

Rainfall 

(yes/no) 
 𝜷

𝑻
 (se) Ncurrent Pcurrent  

Weighted 

𝜷
𝑻current 

Nfuture 
Weighted 

𝜷
𝑻future 

P1 Dry No -0.156 (0.049) 54 0.23 -0.036 74 -0.050 

P2 Dry Yes -0.055 (0.055) 20 0.09 -0.005 0 0 

P3 Wet No -0.026 (0.056) 41 0.18 -0.005 68 -0.008 

P4 Wet Yes 0.075 (0.040) 116 0.50 0.038 89 0.029 

TOTAL    231  -0.008 231 -0.029 

(𝜷
𝑻

) = effect size of Tmax in the model of nestling TL; Ncurrent: number of nestlings in each water 

availability condition in our dataset, Pcurrent: proportion of nestlings in each water availability 

condition in our dataset, Nfuture: projected number of nestlings in each climate condition according to 

the projected changes in rainfall. 
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Population generation time. 

The population of purple-crowned fairy-wrens studied is highly philopatric and isolated allowing for 

complete estimates of lifetime reproductive success and survival (44). For the population persistence 

modelling, we estimated generation time (𝑇) using an equation from (45):  

𝑇 = 𝑎 + 
𝑠

(1 − 𝑠)
 

Using data from Eastwood et al. (44), the mean age females achieved a breeding position was 𝑎 = 

1.254 years. Survival was calculated for each year in the study (44). Annual breeding female survival 

was then averaged (𝑠 = 0.792). Therefore, generation time was estimated to be 𝑇 = 5.065. 
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Early-life telomere length association with lifetime reproductive success. 

 

Table S4: Re-estimating the effect of telomere length on fitness to generate estimates on the 

appropriate scale for use in the evolutionary models. Shown are outcomes of a linear regression 

between telomere length (TL) and lifetime reproductive success (LRS) among birds that survived to 

reach a breeding position. Bold font denotes P <0.05. This model is the same as Table S3 in Eastwood 

et al. (44), except that here telomere length is z-score transformed, LRS is expressed as number of 

offspring that gain a breeder position instead of number of offspring that reach independence, and 

linear regression replaces a negative binomial model (since the model in Box 1 requires a linear 

estimate; the correlation between linear regression and negative binomial model predicted values 

was 0.99). See Eastwood et al. (44) for a full description of methods. 

Dependent 

variable 

Climate 

model 

notation 

Independent 

variable 
β (SE) 

95 % CI 

lower 

95 % CI 

upper t 
p 

value 

Lifetime 

reproductive 

success (n = 43) 

𝑊̅0  intercept 
1.131 

(0.336) 
0.453 1.810 3.369 0.002 

 𝛽
𝑊

 TL (z-score) 
0.518 

(0.252) 
0.009 1.028 2.055 0.047 

 
 

sex (male)* 
-0.178 

(0.505) 
-1.198 0.842 -0.353 0.726 

        

*compared to female 
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Telomere length heritability. 

To estimate heritability in telomere length we used a complete pedigree for our population (46) and 

mixed models in a Bayesian framework implemented with the package “MCMCglmm” (Hadfield 

2010). Random effects included nest identity ((47) to account for common nest environment), 

pedigree data (to estimate the additive genetic variance), qPCR RunID (to account for between-qPCR 

plate variability in telomere estimates) and year. We ran two models with different fixed effect 

structures: the first one only included storage buffer (two levels: Ethanol and Longmire’s buffer) as a 

fixed effect since this can affect telomere length (5). The second one included this parameter but 

also nestling age (as telomere length declines in early age) and sex (8). Model chains were ran for 

3005000 iterations per model, from which we discarded the initial 5000 (burn-in period) and 

sampled every 1000 iteration (thin interval). This yielded effective sample sizes of >1000 for each 

parameter. Fixed effect priors were normally distributed and centred on zero with large variances 

(default priors in MCMCglmm). Relatively un-informative prior settings were used for the residuals 

and random effects (list(G=list(G1= list(V=1, nu=1, alpha.mu = 0, alpha.V = 1000), G2=list(V=1, nu=1, 

alpha.mu = 0, alpha.V = 1000), G3=list(V=1, nu=1, alpha.mu = 0, alpha.V = 1000), G4=list(V=1, nu=1, 

alpha.mu = 0, alpha.V = 1000)), R=list(V=1, nu=0.002))). Posterior means and 95% credible intervals 

(CI) were estimated across the thinned samples for heritabilities (i.e., additive genetic variance to 

total phenotypic variance ratios) and other variance components. Full model results are depicted in 

Table S5. Telomere heritability was obtained as the variance explained by the pedigree divided by 

the total variance of all random factors plus the residual variance. For both models, heritability of 

telomere length was similar (h2 model 1: posterior mean = 0.359, 95% credible interval = 0.084–

0.659; h2 model 2:  posterior mean: = 0.376, 95% credible interval: 0.088–0.675). In separate models, 

we also calculated heritabilities for each sex to identify whether nestling TL heritability differed 

between the sexes. While males (h2=0.4, 95%CI = 0.098 – 0.693) tend to have higher heritabilities 

than females (h2=0.32, 95%CI = 0.065 – 0.624) both distributions overlap broadly. 
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Table S5: Bayesian mixed animal models to compute telomere heritability. Model 1 only includes 

storage buffer as fixed effect while model 2 also includes nestling age at sampling and sex. Variance 

associated with the pedigree is represented by the term ‘Animal’ while qPCR Run ID, year and Nest 

ID represent variance associated with qPCR assay (TL and GAPDH, cohort and nest of origin 

respectively). 

Model Effect/variances Posterior mean Lower 95%CI Upper 95%CI p-value 

Model 1 Fixed effects     

 Intercept -0.424 -1.700 0.534 0.540 

 Blood storage buffer (Longmire’s) 1.010 -0.301 2.370 0.164 

      

 Variance components     

 Animal 0.680 0.313 0.995  

 qPCR Run ID 0.272 0.089 0.502  

 Year 1.280 7.58E-06 4.380  

 Nest ID 0.107 5.78E-06 0.213  

      

Model 2 Fixed effects     

 Intercept -0.450 -1.682 0.559 0.483 

 Sex (male) 0.137 -0.006 0.292 0.076 

 Blood storage buffer (Longmire’s) 0.924 -0.305 2.339 0.200 

 Sampling age 0.013 -0.096 0.115 0.813 

      

 Variance components     

 Animal 0.684 0.305 0.995  

 qPCR Run ID 0.273 0.084 0.494  

 Year 1.080 4.94E-08 3.850  

 Nest ID 0.117 2.94E-06 0.232  
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Simulated parameter distributions. 

 

We evaluated the models using 106 simulated parameter sets with parameter values drawn 

independently from normal distributions with the mean corresponding to the mid-point of the 95% 

confidence interval for the parameter, and standard deviation corresponding to a quarter of the 

difference between the upper and lower 95% CI (i.e., 95% of the density of normally distributed 

random variables is within two standard deviations of the mean). See Fig. S4 for the distributions of 

simulated parameter values. 

 

 

 

Figure S4. Simulated distributions of plausible parameter values for contemporary mean fitness of 

the population 𝑊̅0, the regression of reproductive success on telomere length W, the regression of 

telomere length on temperature T, and heritability of telomere length h2, given the uncertainty in 

parameter estimates. Point estimate of parameters are shown in red. The distributions of simulated 

values are shown in grey. Since fitness cannot be negative and heritability is bounded between zero 

and one, we set negative parameter draws for 𝑊̅0 and h2 to zero; draws of h2 > 1 were set to one. 
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Figure S5: Simulations are skewed towards declining. Proportion of simulated populations that 

decline when proportions of the four environmental conditions are chosen at random. Results 

show proportions for 10,000 random sets for p1, p2, p3, and p4. The red circle shows the prediction 

based on the current empirically estimated values for p1, p2, p3, and p4 (i.e., 59%). 
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Figure S6. Modelling the worst-case scenario with and without evolution: the sublethal effects of 

climate warming on telomere length (TL) reduce fitness and force the population to decline in 98% 

of simulations. However, even the worst-case scenario can still be counteracted by adaptive 

evolution. Model and simulations are those described in Box 1. Panel A and B assumed an 

intermediate warming scenario (RCP4.5), panel C and D a high rate of warming (RCP8.5). Panel A and 

C depict outcomes of models without adaptive evolution of TL (zero heritability), whilst panel B and 

D depict model outcomes when assuming TL shows adaptive evolution (based on estimated links to 

fitness and heritability). Models take into account uncertainty in parameter estimates; dashed lines 

represent the values predicted using point estimates of the parameters with red for negative values 

and blue for positive values.  
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