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Fig. S1. Dose-response inhibition of RSV minireplicon in presence of resistance mutation 
candidates. Values are normalized for vehicle-treated reactions; symbols represent individual 
biological repeats (n=3), determined in nine technical repeats each. EC50 values and 95% 
confidence intervals are derived from 4-parameter variable slope regression models (solid line). 
Single or double black arrows visualize moderate (EC50 fold change <10) or robust (EC50 fold 
change >10) resistance, respectively. 



Fig. S2. Multi-step growth curves of recRSV-fireSMASh harboring individual resistance 
mutations L1502Q, Y1631H, or H1632Q. Symbols represent independent biological repeats 
and lines connect medians. 2-way ANOVA with Dunnett’s post-hoc test. 



Fig. S3. Purified recombinant RSV RdRP (P-L) with resistance mutations or mutation 
N812A eliminating polymerase activity (59). Coomassie blue staining after SDS-PAGE 
fractionation; material representing L and P polypeptides is highlighted.  



Fig. S4. Representative autoradiogram of primer extension assay from Fig. 1I. 



Fig. S5. Side-by side comparison of AVG-233 and AZ-27 in de novo RNA synthesis assay 
using L preparations harboring distinct resistance mutations. Color-coding of L preparations 
as in Fig. 1D-E.  



Fig. S6. In vitro RdRP assay. The assay was performed as in Fig. 1I, using the alternative 
primer/template pair shown.  



Fig. S7. Effect of endogenous nucleotides on AVG-233 RdRP inhibition. recRSV-
fireSMASh-infected cells were treated with 20 µM of AVG-233 (left) or 10 µM of 4’-FlU (right) 
and serial dilutions of exogenous nucleosides were added to the extracellular media. Viral 
replication was determined by reporter activity and normalized for replication in the presence of 
vehicle (DMSO) volume equivalents instead of AVG-233 or 4’-FlU. Symbols represent 
independent repeats (N=3).  



Fig. S8. Immunostaining of 3D-HAE. Tight junctions were detected with anti-ZO-I antibody 
(white). Cells were mock-infected or infected with recRSV-fireSMASh and treated with vehicle 
(0.1% DMSO) or AVG-233 or AVG-388 at 5 µM. Nuclei were stained with Hoechst 35443 
(blue). Cultures were fixed and stained 3 days post-infection; scale bar 20 µm. 



Fig. S9. Immunolabelling of 3D-HAE. Goblet cells were detected with anti-MUC5AC antibody 
(green). Cells were mock-infected or infected with recRSV-fireSMASh and treated with vehicle 
(0.1% DMSO) or AVG-233 or AVG-388 at 5 µM. Nuclei staining with Hoechst 35443 (blue). 
Cultures were fixed and stained 3 days post-infection; scale bar 20 µm. 



Fig. S10. Immunolabelling of 3D-HAE. Ciliated cells were detected with anti-beta-tubulin 
antibody (pink) and RSV-induced cytoplasmic inclusion bodies were detected with anti-RSV N 
(yellow). Cells were mock-infected or infected with recRSV-fireSMASh and treated with vehicle 
(0.1% DMSO) or AVG-233 or AVG-388 at 5 µM. Nuclei were stained with Hoechst 35443 
(blue). Cultures were fixed and stained 3 days post-infection; scale bar 20 µm. 



Fig. S11. Immunolabelling of 3D-HAE. Ciliated cells were detected with anti-beta-tubulin 
antibody (pink) and RSV-induced cytoplasmic inclusion bodies with anti-RSV N (yellow). Cells 
were mock-infected or infected with recRSV-fireSMASh and treated with vehicle (0.1% DMSO) 
or AVG-233 or AVG-388 at 5 µM. Nuclei were stained with Hoechst 35443 (blue). Cultures 
were fixed and stained 3 days post-infection; scale bar 20 µm. 



Fig. S12. Immunolabelling of 3D-HAE. Ciliated cells were detected with anti-beta-tubulin 
antibody (pink) and RSV-induced cytoplasmic inclusion bodies were detected with anti-RSV N 
(yellow). Cells were mock-infected or infected with recRSV-fireSMASh and treated with vehicle 
(0.1% DMSO) or AVG-233 or AVG-388 at 5 µM. Nuclei were stained with Hoechst 35443 
(blue). Cultures were fixed and stained 3 days post-infection; scale bar 20 µm.  



Fig. S13. Ciliated cells from 3D-HAE infected with recRSV-fireSMASh. RSV-infected cells 
were detected with a polyclonal anti-RSV antibody (red), mucus producing goblet cells were 
detected with specific anti-Muc5AC antibody (yellow), and nuclei were stained with DAPI 
(blue). Cultures were fixed and stained 10 days post-infection; scale bar 10 µm. 



Fig. S14. Treatment with AVG-233 of 3D-HAEs infected with recRSV-fireSMASh. 
Adherens junction immunostaining is colored in yellow (anti-E-Cadherin), recRSV-fireSMASh 
infected cells immunostaining is colored in red (anti-RSV) and nucleus staining is colored in 
blue (DAPI); scale bar: 20 µm.  



Fig. S15. Dose-response inhibition of recRSV-fireSMASh by analogs of AVG-233 in 
undifferentiated primary human airway epithelial cells. Top: “M4” donor, Bottom: “F1” 
donor. Values are normalized for vehicle-treated reactions; symbols represent individual 
biological repeats (n=3). EC50 values and 95% confidence intervals (shown in Table S1) are 
derived from 4-parameter variable slope regression models (solid line).  



Fig. S16. Dose-response inhibition of in vitro RdRP primer extension by analogs of AVG-
233. Representative autoradiograms (n=3).



Fig. S17. Side-by-side comparison of AVG-233 and AVG-388 dose-response inhibition of 
either RSV minireplicon (top) and recRSV-fireSMASh (bottom). Minireplicon assays were 
performed either in HEK-293T cells or BSR-T7/5 cells. Values are normalized for vehicle-
treated reactions; symbols represent individual biological repeats (n=3). EC50 values and 95% 
confidence intervals are derived from 4-parameter variable slope regression models (solid line). 



Fig. S18. Comparison of AVG-233 and AVG-388 cytotoxicity. Dose-response assays; 
Symbols represent means of individual biological repeats ± SD.  



Fig. S19. Mouse bodyweight and temperature. Clinical signs of animals from the efficacy 
studies shown in Fig. 5 F-I. Animals were treated orally with 50 mg/kg b.i.d. or 150 mg/kg b.i.d. 
(AVG-388 high dose only), and body weight and temperature determined. Symbols represent 
individual biological repeats (individual animals), lines connect group means.  





Fig. S20. Lung histopathology. Photomicrographs of lung sections extracted 4.5 days after 
infection of animals and subjected to H&E staining, shown at 10´ (top; scale bar 100 µm) and 
20´ (bottom; scale bar 50 µm) magnification. n=3 per treatment group; mock-infected animals 
(mock; n=2) received buffered saline instead of virus inoculum. Bl, blood vessel; Br, bronchiole; 
arrow, interstitial pneumonia; asterisks, alveolitis.  



Fig. S21. Schematic of the chemical synthesis strategy of the AVG scaffold. Reagents and 
conditions to generate analogs A and B from compound 1 with intermediates 2, 3, and 4 were (a) 
Dimethyl 1,3-acetonedicarboxylate, toluene, reflux, 12 hours, 90%; (b) MeC(OEt)3, AcOH, 
CH3CN, 70°C, 12 hours; (c) (6-Chloropyridin-2-yl)methanamine dihydrochloride, DIPEA, 
CH3CN, 2 hours, DBU, 2-4 hours, 35%; and (d) substituted benzyl halide, DIPEA, 50°C, 2-3 
hours, 40-50%.  



Fig. S22. Schematic of the chemical synthesis strategy of AVG analog C. Reagents and 
conditions to generate analog C from compound 5 (prepared as shown in Fig. S21) were (a) 
NaN3, NH4Cl, DMF, 48 hours, 110°C, 36%.  



Table S1. 

Compound 

Cell line or type in vitro RdRP 
HEp-2 “F1” HAE “M4” HAE 

EC50 
(µM) 

95% 
CI 

CC50 
(µM) 

95% 
CI 

EC50 
(µM) 

95% 
CI 

CC50 
(µM) 

95% 
CI 

EC50 
(µM) 

95% 
CI 

CC50 
(µM) 

95% 
CI 

IC50 
(µM) 

95% 
CI 

AVG-233 0.24 

0.21 
to 

0.27 >50 >50 0.36 
0.25 to 

0.52 >45 >45 0.11 

0.06 
to 

0.20 >45 >45 6.83 

3.36 
to 

14.58 

AVG-388 0.05 

0.05 
to 

0.06 >10 >10 0.13 
0.09 to 

0.18 >10 >10 0.15 

0.09 
to 

0.25 >10 >10 1.25 

0.15 
to 

21568 

AVG-389 0.09 

0.09 
to 

0.10 >5 >5 0.16 
0.12 to 
0.2149 >45 >45 0.07 

0.05 
to 

0.10 >45 >45 1.88 

0.60 
to 

6.60 

AVG-390 0.11 

0.10 
to 

0.13 >45 >45 0.39 
0.27 to 

0.56 >45 >45 0.25 

0.12 
to 

0.57 >45 >45 4.62 

1.69 
to 

14.10 

AVG-391 0.96 

0.79 
to 

1.18 >45 >45 2.35 
1.29 to 

5.01 >45 >45 3.30 

1.21 
to 

35.02 >45 >45 17.39 

15.89 
to 

19.04 

AVG-392 0.81 

0.71 
to 

0.93 >45 >45 0.92 
0.64 to 

1.33 >45 >45 1.53 

0.54 
to 

8.83 >45 >45 23.11 

15.30 
to 

35.74 

AVG-435 0.2 

0.15 
to 

0.27 >5 >5 nd nd nd nd nd nd nd nd 0.89 

0.29 
to 

3.20 

AVG-436 0.08 

0.07 
to 

0.11 >5 >5 nd nd nd nd nd nd nd nd 4.63 

2.12 
to 

10.65 

AVG-445 0.2 

0.15 
to 

0.26 >5 >5 nd nd nd nd nd nd nd nd 5.53 

1.28 
to 

37.21 
Efficacy of AVG series in vitro. Dose response inhibition assays of recRSV-fireSMASh 
incubated with selected AVG-233 fluorine and chlorine analogs in a human cell line or primary 
human airway epithelium cells (CI, confidence interval; nd, not determined).  



Table S2. 
Assay Cell line RSV L AVG-233 EC50 95% CI AVG-388 EC50 95% CI 

minireplicona HEK-293T WT 0.15 0.11 to 0.19 0.15 0.12 to 0.19 
minireplicona HEK-293T L1502Q 24.04 18.46 to 30.95 89.45 61.84 to 161.4 
minireplicona BSR T7/5 WT 0.19 0.13 to 0.32 0.31 (-) 
minireplicona BSR T7/5 L1502Q 29.16 18.03 to 45.81 78.2 52.38 to 147.3 
minireplicona BSR T7/5 H1632Q 4.57 2.85 to 7.17 6.24 1.87 to 33.15 
recombinantb HEp-2 WT 0.24 0.23 to 0.25 0.09 0.08 to 0.10 
recombinantb HEp-2 L1502Q >100.0 >100.0 >100.0 >100.0
recombinantb HEp-2 Y1631H 2.19 (-) 2.72 1.43 to 5.26 
recombinantb HEp-2 H1632Q 4.42 (-) 4.81 (-) 

Comparison of AVG-233 and AVG-388 resistance profiles. Minireplicon activitya and 
recRSV-fireSMAShb activity in the presence or absence of resistance mutations in RSV L (CI, 
confidence interval).  



Table S3. 

compound dose 
Lung viral load reduction (log10 

TCID50/ml) relative to vehicle-treated SD 
AVG-233 50 mg/kg bid -0.44 0.38 
AVG-388 50 mg/kg bid -1.3 0.25 
AVG-388 150 mg/kg bid -1.9 0.23 
AVG-389 nd nd nd 
AVG-390 50 mg/kg bid -0.5 0.26 
AVG-391 nd nd nd 
AVG-392 nd nd nd 
AVG-435 50 mg/kg bid -0.44 0.36 
AVG-436 50 mg/kg bid -0.89 0.14 
AVG-445 50 mg/kg bid -1.1 0.16 

Efficacy of AVG series in vivo. Lung viral load 4.5 days post-infection after therapeutic 
treatment (10 hours after infection).  



Data S1. Source data file containing all quantitative raw data for main and supplementary 
figures.  
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