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Supplementary Fig. S1   Diagram of the bubble reactor used to produce gas plasma-activated 
water (GPAW). The bubble reactor includes 12 high voltage AC electrodes in a dielectric material 
fixed below a gas permeable stainless-steel membrane. Above the membrane is a tank containing 
100 ml of deionised (dH2O; water purifier system Select Purewater 300, Purite Ltd., Trevose, 
Pennsylvania, USA). Carrier gas flows past the electrode, and then through the membrane and 
dH2O. For activation, plasma is formed between the electrodes and the membrane within the carrier 
gas and then flows through the membrane bubbling up through the water to produce the GPAW. 
Major chemical species produced with the bubble reactor were quantified (Figure 2). The non-
equilibrium chemistry triggered by atmospheric pressure plasmas in contact with water is complex 
(Bruggeman et al., 2016; Lu et al., 2016) and here we highlight only some of the key pathways that 
lead to the formation of the reactive species that have been identified to play a concerted role in the 
release of physiological dormancy of seeds, namely NO3

-, •OH, H2O2 and •NO.  
 
•OH (hydroxyl radical): 
Although reactive plasma species such as O, 1O2, •H and HO2

• as well as VUV radiation can 
dissociate water molecules and produce hydroxyl radicals (Bruggeman et al., 2016), hydroxyl 
radicals in plasma systems are primarily formed at the gas liquid interface by electron impact 
dissociation [1] of water molecules (Vasko et al., 2014): 
 

 e + H2O ® e + •OH + •H  [1] 
 
•OH radicals are short-lived and therefore they do not contribute to the •OH radicals observed hours 
after the plasma treatment. Instead, in GPAW, •OH radicals keep being produced well after the 
plasma treatment has ended via secondary reactions such as Fenton reactions when metal ions are 
present [2], quenching of hydrogen peroxide by long lived species such as ozone [3] and 
decomposition of peroxynitrite [4], which forms in the water as a result of reactions of reactive oxygen 
and nitrogen species species (Bruggeman et al., 2016; Lukes et al., 2014): 
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 Fe2+ + 2H2O2 ® Fe3+ + •OH + HO2

• + H2O [2] 
 O3 + H2O2 → HO2

• + •OH + O2 [3] 
 O=NOOH ® •NO2 + •OH [4] 

 
H2O2 (hydrogen peroxide): 
The main reaction leading to the formation of H2O2 is the recombination of hydroxyl radicals [5] 
(Vasko et al., 2014; Winter et al., 2014): 
 

 •OH + •OH ® H2O2 [5] 
 
Unlike hydroxyl radicals, hydrogen peroxide is fairly long-lived and can be detected in GPAW long 
after the plasma treatment has ended. Reactions contributing to the decay over time of H2O2 include 
the ozone and iron catalysed decomposition reactions (2 and 3) and in acidic conditions, the reaction 
with nitrite ions to form peroxynitrite [6] (Lukes et al., 2014):  
 

 NO2
- + H2O2 + H+ ® O=NOOH + H2O  [6] 

 
NO2

- (nitrite) and NO3
- (nitrate): 

Nitrites and nitrates are formed in plasma-treated water through dissolution of nitrogen oxides, 
nitrous acid and nitric acid formed in the plasma by gas-phase reactions of dissociated N2, O2 and 
H2O [7-10] (Bruggeman et al., 2016; Lukes et al., 2014; Sakiyama et al., 2012): 
 
 HNO3 ® NO3

- + H+ [7] 
 HNO2 ® NO2

- + H+ [8] 
 •NO2 + •NO2 + H2O → NO2

− + NO3
− + 2H+ [9] 

 •NO + •NO2 + H2O → 2NO2
− + 2H+ [10] 

 
The relative concentrations of NO3

-, NO2
- and H2O2 in GPAW under acidic conditions is regulated by 

peroxynitrite, which favours the formation of nitrate over nitrite and hydrogen peroxide over time [4,6] 
(Lukes et al., 2014). 
 
•NO (nitric oxide): 
Nitric oxide is produced in the gas plasma as a result of the dissociation of N2 and O2 and can partly 
dissolve in water before it is converted into other NOx species [11-13] (Sakiyama et al., 2012): 
 

 N2
* + O ® •NO + •N [11] 

 O2 + •N ® •NO + O [12] 
 •N + •OH ® •NO + •H [13] 

 
Besides direct solvation, •NO is also produced at the liquid interface and inside water by reduction 
of plasma generated nitrogen dioxide [14,15] (Jablonowski et al., 2018): 
 
 •NO2 + O ® •NO + O2 [14] 
 •NO2 + O3 ® •NO + 2O2 [15] 
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Supplementary Fig. S2   Simplified schematic presentation of ROS and RNS signalling pathways 
in plants. Major chemical species produced in GPAW include NO3

-, •NO, H2O2 and •OH (Figure 2, 
Supplementary Figure S1) which are also produced in planta and are known for their signalling roles 
(Nonogaki, 2017) and direct chemical actions on cell walls (Müller et al., 2009). In brief, in imbibed 
seeds the CYP707A2 gene encoding ABA 8'-hydroxylase to catalyse ABA degradation , is known to 
be induced by NO3

- via the NLP8 master regulator (Duermeyer et al., 2018; Nonogaki, 2017; Yan et 
al., 2016). RNS signalling by •NO which is known to be generated in planta (Kolbert et al., 2019; Liu 
and Zhang, 2009) also leads to reduced ABA biosynthesis and by signalling via E3 ubiquitin ligase 
PRT6 (as depicted in the simplified scheme) and other components of the N-end rule pathway 
(Holdsworth et al., 2020; Holman et al., 2009) or by S-nitrosylation (not presented in the simplified 
scheme) (Albertos et al., 2015) to the removal of ABA sensitivity by ABI5 proteolysis. ROS signalling 
by •OH, H2O2 and other ROS leads in seeds to the induction of the GA3OX genes to catalyse the 
biosynthesis of bioactive GA (Bailly, 2019; Liu et al., 2010). High H2O2 concentrations (5-10 mM) are 
required for the very early up-regulation of GA3OX1 and CYP707A2 genes in imbibed seeds, low 
H2O2 concentrations (< 1mM) are less effective (Liu et al., 2010). Apoplastic ROS (aROS) produced 
in the cell wall of seed compartments are involved in embryo expansion growth and micropylar 
endosperm weakening (Graeber et al., 2014; Müller et al., 2009; Steinbrecher and Leubner-Metzger, 
2017; Zhang et al., 2014). Experimentally produced •OH (Fenton reaction) for example caused a ca. 
50% decrease in the L. sativum CAP puncture force within one hour (Müller et al., 2009). Expansins 
(EXPA) and xyloglucan endo-transglycosylases/hydrolases (XTH) including through their xyloglucan 
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endo-transglycosylase enzyme activity (XET) enzyme activity are involved in promoting testa rupture 
and enhanced endosperm CAP weakening (Chen et al., 2002; Graeber et al., 2014; Steinbrecher 
and Leubner-Metzger, 2017; Voegele et al., 2011). Due to the altered balance in GA and ABA 
metabolism and sensitivity release dormancy and shift the seed state towards the germination 
programme (Finch-Savage and Leubner-Metzger, 2006). 
 

 

 

 
 
 
 
Supplementary Fig. 3   GPAW-induced gene expression associated with dormancy release and 
germination. RT-qPCR analyses of Arabidopsis thaliana C24 seed transcript abundances at 6 h and 
24 h, as indicated, for key genes encoding the dormancy master regulator (DOG1), a transcription 
factor conferring seed ABA sensitivity (ABI5), and a GA inactivation enzyme (GA2OX2) known to be 
involved in dormancy and germination. Relative mean ± SEM values compared to the 6-h control 
(set to 1 for each gene) are presented for the control, Air-GPAW, He/O2-GPAW, NO3

- and H2O2 
treatments. Relative mean ± SEM values compared to the 6-h control are presented. 
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Supplementary Fig. S4   Spatiotemporal expression of cell wall remodelling genes in germinating 
Lepidium sativum seeds. Transcriptome analysis (microarrays) of EXPA and XTH gene expression 
in L. sativum FR14 seed compartments (Scheler et al., 2015) as specified in the legend. (A) 
LesaEXPA2, for which the expression is endosperm-specific. (B) Cumulative values for all 18 
detected LesaEXPA genes (EXPA1,2,4,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21). (C) LesaXTH5. 
(D) LesaXTH18. (E) Cumulative values for all 24 detected LesaXTH genes (XTH1,4,5,6,8,9,10,13, 
15,16,17,18,19,20,22,23,24,25,27,28,30,31,32,33). (F) Interestingly, and in agreement with a role of 
in promoting endosperm weakening and testa rupture, most of the XTH genes are expressed in the 
endosperm and about half of the XTH genes are differentially expressed in that they are, as upon 
GPAW treatment, up-regulated upon testa rupture in L. sativum and A. thaliana (Supplementary 
Figures S4F and S5). 
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Supplementary Fig. S5   Spatiotemporal expression of cell wall remodelling genes in germinating 
Arabidopsis thaliana seeds. Transcriptome analysis (microarrays) of EXPA, XTH, and hormone-
related gene expression in A. thaliana seed compartments (Dekkers et al., 2013) as specified in the 
legend. (A) AtGA3OX1. (B) AtXTH5. (C) AtEXPA2. (D) AtCYP707A2. (E) AtXTH18. (F) Arabidopsis 
thaliana XTH genes up-regulated upon testa rupture; note that Dekkers et al. (2013) identified 503 
genes in the endosperm and 283 genes in the radicle which are upregulated by testa rupture. 
Transcript abundances (log2) (Dekkers et al., 2013) from the eFP browser (Winter et al., 2007) are 
presented.  
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Supplementary Table S1   Primer sequences used for RT-qPCR 

Gene name Gene ID  Primer sequences (5’-3’) Annealing 
Temp (°C)b 

Refer-
ence 

      
CYP707A2 At2g29090 Fw CGTCTCTCACATCGAGCTCCTT 60 [1] 

  Rev CCAAAAGTCCATCAACACCCTC   

GA3OX1 At1g15550 Fw TCCGAAGGTTTCACCATCACT 60 [2] 
  Rev TCGCAGTAGTTGAGGTGATGTTG   

NCED2 At4g18350 Fw GCGGCTGAGCGTGCATTAA 60 [3] 

  Rev GGGAATAATTCCCGGCAATCT   
NCED9 At1g78390 Fw GGAAAACGCCATGATCTCACA 60 [3] 

  Rev AGGATCCGCCGTTTTAGGAT   

XTH5 At5g13870 Fw CACGTCGATGGATGTGAAGCT 64 [4] 
  Rev CTTTCTGATCCCACCAACGTTT   

EXPA1 At1g69530 Fw AACGCACACGCCACATTCTAC 64 [5] 

  Rev CGTGTTGGTTCCATAGCCTTG   
EXPA2 At5g05290 Fw CATAAACTCCGACGACAACG 64 [6] 

  Rev TACCCACAAGCACCACCCAT   

EXPA8 At2g40610 Fw GCTCAAAAACACAGTCGTGGC 64 [5] 
  Rev CGTTACCTGGAAGGAAAGGCT   

DOG1 At5g45830 Fw GAGCTGATCTTGCTCACCGATGTAG 60 [7] 

  Rev CCGCCACCACCTGAAGATTCGTAG   
ABI5 At2g36270 Fw CAGCTGCAGGTTCACATTCTG 60 [2] 

  Rev CACCCTCGCCTCCATTGTTAT   

GA2OX2 At1g30040 Fw CCTAAAACCTCCGCCGTTTT 60 [2] 

  Rev CCTTCATGTACTCCTCCACCGA   
Hobbita At2g20000 Fw ACAAGACACTACAACGCATGGTAC 60 [7] 

  Rev TCTCTAGTGCTTCCTCACTTCTCTTC   
TIP41-Likea At4g34270 Fw GTGAAAACTGTTGGAGAGAAGCAA 60 [8] 

  Rev TCAACTGGATACCCTTTCGCA  [9] 
      

a Reference gene; b Annealing temperature used in qPCR assays; c References: [1] (Kushiro et al., 
2004), [2] (Ogawa et al., 2003), [3] (Seo et al., 2004), [4] (Liu et al., 2010), [5] (Sanchez-Montesino 
et al., 2019), [6] (Yan et al., 2014), [7] (Nakabayashi et al., 2012), [8] (Czechowski et al., 2005), [9] 
This study. 
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