Supplementary data for

Mechanistic insights into photochromic 3H-naphthopyran

showing strong photocoloration

Błażej Gierczyk^a, Michał F. Rode^{b,*} and Gotard Burdzinski^{c,*}

^a Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland,

^b Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland, E–Mail: <u>mrode@ifpan.edu.pl</u> (M.R.),

^c Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland, E–Mail: <u>gotardb@amu.edu.pl</u> (G.B.)

Synthesis of compound 2

(3-(2-Methoxyphenyl)-3-phenyl-3H-benzo[f]chromene

2-Methoxybenzophenone

To the solution of 2-hydroxybenzophenone (2.00 g, 10.1 mmol) in dry acetone (50 mL), anhydrous potassium phosphate (5.00 g, 23.6 mmol) and iodomethane (1.3 mL, 20.9 mmol) were added. The mixture obtained was stirred and refluxed over 5 h. After cooling, the solids were filtered off, and the solvent was evaporated. Product was purified by column chromatography on silica, using chloroform/hexane 1:1 (v/v) as eluent; yield 2.02 g (94%) as a colorless oil.

¹H NMR (CDCl₃): δ 7.81 (2H, *pseudo*d), 7.54 (1H, *pseudo*t), 7.46 (1H, dd), 7.42 (2H, *pseudo*t), 7.35 (1H, dd), 7.04 (1H, t), 6.99 (1H, d), 3.72 (3H, s).

¹³C NMR (CDCl₃): δ 196.4, 157.3, 137.8, 133.0, 131.8, 129.8, 129.6, 128.9, 128.2, 120.5, 111.4, 55.6.

1-(2-Methoxyphenyl)-1-phenyl-2-propyn-1-ol

2.00 g (9.4 mmol) of 2-methoxybenzophenone was dissolved in dry THF (50 ml) and 50 ml of 0.5 M ethynylmagnesium bromide (25 mmol) solution in THF was added dropwise. The mixture obtained was stirred over 24 h at room temperature, then 100 ml of 5% aqueous NH₄Cl solution was added. The product was extracted with diethyl ether (2 x 100 ml), the organic layer was dried over Na₂SO₄, and the solvent was evaporated in a vacuum. The obtained oil was purified by flash chromatography on SiO₂, using CHCl₃ as eluent; yield: 1.65 g (74%) of a yellow oil.

¹H NMR (CDCl₃): δ 7.54 (2H, *pseudo*d), 7.40 (1H, dd), 7.34 (2H, *pseudo*t), 7.31 (1H, ddd), 7.29 (1H; *pseudo*t), 6.96 (1H, td); 6.93 (1H, dd), 4.90 (1H, s), 3.76 (3H, s), 2.82 (1H, s). ¹³C NMR (CDCl₃): δ 156.8, 144.0, 132.1, 129.6, 128.4, 128.0, 127.6, 126.2, 120.9, 112.2, 85.6, 75.1, 74.2, 55.8.

3-(2-Methoxyphenyl)-3-phenyl-3*H*-benzo[*f*]chromene

A solution of 1.00 g of 1-(2-methoxyphenyl)-1-phenyl-2-propyn-1-ol (4.2 mmol), 0.61 g of 2-naphthol (4.2 mmol), 1.5 mL of triethyl orthoformate (9 mmol), and 50 mg of pyridine tosylate (catalyst) in 30 mL of dry 1,2-dichloroethane was heated over 5 h under reflux in an inert atmosphere and protected from light. After cooling, the solvent was evaporated in a vacuum, the residue was dissolved in 25 mL of dichloromethane, and this solution was washed with

water (2 x 20 mL). The organic layer was dried over Na_2SO_4 , evaporated, and the product obtained was purified by column chromatography on SiO₂ using chloroform/hexane 1:1 (v/v) as eluent; yield 1.37 g (89%) as off-white fluffy crystals (m.p. 152-153°C).

¹H NMR (CDCl₃): δ 7.96 (1H, d, 8.3 Hz; H7), 7.76 (1H, dd, 7.7 & 1.7 Hz; H6'), 7.71 (1H, d, 8.1 Hz; H10), 7.65 (1H, d, 8.8 Hz; H6); 7.46 (1H, overlapped; H8), 7.45 (2H, *pseudod*; H2"), 7.31 (1H, ddd, 8.1, 6.8 & 1.0 Hz; H9), 7.28 (3H, m; H4', H3"), 7.25 (1H, d, 10.2 Hz; H1), 7.22 (1H, *pseudot*; H4"), 7.19 (1H, d, 8.8 Hz; H5), 6.97 (1H, dd, 7.7 & 1.1 Hz; H5'), 6.88 (1H, dd, 8.1 & 0.9 Hz; H3'), 6.56 (1H, d, 10.2 Hz; H2), 3.56 (3H, s; H7')

¹³C NMR (CDCl₃): δ 155.7 (C2'), 150.3 (C13), 144.4 (C1"), 132.4 (C1'); 129.8 (C11), 129.4 (C6), 129.3 (C12), 128.9 (C4'), 128.5 (C10), 127.8 (C3"), 127.4 (C6'), 127.3 (C4"), 127.1 (C2"), 126.8 (C2), 126.4 (H8), 123.4 (C9), 121.3 (C7), 120.5 (C5'), 118.6 (C1), 118.3 (C5), 113.8 (C14), 112.4 (C3'), 82.1 (C3), 55.5 (C7')

2-Methoxybenzophenone in CDCl₃

Figure S1. UV-vis molar extinction spectrum of 2 in cyclohexane.

Figure S2. Colored species are generated upon UV irradiation at 365 nm (period 1 min, 4.1 mW/cm²) of **2** in cyclohexane (A(365) = 0.39) at 21 °C (A) Transient absorption UV-vis spectra determined at delays related to the moment of UV irradiation cessation (B) Kinetics trace probed at 421 nm can be fitted with a biexponential function, the short time-constant τ_1 =17.5 min corresponds to **TC2** population, while the long component (τ_2 = 16 h) describes the **TT** population decay.

Table S1. Vertical excitation energy, ΔE^{VE} (in eV) and λ_{abs} (in nm), oscillator strength, *f*, and dipole moment, μ_e (in Debye), of the lowest excited singlet states calculated with the CC2/aug-cc-pVDZ method for the ground state equilibrium forms optimized at the MP2/cc-pVDZ theory level. Dipole moment of the ground-state, μ_g (in Debye, MP2/cc-pVDZ).

S ₀ form		ΔE^{VE}	X abs	f	μe					
colorless CF forms										
CFa	S_0	0.056 ^a			$\mu_{g} = 1.8$					
	$S_0 \rightarrow S_1(\pi \pi^*)$	3.68	337	0.077	2.5					
	$S_0 \rightarrow S_2(\pi \pi^*)$	4.24	293	0.082	1.6					
	$S_0 \rightarrow S_3(n\pi^*)$	4.55	273	0.004	4.9					
e e	$S_0 \rightarrow S_4(n\pi^*)$	4.70	264	0.073	3.9					
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.79	259	0.004	8.8					
~ 7 8	$S_0 \rightarrow S_6(\pi \pi^*)$	4.84	256	0.085	13.0					
	-									
СЕБР	\mathbf{S}_0	0.064 ^a			$\mu_{g} = 2.6$					
	$S_0 \rightarrow S_1(\pi \pi^*)$	3.70	335	0.075	4.1					
	$S_0 \rightarrow S_2(\pi \pi^*)$	4.22	294	0.044	2.5					
	$S_0 \rightarrow S_3(\pi \pi^*)$	4.59	270	0.003	3.7					
	$S_0 \rightarrow S_4(\pi \pi^*)$	4.73	262	0.018	5.5					
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.79	259	0.041	3.7					
×	$S_0 \rightarrow S_6(n\pi^*)$	4.91	253	0.006	6.4					
CFc	\mathbf{S}_0	0.0			$\mu_{g} = 2.4$					
	$S_0 \rightarrow S_1(\pi \pi^*)$	3.71	335	0.079	3.2					
	$S_0 \rightarrow S_2(\pi \pi^*)$	4.24	293	0.078	2.1					
	$S_0 \rightarrow S_3(n\pi^*)$	4.60	270	0.005	4.1					
	$S_0 \rightarrow S_4(\pi \pi^*)$	4.77	260	0.098	4.5					
	$S_0 \rightarrow S_5(n\pi^*)$	4.80	259	0.005	7.8					
	$S_0 \rightarrow S_6(\pi \pi^*)$	4.95	251	0.039	2.5					
	CF ₄ $S_0 = 0.113^a$ $\mu = 1.6$									
CF _d	\mathbf{S}_0	0.113 *	220	0.071	$\mu_g = 1.6$					
Sec. 27	$S_0 \rightarrow S_1(\pi \pi^*)$	3.00	339	0.0/1	3.0					
	$S_0 \rightarrow S_2(n\pi^*)$	4.23	293	0.047	1.5					
	$S_0 \rightarrow S_3(n\pi^*)$	4.58	2/1	0.003	4.4					
	$S_0 \rightarrow S_4(\pi \pi^*)$	4.66	200	0.005	0.8					
	$S_0 \rightarrow S_5(\pi \pi^*)$	4./0	261	0.089	2.5					
	$S_0 \rightarrow S_6(n\pi^*)$	4.84	256	0.001	5.7					
	colored TC	forms								
CTCa	S ₀	0.626 ^a		0.001	$\mu_{g} = 3.5$					
	$S_0 \rightarrow S_1(\pi \pi^*)$	2.72	456	0.034	2.1					
	$S_0 \rightarrow S_2(\pi \pi^*)$	2.94	422	0.659	6.3					
	$S_0 \rightarrow S_3(\pi \pi^*)$	3.53	352	0.041	8.5					
	$S_0 \rightarrow S_4(\pi \pi^*)$	3.74	332	0.061	12.3					
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.15	299	0.200	6.6					
1 I	$S_0 \rightarrow S_6(\pi \pi^*)$	4.34	286	0.045	3.9					
СТС	C	0.610a								
	\mathbf{S}_0	0.010*	156	0.027	$\mu_g = 4.1$					
	$S_0 \rightarrow S_1(\pi\pi^*)$	2.12	450	0.037	7.2					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$S_0 \rightarrow S_2(\pi \pi^*)$	2.91	410	0./10	1.5					
	$S_0 \rightarrow S_3(\pi\pi^*)$	3.55	352	0.082	0.3					
	$S_0 \rightarrow S_4(\pi \pi^*)$	3.82	323 209	0.033	7.2					
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.10	298	0.002	1.5					
Î Î	$S_0 \rightarrow S_6(\Pi \pi^*)$	4.34	200	0.005	11.4					

TTCc	<b>S</b> 0	0.655 ^a			$\mu_{g} = 3.1$
	$S_0 \rightarrow S_1(\pi \pi^*)$	2.74	453	0.028	0.9
	$S_0 \rightarrow S_2(\pi \pi^*)$	2.98	416	0.712	7.6
	$S_0 \rightarrow S_3(\pi \pi^*)$	3.55	350	0.082	6.3
1	$S_0 \rightarrow S_4(\pi \pi^*)$	3.79	327	0.025	14.9
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.16	298	0.069	8.5
TTCd	<b>S</b> ₀	0.670 ^a			$\mu_{g} = 2.2$
~ ~	$S_0 \rightarrow S_1(\pi \pi^*)$	2.70	460	0.095	1.8
a state of the second sec	$S_0 \rightarrow S_2(\pi \pi^*)$	2.88	431	0.639	6.0
	$S_0 \rightarrow S_3(\pi \pi^*)$	3.53	352	0.074	7.0
	$S_0 \rightarrow S_4(\pi \pi^*)$	3.80	327	0.058	10.7
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.15	299	0.111	6.3
	$S_0 \rightarrow S_6(\pi \pi^*)$	4.32	287	0.136	3.1
	colored TT	forms			
	<b>S</b> ₀	0.595 ^a			$\mu_{g} = 2.1$
The second se	$S_0 \rightarrow S_1(\pi \pi^*)$	2.87	432	0.156	1.1
	$S_0 \rightarrow S_2(\pi \pi^*)$	3.04	408	0.392	6.0
	$S_0 \rightarrow S_3(\pi \pi^*)$	3.60	345	0.069	2.8
	$S_0 \rightarrow S_4(\pi \pi^*)$	4.72	263	0.052	2.8
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.21	295	0.096	5.3
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.40	282	0.154	3.6
	<b>S</b> ₀	0.650 ª			$\mu_{g} = 3.0$
	$S_0 \rightarrow S_1(\pi \pi^*)$	2.81	442	0.118	1.2
A A A A A A A A A A A A A A A A A A A	$S_0 \rightarrow S_2(\pi \pi^*)$	3.09	402	0.589	7.3
	$S_0 \rightarrow S_3(\pi \pi^*)$	3.64	341	0.054	5.4
	$S_0 \rightarrow S_4(\pi \pi^*)$	3.83	324	0.024	14.4
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.22	294	0.133	8.0
	$S_0 \rightarrow S_5(\pi \pi^*)$	4.39	283	0.149	3.9
TTTc	S ₀	0.676 ^a	10.5	0.455	$\mu_{g} = 4.1$
	$S_0 \rightarrow S_1(\pi \pi^*)$	2.83	439	0.109	1.4
	$S_0 \rightarrow S_2(\pi \pi^*)$	3.10	400	0.585	8.2
· · · · · · · · · · · · · · · · · · ·	$S_0 \rightarrow S_3(\pi \pi^*)$	3.65	340	0.046	7.2
	$S_0 \rightarrow S_4(\pi \pi^*)$	3.92	324	0.042	16.9
La	$S_0 \rightarrow S_5(\pi \pi^*)$	4.23	293	0.133	8.1
, I	$S_0 \rightarrow S_6(\pi \pi^*)$	4.42	281	0.135	4.4
	C	0.0040			
	S ₀	0.694 ª	442	0.105	$\mu_{g} = 4.4$
	$S_0 \rightarrow S_1(\pi\pi^*)$	2.80	443	0.185	2.5
	$S_0 \rightarrow S_2(\pi \pi^*)$	3.01	412	0.500	6.9
	$S_0 \rightarrow S_2(\pi \pi^*)$	3.64	341	0.032	8.4
	B() / B3(111 )	0.00	011	0.0=2	10 5
	$S_0 \rightarrow S_3(\pi\pi^*)$ $S_0 \rightarrow S_4(\pi\pi^*)$	3.93	316	0.053	13.5
	$\frac{S_0 \rightarrow S_3(\pi\pi^*)}{S_0 \rightarrow S_4(\pi\pi^*)}$ $\frac{S_0 \rightarrow S_5(\pi\pi^*)}{S_0 \rightarrow S_5(\pi\pi^*)}$	3.93 4.21	316 295	0.053 0.160	13.5 7.9

**Table S2.** Comparison of geometric parameters (bond lengths, in Å, dihedral angles), adiabatic energies ( $E^a$ , in eV) of the excited state (S₁) and ground state (S₀) geometries of the species involved in photoreaction of **2** optimized respectively at the ADC(2)/cc-pVDZ and MP2/cc-pVDZ levels of theory, respectively. Here  $\sigma$  and  $\tau$  denote C₁₄=C₁-C₂=C₃ and C₅-C₁₃-C₁₄=C₁ dihedral angles, respectively.

S0- or S1- State Form	R1 C3–O4 [Å]	θ1 C13-C14=C1-C2 [°]	θ2 C1-C2=C3-C1' [°]	σ [°]	τ [°]	R2 C13–O4 [Å]	Rd C1–C14 [Å]	Rs C1–C2 [Å]	RE C2–C3 [Å]	Eª [eV]
S ₀ CFa	1.454	19.7	81.7	3.0	172.0	1.368	1.460	1.360	1.516	0.056
S ₀ INTa	2.835	17.6	6.0	43.0	154.8	1.240	1.389	1.446	1.380	0.844
$S_0 CTC_a$	4.196	5.6	-4.3	172.9	159.4	1.239	1.384	1.435	1.382	0.626
$\mathbf{S}_1^{\mathrm{CTCa}}$	3.953	22.8	-12.7	-177.2	174.1	1.401	1.475	1.370	1.434	2.210
$S_1^{TWa}$	4.647	92.0	-7.0	175.5	178.3	1.261	1.474	1.366	1.437	1.944
$S_1^{BPa}$	4.298	61.0	-63.9	179.9	176.3	1.264	1.477	1.346	1.491	1.965
S ₀ CFb	1.458	17.9	84.6	4.3	170.6	1.373	1.460	1.358	1.520	0.064
$S_0$ integration in the second seco	2.855	22.2	3.0	48.8	151.1	1.237	1.384	1.447	1.375	0.858
$\mathbf{S}_0$ CTCb	4.175	3.0	-9.6	176.0	159.2	1.239	1.386	1.437	1.382	0.610
$S_1^{CTCb}$	3.914	20.1	-15.9	-174.8	174.1	1.401	1.475	1.376	1.431	2.187
$S_0$ TWb	4.521	87.4	-11.7	-179.9	178.7	1.261	1.474	1.371	1.436	2.004
S1 BPb	4.311	66.9	-61.8	-176.4	175.7	1.265	1.482	1.343	1.488	2.106
S0 CFc	1.458	19.6	80.4	3.1	172.2	1.371	1.461	1.359	1.514	0.000
$S_1^{INTc}$	2.769	17.7	8.2	47.3	150.9	1.239	1.387	1.449	1.376	0.906
S ₀ TTCc	4.163	-1.7	8.5	-173.4	-159.6	1.239	1.385	1.439	1.383	0.655
S1 TTCc	3.910	-22.9	16.9	174.0	-174.1	1.398	1.478	1.372	1.439	2.237
$S_1$ TWc	4.350	-80.5	18.4	174.4	-176.1	1.263	1.476	1.365	1.446	2.023
S ₁ ^{BPc} co	llapses to	S1 ^{TWc}								
	•									
S ₀ CFd	1.459	18.8	77.9	6.2	170.2	1.370	1.461	1.358	1.517	0.113
S ₁ INTd	2.774	17.0	8.6	46.0	151.7	1.239	1.389	1.444	1.380	0.938
S ₀ TTCd	4.171	2.2	-8.6	173.7	160.0	1.240	1.387	1.436	1.385	0.670
S ₁ TTCd	3.995	25.7	-16.9	-177.2	175.7	1.402	1.482	1.369	1.443	2.166
S1 TWd	4.496	87.7	-17.8	-176.6	178.4	1.264	1.477	1.363	1.452	1.929
S1 BPd	4.345	57.9	-67.4	176.1	176.0	1.267	1.486	1.342	1.500	2.100

**Table S3.** Comparison of geometric parameters (bond lengths, in Å, dihedral angles), adiabatic energies ( $E^a$ , in eV) of the excited state (S1) and ground state (S0) geometries of the species involved in photoreaction of methyl derivative (3-(2-methylphenyl)-3-phenyl-3*H*-benzo[*f*]chromene) optimized respectively at the ADC(2)/cc-pVDZ and MP2/cc-pVDZ levels of theory, respectively. Here  $\sigma$  and  $\tau$  denote C14=C1-C2=C3 and C5-C13-C14=C1 dihedral angles, respectively.

So- or S1-	<b>R</b> 1	θ1	$\theta_2$			<b>R</b> ₂	RD	Rs	RE	г
State	C3-O4	$C_{13}-C_{14}=C_{1}-C_{2}$	$C_1 - C_2 = C_3 - C_{1'}$	σ	τ	C13-O4	C1-C14	C1-C2	$C_2-C_3$	Ea
Form	[Å]	[°]	[°]	[°]	[°]	[Å]	[Å]	[Å]	[Å]	[eV]
	<u></u>	.,	.,	CEa		L1	t1		11	
				Cra						
				- A						
				- De Co						
			G							
			R		0					
			, j	N 8						
			~							
			, j							
			0	8						
S ₀ CFa	1.459	20.0	82.4	2.4	172.1	1.372	1.460	1.360	1.517	0.00
S0 INTa	2.832	18.1	5.6	44.5	153.8	1.239	1.387	1.447	1.380	0.779
$\mathbf{S}_0  ^{\mathrm{CTCa}}$	4.180	4.2	-5.9	172.6	160.3	1.239	1.385	1.437	1.382	0.554
$S_1^{CTCa}$	3.949	19.8	-13.6	-177.4	-175.2	1.402	1.475	1.373	1.432	2.130
S1 ^{TWa}	4.497	88.9	-2.9	-177.5	178.5	1.261	1.474	1.370	1.435	1.954
S ₁ BPa	4.274	61.1	-59.2	-177.9	176.5	1.265	1.482	1.343	1.492	1.971
		0111		CFh	17 010	1.200	1110-	110 10	11.02	1071
				Cru	2°					
				<u> </u>	No.					
			c		<b>R</b>					
			,	🛁 🖌	=0					
			~							
				6 🎾						
Co CFb	1 /61	19.0	81.8	5.4	169.1	1 372	1 / 59	1 359	1 519	0.095
C. INTh	2 0 4 2	10.0	4.0	44.0	152.0	2.842	1.407	1.555	1.317	0.075
S0 TCh	2.045	20.2	4.0	44.0	150.0	2.045	1.307	1.440	1.379	0.657
S ₀ creb	4.185	3.8	-7.8	175.9	159.1	1.239	1.385	1.438	1.383	0.538
S ₁ CICB	3.928	19.9	-13.9	-175.9	174.2	1.403	1.475	1.376	1.430	2.118
So TWB	4.527	88.1	-9.4	179.9	179.1	1.261	1.474	1.371	1.436	1.907
S ₁ ^{BPb}										
				CFc						
				_	l l					
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
				No.	🤞 🔏 -					
			0	- • • • • •						
			~		ð					
			T							
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
So CFc	1.462	20.6	78.1	3.3	171.3	1,370	1.460	1,360	1.515	0.031
	2 766	17.5	95	45.8	151.1	1 2/1	1 389	1.000	1 378	0.835
<b>S</b> _o TTCc	4 157	1 2	8.3	172 5	158.2	1 220	1.385	1.440	1 382	0.605
C. TTC	2.007	1.2	-0.5	173.5	172.0	1.400	1.000	1.440	1.303	0.000
S1 TWo	3.900	23.4	-13.9	-173.3	175.0	1.400	1.480	1.372	1.439	2.178
51 ****	4.372	82.1	-13.6	-1/4.6	175.9	1.262	1.4/5	1.366	1.445	1.949
S1 Brc										

CFd										
So CFd	1.460	18.9	79.2	4.8	170.6	1.371	1.461	1.359	1.517	0.041
$S_0^{\rm INTd}$	2.763	17.3	8.3	47.3	150.5	1.239	1.387	1.449	1.377	0.837
$S_0 TTCd$	4.166	2.9	-0.9	175.9	158.9	1.240	1.386	1.437	1.383	0.633
S1 TTCd	3.973	16.9	-20.1	-178.4	175.5	1.400	1.477	1.373	1.437	2.172
$\mathbf{S}_{1}^{TWd}$	4.382	83.5	-17.4	-173.8	177.5	1.264	1.475	1.368	1.441	1.947
S1 BPd	4.317	61.7	-73.1	179.8	178.4	1.265	1.484	1.344	1.492	2.045

# **CF** conversion yield, assignment to **TC** and **TT** populations and determination of molar extinction coefficients $\varepsilon_{max}$ using time-resolved UV-vis and mid-IR absorption spectroscopies.

As we described in ¹, simultaneous recording of the absorption changes in UV-vis and mid-IR spectral ranges of a photochromic system induced by UV light irradiation is a powerful method for spectroscopic insights into the photoreaction. Representative set of data recorded in the time window 0 - 1600 s is shown below:

![](_page_13_Figure_2.jpeg)

**Figure S3.** (A) Transient absorption UV-vis-IR spectra recorded after 60 s of UV irradiation (LED 365 nm, 2.4 mW) used for a solution of **2** in cyclohexane (2.69 ×10⁻³ M) at 26°C. The inverse stationary FTIR absorption spectrum of **CF** is also included. (B) Distinctive peaks of **TC** isomers appear at 1645 cm⁻¹ and **TT** isomer at 1657 cm⁻¹. (C) Decay associated spectra  $A_1(\lambda), A_2(\lambda)$  and  $A_3(\lambda)$  calculated by global analysis of data using a three exponential function  $\Delta A(\lambda, t) = A_1(\lambda) \exp\left(-\frac{t}{\tau_1}\right) + A_2(\lambda) \exp\left(-\frac{t}{\tau_2}\right) + A_3(\lambda) \exp\left(-\frac{t}{\tau_3}\right)$ . Revealed lifetimes 12.4 s (**TC1**) and 10.7 min (**TC2**), while the third component was set as a fixed value (16 h). The inset shows spectral details in 1510-1670 cm⁻¹. (D) **CF** bleach recovery kinetics at 1087.7 cm⁻¹ occurs through thermal decay of **TC1**, **TC2** and **TT**. The fit is from global analysis (solid line). The relative path yield is estimated from the amplitude contribution  $A_i/(A_1 + A_2 + A_3)$ .

Figure S4A shows the transient spectra in the spectral ranges 380–580 nm and 1700–930 cm¹. At time of 0 s, a mixture of TC1, TC2, TT (positive bands) and the bleached CF species (negative bands) are observed. The bleached CF band at 0s can be compared with the scaled stationary FTIR band of the fresh **CF** solution. The found scaling factor is 0.38, which means that UV irradiation converted 38 % of the initial CF population. Figure S4B shows that IR data can clearly distinct spectrally the C=O vibrational band of the TC isomer (1645  $cm^{-1}$ ) and **TT** isomer (1657 cm⁻¹), in agreement with the reported ¹ values for the reference compound  $\mathbf{1}$ (TC at 1644 cm⁻¹ and TT at 1655 cm⁻¹). Figure S4C shows the decay associated spectra obtained by global analysis of recorded data, the inset shows clearly the spectral difference between TC and TT isomers, however, TC1 and TC2 show practically identical spectral signature. Thermal decays of TC1 and TC2 are characterized by time-constants 12.4 s and 10.7 min, respectively, which are shorter than those in Figure 2 (17.1 s and 17.5 min), due to the difference in temperature (26°C vs 21°C). Figure S4D presents the CF bleaching recovery, which can provide approximate information on relative TC1, TC2 and TT contributions: 23 %, 62 % and 15 %. The highest isomer population is TC2 with estimated concentration of [TC2]₀=0.63×10⁻³ M on the basis of (1) CF conversion yield of 0.38 (2) 62 % TC2 contribution in the CF bleached signal. Using the absorbance maximum A(TC2) in the visible range (see Fig. S4C – left side) one can calculate the respective molar extinction coefficients  $\varepsilon_{max}$ according to the formula:

$$\varepsilon_{max} = \frac{A(TC2)}{[TC2]_0 L f}$$
[1]

where A(TC2) is the respective isomer absorbance at time 0 s, A(TC2)=0.778 (Figure S4C),

 $[TC2]_0$  is the initial molar isomer concentration,  $[TC2]_0=0.63\times10^{-3}$  M

L is the optical length of solution (0.063 cm)

f is the angle correction factor (1.05) since UV-vis probe beam passes through a slightly longer solution layer in comparison to that of mid-IR beam. The angle of between IR and UV-vis beams is about 17°.

The obtained molar extinction coefficients for **TC2** is  $\varepsilon_{max} \approx 18700 \text{ M}^{-1}\text{cm}^{-1}$ , which is in excellent agreement with the one reported for **TC** isomer (18100 M⁻¹cm⁻¹) photogenerated from reference compound  $\mathbf{1}^2$ .

The method applied for **TC2**, can work also for **TC1** revealing  $\varepsilon_{max} \approx 18900 \text{ M}^{-1}\text{cm}^{-1}$ , while for **TT**  $\varepsilon_{max} \approx 29500 \text{ M}^{-1}\text{cm}^{-1}$ , however their accuracies are certainly lower due to smaller signal contribution in the UV-vis-IR transient absorption spectra.

Figure S4. Thermal decoloration  $TC \leftrightarrow INT \rightarrow CF$  for four starting TC geometries:  $CTC_a$ ,  $CTC_b$ ,  $TTC_c$  and  $TTC_d$ .

![](_page_15_Figure_1.jpeg)

#### **References:**

- 1 Brazevic, S., Nizinski, S., Szabla, R., Rode, M. F. & Burdzinski, G. Photochromic reaction in 3*H*-naphthopyrans studied by vibrational spectroscopy and quantum chemical calculations. *Phys. Chem. Chem. Phys.* **21**, 11861-11870, doi:https://doi.org/10.1039/C9CP01451A (2019).
- 2 Zhao, W. & Carreira, E. M. Oligothiophene-linked bisnaphthopyrans: sequential and temperature-dependent photochromism. *Chem. Eur. J.* **13**, 2671-2685 (2007).