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A1 ADDITIONAL SIMULATION STUDY SCENARIO: LOW RESPONSE DEPENDENCE

We expand the simulation study shown in Section 5 to include a lower response dependence scenario. Specifically we set the
dependence model parameter matrix, 𝚪 to be

( 20 0 0
−20 2 0
−20 0 2

)

which induced a day to day state transition matrix shown in Table A1.
We show the resulting average estimates, empirical standard errors and coverages in Table A2. We observe that in this setting,
when the proportional odds assumption is violated, 𝛽𝑝𝑝𝑜1𝑥𝑡 may not be a weighted average among dichotomization-specific inter-
action estimates from 𝑝𝑝𝑜2. For example, when (𝛽𝑝𝑝𝑜2𝑥𝑡,2 , 𝛽

𝑝𝑝𝑜2
𝑥𝑡,3 ) = (−0.2,−0.4), 𝛽𝑝𝑝𝑜1𝑥𝑡 = −0.297 is not a weighted average of the

three estimated interactions from 𝑝𝑝𝑜2, i.e., 0.206 (for 𝑘 ≤ 1), 0.005 = 0.206 − 0.201 (for 𝑘 ≤ 2), and −0.194 = 0.206 − 0.400
(for 𝑘 ≤ 3). This is also shown in the top right panel of Figure A1 where, under the severe PO assumption violation, the
𝑀𝐵𝑝𝑝𝑜1(𝑡𝑖𝑗) estimators capture a distinct quantity as compared to the other estimators. We highlight that this is a very severe
form of PO assumption violation that does not resemble the VIOLET data.

A2 LONGITUDINAL VERSUS CROSS-SECTIONAL MODELING COMPARISONS

In this simulation study, to examine the relative benefit of using longitudinal modeling approaches over a cross-sectional
approach, we generated data under the (𝛽𝑝𝑝𝑜2𝑥𝑡,2 , 𝛽

𝑝𝑝𝑜2
𝑥𝑡,3 ) = (0, 0) setting which corresponds to 𝑝𝑝𝑜1 or Model 1. We studied the
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TABLE A1: Transition matrix for the low response dependence setting

𝑌𝑖(𝑡𝑖𝑗) 𝑌𝑖(𝑡𝑖𝑗−1)
1 2 3 4

1 1.000 0.008 0.008 0.013
2 0.000 0.418 0.084 0.125
3 0.000 0.161 0.612 0.193
4 0.000 0.413 0.296 0.668

TABLE A2: Average parameter estimates, empirical standard errors, and coverage probabilities across 1000 replicates for model
fits from 𝑝𝑝𝑜1 and 𝑝𝑝𝑜2. In all cases, data were generated from a 𝑝𝑝𝑜2 model and fit with 𝑝𝑝𝑜2 and 𝑝𝑝𝑜1 models. In settings
where (𝛽𝑝𝑝𝑜2𝑥𝑡,2 , 𝛽

𝑝𝑝𝑜2
𝑥𝑡,3 ) = (0, 0), the 𝑝𝑝𝑜1 model is correctly specified. When this is not the case, it is misspecified and estimated

coefficients differ from 𝑝𝑝𝑜2 model. In this table we only show the low response dependence scenario

𝑝𝑝𝑜2 estimates 𝑝𝑝𝑜1 estimates
Dependence (𝛽𝑝𝑝𝑜2𝑥𝑡,2 , 𝛽

𝑝𝑝𝑜2
𝑥𝑡,3 ) 𝛽𝑝𝑝𝑜2𝑥,0 𝛽𝑝𝑝𝑜2𝑥𝑡 𝛽𝑝𝑝𝑜2𝑥𝑡,2 𝛽𝑝𝑝𝑜2𝑥𝑡,3 𝛽𝑝𝑝𝑜1𝑥,0 𝛽𝑝𝑝𝑜1𝑥𝑡

Low (0,0) True value -0.1 0.2 0 0 -0.1 0.2
Average Estimate -0.098 0.188 0.005 0.007 -0.098 0.197
Standard Error [0.093] [0.180] [0.075] [0.102] [0.093] [0.131]
Coverage (0.941) (0.944) (0.955) (0.952) (0.941) (0.946)

(-0.1,-0.2) True value -0.1 0.2 -0.1 -0.2 NA NA
Average Estimate -0.094 0.189 -0.098 -0.196 -0.089 -0.049
Standard Error [0.087] [0.171] [0.069] [0.096] [0.087] [0.125]
Coverage (0.954) (0.961) (0.948) (0.960) NA NA

(-0.2,-0.4) True value -0.1 0.2 -0.2 -0.4 NA NA
Average Estimate -0.104 0.206 -0.201 -0.400 -0.089 -0.297
Standard Error [0.091] [0.182] [0.065] [0.094] [0.091] [0.134]
Coverage (0.943) (0.948) (0.948) (0.949) NA NA

high and moderate response dependence and with a) complete follow-up (similar to VIOLET), 2) dropout completely at ran-
dom (DCAR) with 50% of subjects at risk for uniform dropout from 𝑗 = 5,… , 19, and 3) dropout at random (DAR) with a
probability of 0.075 of being censored after each observation in the highest (𝑘 = 4; at-home) outcome state. We then compared
the averaged estimates and empirical standard errors for three estimators of 𝑀𝐵𝑝𝑝𝑜1(𝑡𝑖𝑗 = 10): 1) OMTM1 summarized at
𝑡𝑖𝑗 = 10, 2) GEE with an independence working covariance structure (GEE-I) summarized at 𝑡𝑖𝑗 = 10, and 3) a cross-sectional
analysis at 𝑡𝑖𝑗 = 10 that ignores the longitudinal structure. We expect that by using longitudinal methods, e.g., OMTM1 and
GEE-I, we can improve efficiency of the estimators by exploiting the linear (on the 𝑙𝑜𝑔10 scale) structure of the intervention
effect estimates over time. Among the longitudinal modeling approaches, by using OMTM1 instead of GEE-I, we can improve
efficiency further by incorporating an accurate model for higher moments in addition to the univariate CPM captured by GEE-I.
The likelihood-based OMTM1 estimator, which is based on a properly specified model, is also anticipated to be more robust to
the DAR mechanism we study here. We summarize results across 750 replicates.

The data generating model yielded a treatment effect estimate log odds ratio at 𝑡𝑖𝑗 = 10 to be equal to 0.1. As
shown in Table A3, with complete follow-up data and in the high response data setting (most similar to VIOLET),
the average parameter estimates (empirical standard errors) for the OMTM1, GEE-I, and cross-sectional analyses were
0.100 (0.102), 0.100 (0.113) and 0.099 (0.120), respectively. Compared to the cross-sectional estimator, the OMTM1 and GEE-I
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FIGURE A1: Model-based and model-assisted summaries: For low response dependence settings, we report averages of the
𝑡𝑖𝑗−specific estimates of intervention effects using a global log odds ratio [𝐿𝑂𝑅(𝑡𝑖𝑗)] and the empirical standard errors (ESE)
across 1000 replicates. We includes scenarios with no violation [(𝛽𝑝𝑝𝑜2𝑥𝑡,2 , 𝛽

𝑝𝑝𝑜2
𝑥𝑡,3 ) = (0, 0)], moderate violation [(𝛽𝑝𝑝𝑜2𝑥𝑡,2 , 𝛽

𝑝𝑝𝑜2
𝑥𝑡,3 ) =

(−0.1,−0.2)], and severe violation [(𝛽𝑝𝑝𝑜2𝑥𝑡,2 , 𝛽
𝑝𝑝𝑜2
𝑥𝑡,3 ) = (−0.2,−0.4)] of the proportional odds assumption for the intervention effect.

estimators had relative efficiencies of (0.120∕0.102)2 = 1.38 and (0.113∕0.102)2 = 1.23, respectively. With moderate response
dependence and/or DCAR, relative efficiency for the longitudinal approaches over cross-sectional analyses were even more dra-
matic and were as high as (0.148∕0.092)2 = 2.59 under DCAR and moderate response dependence. We can also see, particularly
with high response dependence, the improved accuracy of the OMTM1 estimators under DAR.
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TABLE A3: Longitudinal versus cross-sectional modeling: Average Estimates (Empirical Standard Errors) for the𝑀𝐵𝑝𝑝𝑜1(𝑡𝑖𝑗 =
10) intervention effect.

Response Dependence
Estimation High Moderate

Complete Follow-up OMTM1 0.100 (0.102) 0.098 (0.087)
GEE-I 0.100 (0.113) 0.100 (0.104)
Cross-sectional 0.099 (0.120) 0.100 (0.129)

DCAR OMTM1 0.102 (0.109) 0.100 (0.092)
GEE-I 0.100 (0.127) 0.100 (0.113)
Cross-sectional 0.099 (0.144) 0.100 (0.148)

DAR OMTM1 0.101 (0.112) 0.098 (0.100)
GEE-I 0.095 (0.124) 0.097 (0.121)
Cross-sectional 0.087 (0.142) 0.094 (0.161)
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