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Supplementary Information  
 

Supplementary Results 
Behavioral Annotations 
 
Participants exhibited a wide range of positive (range: 42-164), negative (range: 34-133), and neutral (range: 277-499, 
Table S4, for example see Subject 3) behaviors that aligned with clean neural signals that were free from epileptic activity 
(Extended Data Figure 2). Overall, our dataset included more instances of positive (mean ± sem = 112 ± 17, n = 10 
participants) than negative (mean ± sem = 61 ± 19, n = 5 subjects) affective behavior. While smiling and laughing occurred 
frequently, pain-discomfort and negative verbalizations were less common (Extended Data Figure 1). 
 
Clustering Analyses 
 
We conducted hierarchical clustering in each participant (See “Clustering” in Methods and Supplementary Figure 8), an 
objective way to map the features that characterized the positive and negative affective behaviors from each decoder. While 
we observed common changes in spectral power across mesolimbic regions during positive and negative affective 
behaviors, clustering the features allowed us to control for possible collinearity between features (e.g., increased high 
gamma activity in multiple brain structures during positive affective behaviors might have driven our previous results, Figure. 
3-A). This clustering analysis identified two clusters—a “gamma” cluster and a “low-frequency” cluster (Extended Data 
Figure 5)—from the positive and negative decoders that separated affective from neutral behaviors based on spectral bands 
rather than regions (Supplementary Figure 8). These results suggested that, at an individual level, simultaneous increases 
in gamma activity and decreases in low-frequency activity across the mesolimbic network characterized both positive and 
negative affective behaviors when compared to neutral behaviors. In general, affective behaviors were separated from 
neutral behaviors along a spectral rather than spatial distribution (in which specific regions, not frequency bands, had 
predominant roles in certain behaviors). There were some exceptions to this pattern, however, in individual participants 
(Participant 5, Supplementary Figure 9).  
 
We next investigated whether the spectral patterns that we observed for affective behaviors at the individual level 
(Supplementary Figures 9 & 10) were found across the sample, regardless of each participant’s spatial coverage. 
Proceeding to extraction of the difference scores using the feature medians in each affective class and populating these 
scores across participants (See Methods “Feature Normalization for group level analyses” & “Clustering” & Supplementary 
Figure 11), we found that consistent with the results from the clustering analyses conducted at the individual level, positive 
affective behaviors were characterized by higher median values in the gamma cluster (Figure 3-E) and lower median values 
in the low frequency cluster (median of gamma cluster = 1.12 vs. low frequency cluster = -1.43, ranksum test, p < 0.0001) 
than neutral behaviors. A similar pattern was found for negative affective behaviors when they were compared to neutral 
behaviors (Figure 3-F, median of gamma cluster = 0.68 vs. low frequency cluster = -0.92, ranksum test, p < 0.0001). In sum, 
simultaneous increases in high frequency activity and decreases in low frequency activity within the mesolimbic network 
may be a common network signature of both positive and negative affective behaviors. 
 
Feature importance from binary decoders 
  
To determine which of the selected features played a dominant role in the decoder models of each participant, we pooled 
the feature importance, which was generated by the RF models, for the gamma and low-frequency clusters from both the 
positive and negative decoders (Extended Data Figure 5-C & D). Although at the population level, the selected spectro-
spatial features in all frequency bands (except alpha) were significantly different between positive affective behaviors and 
neutral behaviors (Figure 3-C), the gamma cluster (n=149, median = 0.36) was significantly more important than low-
frequency cluster (n = 124, median = 0.29) for the positive decoder models (i.e., larger feature importance value, ranksum 
test, p = 0.0017, Extended Data Figure 5-C left). In distinguishing negative affective behaviors from the neutral behaviors, 
high gamma band, alpha and beta bands activity were significantly different between the two behaviors (Figure 3-D). In line 
with this observation, both the gamma (n = 62, median = 0.43) and low-frequency (n = 45, median = 0.38) clusters were 
equally important for the negative decoder’s successful decoding (ranksum test, p = 0.16, Extended Data Figure 5-D left). 
These findings suggest negative affective behaviors may be more heterogenous than positive affective behaviors and may 
rely on both types of spectral signatures to distinguish them from moments lacking affect. 
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Stability of features from binary decoders  
 
To assess the robustness of the important features being selected with a likelihood better than chance, we counted the 
number of times each feature was selected across 100 bootstrapped runs of each RF model for each participant. We refer 
to the proportion of runs in which the features were selected in the positive and negative decoders as the “feature stability” 
(Extended Data Figure 5-C&D, right panels). We found that features within the gamma cluster of the positive decoder were 
more stable than features within the low-frequency cluster (87% of runs vs 80% of runs, p= 0.0015, ranksum test). We also 
observed greater stability of features within the gamma cluster compared to the low-frequency cluster for the negative 
decoder (median value of 79% of runs vs 68% of runs, p = 0.003, ranksum test). Also, as expected, stability and feature 
importance were significantly correlated across all features (r = 0.65, p <0.0001, n = 273; and r= 0.82, p <0.0001, n = 107, 
for positive and negative vs. affectless decoders, respectively, spearman correlation). This confirms that more important 
features were also more reliable features for decoding.   
 
Differences between the positive and negative decoders 
  
To assess whether the differences between the features that contributed to the positive and negative decoders were due to 
the feature selection method (i.e., the kneedle algorithm), we also compared the top 10 features from each decoder type 
regardless of the objective threshold (Supplementary Tables 5 and 6); the negative decoders were more likely to consist of 
features from the low-frequency cluster than the positive decoders (i.e., Subject1: 3/10 vs. 1/10, Subject 2: 6/10 vs. 4/10, 
and Subject 3: 7/10 vs. 0/10). Meanwhile, Subject 6 demonstrated a greater likelihood for important low-frequency features 
for the positive decoder (3/10) than the negative decoder (2/10). This finding was consistent with the objective feature 
comparison method used in our primary analyses (Extended Data Figure 5-C&D), which showed no significant difference 
in feature importance of the selected features between low-frequency and gamma clusters for the negative decoder but 
greater feature important for the gamma cluster than the low-frequency cluster for the positive decoder. For example, the 
selected and clustered features for Subject 1 (Supplementary Figure 6-A & B) show more low-frequency features selected 
for the negative decoders than the positive decoders. Thus, these findings are robust to the methods that were used.  
 
Additional tests for the feature selection  
 
We applied other techniques to certify the robustness of the selected features. We extracted the t-statistics of the feature 
distributions between the behavioral classes for two participants and sorted the features (Supplementary Figure. 4). The 
results showed that the top 10 features with t-scores larger than the critical t-score were also selected features by the RF 
models. Moreover, we trained personalized linear support vector machine (SVM) models and sorted the features based on 
the absolute value of the feature weights (See Methods, “SVM Model Classification: Linear SVM”, Supplementary Figures 
5 & 6) for both the positive and negative decoders. The results uncovered similarities between the selected features of the 
linear SVM and RF models, but the RF models performed better in 7/10 and 4/5 participants. We also trained nonlinear 
SVM classifiers (with rbf kernel) using the selected feature sets that were derived from the RF models (See Methods, “SVM 
Model Classification: Non-linear SVM”). The resulting non-linear SVM models showed a similar performance as the RF 
models (Supplementary Figure 7), which further confirmed the robustness of the feature selection method.  
 
Regional variability and feature importance from multiclass decoders 
 
We examined whether regional variability existed across the channels in the participants in whom the multiclass decoder 
was applied. These analyses enabled us to investigate whether certain regions made more important contributions to 
positive or negative affective behaviors than others. In each participant, we visualized the median distribution of spectral 
power during each type of affective behavior (Supplementary Figure 14). These graphs suggested that high gamma power 
discriminated positive and negative affective behaviors from neutral behavior in 2/3 participants (Subjects 1 and 6) and 
generally showed a similar stratification as in Figure 6B (positive, then negative, then neutral). In 1/3 participants (Subject 
2), however, there were clear divisions but in a different order (negative, then positive, then neutral), The graphs also 
indicated that, although a given subregion within the insula could exhibit stronger high-gamma activation during negative 
than positive affective behaviors (INS1 and INS3 in Subject 2 and INS5 in Subject 6), other subregions may be more tuned 
to positive affective behaviors (INS1 in Subject 1 and INS3 in Subject 6). Although high-gamma band activity had a 
significantly larger feature importance than the theta, alpha, and beta bands together (Supplementary Figure 15), we did 
not observe a significant difference between these spectral bands across different regions. Thus, different electrodes within 
same brain region may have made different contributions to the decoding performance and may have played distinct 
functional role in the neural representation of affective behaviors.   
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Supplementary Figure 1. Sample distribution of selected features for example participant (Subject 1) that contributed to 
negative decoders.  
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Supplementary Figure 2. Selected features from the RF models that were trained on positive affective behaviors and 
neutral behaviors (gray shading). The feature importance of the selected features from the shuffled models are shown in 
yellow. Bar charts represent mean values +/- SEM across 100 datasets of the selected features. INS: insula, VCin = Ventral 
cingulate, DCin = dorsal cingulate, AMY: amygdala, OFC = Orbitofrontal cortex. All statistics are reported by two-sided 
pairwise ranksum test between 100 runs of RF models and the shuffled models for each feature. All statistics are reported 
by two-sided pairwise ranksum test between n= 100 runs of RF models and the shuffled models for each feature. All p 
values are less than 0.0005 except the two those that are noted in the figure. the comparison is between feature importance 
of main models and permuted models in which the labels are shuffled, thus the significance level = 0.0005 (refer to the 
Methods section “Statistical Analyses”). 
 
 
 
 
 
 
  



 
 

6 
 

Supplementary Figure 3. Selected features from the RF models that were trained on negative affective behaviors and 
neutral behaviors (gray shading). The feature importance of the selected features from the shuffled models are shown in 
yellow. Bar charts represent mean values +/- SEM across 100 datasets of the selected features. INS: insula, VCin = Ventral 
cingulate, DCin = dorsal cingulate, AMY: amygdala, OFC = Orbitofrontal cortex. All statistics are reported by two-sided 
pairwise ranksum test between n= 100 runs of RF models and the shuffled models for each feature. All p values are less 
than 0.0005 except the two those that are noted in the figure. the comparison is between feature importance of main models 
and permuted models in which the labels are shuffled, thus the significance level = 0.0005. (refer to the Methods section 
“Statistical Analyses”). 
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Supplementary Figure 4. Comparison of selected features by sorted t-statistics (left) and random forest prediction error 
(right) for two participants.  
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Supplementary Figure 5. Linear SVM classifiers were trained on the positive affective behaviors and neutral behaviors. 
The decoder performance, as well as the top 15 features, are contrasted with the RF models. Box plots represent distribution 
of accuracy for both models across n=100 datasets. Central lines represent the median and the two edges represent 25 
and 75 percentiles, whiskers show the most extreme datapoints and outliers are shown individually (see MATLAB boxplot 
function). Bar charts represent mean values +/- SEM across 100 datasets of the 15 features for both RF (middle panels) 
and SVM(Right) models. The similarity index (SI) of the selected features from the two models is also stated in each panel. 
INS: insula, VCin = Ventral cingulate, DCin = dorsal cingulate, AMY: amygdala, OFC = Orbitofrontal cortex. *** signifies p 
< 0.0001, ** signifies p < 0.01 and * signifies p <0.05. 
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Supplementary Figure 6. Linear SVM classifiers were trained on the negative affective behaviors and neutral behaviors. 
The decoder performance, as well as the top 15 features, are contrasted with the RF models. Box plots represent distribution 
of accuracy for both models across n=100 datasets(i.e. runs). Central lines represent the median and the two edges 
represent 25 and 75 percentiles, whiskers show the most extreme datapoints and outliers are shown individually (see 
MATLAB boxplot function). Bar charts represent mean values +/- SEM across 100 datasets of the 15 features for both 
RF(middle panels) and SVM(Right) models. The similarity index (SI) of the selected features from the two models is also 
stated in each panel. INS: insula, VCin = Ventral cingulate, DCin = dorsal cingulate, AMY: amygdala, OFC = Orbitofrontal 
cortex. ** signifies p < 0.01 and * signifies p <0.05 
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Supplementary Figure 7. Comparison of the RF and nonlinear SVM models across n=100 datasets. The SVM models 
were trained using the selected features from the RF models. The RF and SVM models had a similar accuracy, which 
indicates that the selected features were robustly identified.  In the box plots central lines represent the median and the two 
edges represent 25 and 75 percentiles, whiskers show the most extreme datapoints and outliers are shown individually (see 
MATLAB boxplot function).   
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Supplementary Figure 8. Clustering results from an example participant. left: Correlation matrix across samples for the 
selected features, middle: dendrogram results from hierarchical clustering, right: similar correlation matrix as in the left but 
reordered based on the dendrogram. Example results for Subject 1 from the A) positive decoder and B) negative decoder. 
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Supplementary Figure 9. Personalized neural features from the positive decoders in 10 participants. The values, that are 
illustrated on MNI brain template (Methods, section “Electrode localization”), are the median difference (positive affective 
behavior distribution minus neutral behavior distribution) scaled by the feature importance (a positive value) of the selected 
features that comprised the low-frequency (top row) and gamma (bottom row) clusters. Color maps show the strength of 
the median difference by feature importance for both the low-frequency and gamma clusters in each participant. The black 
dots represent the electrodes that were not main contributors to the decoders (i.e., they were included as an input to the 
decoder models but were not selected by the objective threshold).  
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Supplementary Figure 10. Personalized neural features from the negative decoders in 5 participants. The values, that are 
illustrated on MNI brain template (Methods, section “Electrode localization”), are the median difference (negative affective 
behavior distribution minus neutral behavior distribution) scaled by the feature importance (a positive value) of the selected 
features that comprised the low-frequency (top row) and gamma (bottom row) clusters. Color maps show the strength of 
the median difference by feature importance for both the low-frequency and gamma clusters in each participant. The black 
dots represent the electrodes that were not main contributors to the decoders (i.e., they were included as an input to the 
decoder models but were not selected by the objective threshold).  
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Supplementary Figure 11. Clustering and normalization pipeline. 
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Supplementary Figure 12. Confusion matrices from the multiclass decoders. Percentages represent the number of labels 
of each class over the total number of labels within each fold and dataset, which are then averaged across all 100 runs of 
the RF models for each participant. Note the ideal separation = 33%. Color bars and percentages show the mean of the 
confustion matrix values across all 100 runs. 
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Supplementary Figure 13. Comparison of the decoding performance (ROC curves) for the three participants in whom the 
multiclass decoder was trained. The green lines represent results from positive vs. neutral decoders, the orange lines are 
negative vs. neutral decoders and the blue lines are the results from positive vs. negative models. Shadings represent 
standard error of mean across 100 runs of decoders.    
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Supplementary Figure 14. Median values of the spectral features extracted from example electrodes during positive, 
negative, and neutral behaviors in three participants. Black rectangles highlight the selected features from the RF models. 
  



 
 

18 
 

Supplementary Figure 15. Feature importance of the selected spectro-spatial features within the theta, alpha, beta, and 
high gamma bands pooled from the three participants in whom the multiclass decoders were trained. Low gamma was 
excluded because it did not reach statistical significance among the three behavioral classes.  
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Supplementary Table 1. Demographic information, information about the seizure foci, sampled hemisphere, mesolimbic 
coverage, and available mesolimbic coverage after data cleaning from seizure activity. 
 

Subject 
Identifier 

Age Gender Seizure foci Hemisphere Mesolimbic 
coverage 

Mesolimbic coverage 
after electrode cleaning 
(number of channels) 

Subject 1 35 M Mesial temporal Right INS, AMY, DCin, 
VCin, HPC, OFC,   

OFC (4), AMY(3),  
DCin(2), VCin(2), INS(5) 

Subject 2 21 F hippocampus Left INS, AMY, DCin, 
VCin, HPC, OFC 

OFC (3), HPC(1),  
DCin(2), INS(5) 

Subject 3 33 F Posterior superior 
frontal gyrus 

Right INS, AMY, DCin, 
VCin, HPC, OFC 

AMY(2), DCin(2),  
VCin(2), HPC(4), OFC(6) 

Subject 4 20 F Right parietal 
calcified lesion 

Bilateral INS, HPC, CIN,  
OFC  

RINS(3), RCin (2), 
ROFC(1), RHPC(2), 
LINS(3), LCin(1) 

Subject 5 20 F Mesial temporal Left INS, AMY, DCin,  
HPC, OFC 

OFC(18), AMY(4),  
HPC(1), INS(1), DCin(2) 

Subject 6 34 F Temporal lobe Right INS, AMY, DCin, 
VCin, HPC, OFC 

INS(3), DCin(2),  
VCin(3), OFC(4) 

Subject 7 30 M Mesial and lateral 
temporal lobe 

Right INS, DCin, VCin,  
OFC 

INS(2), DCin(1), OFC(5) 

Subject 8 36 M Mesial Temporal Left INS, AMY, DCin,  
HPC, OFC 

INS(5), AMY(5),  
DCin(2), HPC(3) 

Subject 9 20 M Hippocampus 
RNS (NA) 

Right INS, DCin, VCin, 
HPC, OFC 

INS(2), DCin(2), HPC(6), 
OFC(3) 

Subject 10 43 M Left frontal Left INS, AMY, HPC,  
OFC, VCin 

INS(1), AMY(2),  
HPC(1), OFC(4), VCin(2) 

Subject 11 27 F Anterior lateral 
temporal lobe 

Right AMY, HPC, ACin, 
PCin, OFC 

OFC(6), HPC(2), ACin(1) 
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Supplementary Table 2. Annotation instructions used by the human raters to code the affective behaviors  
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

Affective Behaviors Definition 
Smiling The patient is smiling when showing their teeth with a large grin 
Laughing Patient is laughing, including chuckling.  
Crying Patient is crying 
Positive verbalization Patient says something in the context of conversation that indicates a 

positive state. For example, “I love coffee! This made my day!” 
Negative verbalization Patient says something in the context of conversation that indicates a 

negative state. For example, “I’m having the worst day of my life” 

Discomfort The patient verbally indicates (without being prompted by medical staff 
or family) that they are in pain. They could also be exhibiting physical 
symptoms such as holding their head for long periods of time, holding 
an icepack on their head, or moaning.  
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Supplementary Table 3. Annotation instructions used by the human raters to code the neutral behaviors  
 
Other Behaviors Definition 
MedON/MedOFF Medical staff present/absent 
FamON/FamOFF Family members or friends present/absent 
ResearchON/ 
ResearchOFF 

Research staff present/absent 

ConFam The patient is engaged in a conversation, either talking or listening, (lasting more 
than 10 seconds) with family or friends  
 

ConMed The patient is engaged in a conversation (lasting more than 10 seconds) with 
medical staff  

ConRes The patient is engaged in a conversation (lasting more than 10 seconds) with 
research staff  

Comp  Patient is actively using a computer device including iPads  
*this includes using computers/ipads during research testing 

Drink The patient is drinking – start annotation when the patient is putting the cup to their 
mouth and drinking. Then annotation is off when the patient removes the cup from 
their mouth to stop drinking.  Say for example that the patient is holding a cup in 
their hand and talking, this is not drinking. Drinking is ONLY when cup is going to 
mouth, physically drinking, and then the moment cup is pulled away from their 
mouth, turn the annotation off.  

Eat The patient is eating. Eating is turned on when the patient brings a fork to their 
mouth, chews, and when they stop chewing, then turn the annotation off.  

Headp The patient is listening to something on their headphones. Turning Headp ON also 
applies to when a Patient is listening to music on their phone or a book on tape. 

PersCare Patient was personally caring for themselves which includes activities such as 
going to the restroom, brushing their hair, washing themselves etc.  

Phone The patient is verbally talking into a phone or a patient is texting/surfing the web 
etc. on their phone.  
*turn off phone when the patient is not actively engaged with it for 10 seconds or 
more.  

Read Patient is reading and must be actively engaged with it for 10 seconds or more.  
Search The patient is actively searching for an item in or around their hospital bed  
Seizure The patient is having a seizure 
Sleep/Eye closure The patient has their eyes closed and is not moving for more than 30 seconds. 

SleepON begins as soon as the patient closes their eyes.  
TestMed Medical staff are conducing medical tests on the patient such as taking blood 

pressure, changing IV, playing with any machine attached to the patient, etc.  
 

TResearch Research Staff are administering research tasks to the patient   
TV TV is on in the patient’s hospital room  
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Supplementary Table 4. Number of instances of positive and negative affective behavior for each participant after neural 
data cleaning. NA = not used in decoding. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Subject 
Identifier 

Number of 
positive 
samples 

Number of 
negative  
samples 

Number of 
Affectless 
samples 

Number of 
Rest samples 

Percentage of 
affectless  
samples 
overlap  

with sleep  

Percentage  
Of affect 
samples 

overlap with 
conversation 

Hours Number of 
channels 
(features) 

Subject 1 164 133 499 53 26% 45% 14 17(85) 

Subject 2 160 28 499 439 0%  77% 6 11 (55) 

Subject 3 149 5 (NA) 499 25 46% 94% 11 16(80) 

Subject 4 151 12(NA) 336 44 36% 95% 4 12(60) 

Subject 5 161 0(NA) 277 146 0%  79% 4 26(130) 

Subject 6 133 65 499 499 45% 83% 17 12(60) 

Subject 7 51 46  499 499 11% 62% 17 8(40) 

Subject 8 42 15(NA) 499 103 0% 91% 6 15(75) 

Subject 9 55 5(NA) 499 17(NA) 9% 63% 8 13(65) 

Subject 10 47 3(NA) 499 274 28% 94% 19 10(50) 

Subject 11 4(NA) 34 499 499 19% 44% 10 9(45) 
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Supplementary Table 5. Median distributions of the selected features across participants from the positive (n = 10) and 
negative (n = 5) decoders.   
 

Frequency 
band 

Normalized median 
of spectro-spatial 
features from 
positive decoders 
For the positive 
class 

Normalized median of 
spectro-spatial 
features from positive 
decoders 
For the neutral class 

Normalized median of 
spectro-spatial 
features from negative 
decoders 
For the negative class 

Normalized median of 
spectro-spatial features 
from negative decoders 
For the neutral class 

High 
Gamma  

-0.37 (n = 86) 0.8 (n=86) 0.45 (n=33) -0.94 (n=33) 

Low 
Gamma  

0.0012 (n= 65) 0.44(n=65) 0.79 (n=17) 0.12 (n=17) 

Beta  0.81 (n= 37) -0.82 (n = 37) -0.46 (n = 23) -0.81 (n = 23) 
Alpha  -0.34 (n= 30) -0.62 (n= 30) -0.61 (n= 17) 0.36 (n= 17) 
Theta 0.32 (n= 55) -0.85 (n=55) -0.6 (n=17) -0.07 (n=17) 
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Supplementary Table 6. Multi-comparison tests compared the top selected features from the full models for the positive 
decoders (see also Extended Data Figure 6).  
 
 
 
 
 
  

Subject Identifier  Top 10 
Features from Positive vs  
affectless decoders  

Multi-comparison test 
among regions based 
on AUC 

Subject 1  INS1	𝐻𝛾, VCin3	𝐻𝛾, DCin3 𝐻𝛾, VCin2	𝐻𝛾, AMY4 𝐻𝛾, 
AMY2 𝐻𝛾, AMY3 𝐻𝛾, INS2 𝐻𝛾,	INS1- 𝜃, INS3		𝐻𝛾 

Ins, AMY, VCin 

Subject 2 HPC3	𝐻𝛾,DCin2 𝐻𝛾,INS1 𝜃,  HPC3	𝐿𝛾, 
OFC2	𝐻𝛾,		DCin2 𝜃,  INS3	𝜃, INS3 𝛽,  
INS2 𝐻𝛾, INS5		𝐻𝛾 

HPC, Ins, DCin 

Subject 3  HPC2		𝜃,HPC2	L𝛾, AMY2	𝛽	,	 
HPC2 𝐻𝛾, AOFC2		𝐻𝛾,		 
AOFC2		𝐿𝛾,		HPC4	𝛽,  HPC4	𝐻𝛾,  AMY2	𝛼,  HPC1 𝛽 

HPC, AMY,  
VCin, OFC 

Subject 4 L_DCin2		𝐻𝛾, L-INS2		𝜃,  L-INS3		𝐻𝛾,  RH3	𝜃,		L_DCin2 
𝐿𝛾,  RH3 L𝛾 , L-INS1		𝐻𝛾,  RH4 H𝛾,L-DCin2		𝛼,  L-
INS3		𝐿𝛾 

L-Ins, L-DCin,  
R-HPC 

Subject 5  DCin3 L𝛾,  DCin4 L𝛾 , OFC8 L𝛾,  INS5- 𝜃, HPC2-	𝐻𝛾,  
DCin4	𝛽,  OFC7 L𝛾,  OFC3 L𝛾, AMY2	𝛽,  OFC3 H𝛾 

DCin, OFC,  
HPC, AMY 

Subject 6 VCin3		𝐻𝛾, VCin2		𝐻𝛾, 
VCin4		𝐻𝛾, DCin3		𝐻𝛾,   
INS3		𝐻𝛾, INS3		𝐿𝛾, INS3	𝜃,  
INS5 𝛽, VCin3 𝛽, DCin2		𝐻𝛾 

DCin, Ins  
VCin, OFB 

Subject 7  AOFC2	𝐻𝛾, AOFC3	𝐻𝛾,  
INS1-	𝐻𝛾, AOFC3	𝐿𝛾, 
INS1-	𝐿𝛾, AOFC2𝐿𝛾, 
POFC2	𝐻𝛾, AOFC1	𝐻𝛾, 
INS4-	𝐻𝛾, DCin2-	𝐻𝛾 

No significance 

Subject 8 AMY4		𝐻𝛾, AMY4 𝜃 , INS3 𝐻𝛾, INS5	𝛽,  
INS5 𝐻𝛾, AMY4	𝛼, AMY4 L𝛾, DCin3 𝜃, AMY3	𝛼,  INS1-
	𝛼 

Ins, AMY 

Subject 9  HPC5 L𝛾,  HPC6 𝛼,  HPC4		𝛼,  HPC2 L𝛾 , 
HPC3 L𝛾 , INS7 𝐻𝛾,  INS6 𝐻𝛾 ,  HPC4 L𝛾,	 
INS7 L𝛾, HPC6 L𝛾  

HPC, Ins 

Subject 10 OFC2 L𝛾, OFC4 L𝛾, OFC3 L𝛾, OFC1 L𝛾, OFC4 H𝛾, 
OFC1 H𝛾,	OFC3 H𝛾, HPC3 𝜃, OFC2 H𝛾, INS1 𝜃 

OFC,  
VCin, Ins, HD, AMY 
(no other significance 
between all 4 regions, 
they all have high AUC) 
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Supplementary Table 7. Multi-comparison tests compared the top selected features from the full models for the negative 
decoders (see also Extended Data Figure 7).  
 

Subject 
Identifier  

Top 10 
Features  

Multi-comparison test 
among regions based on 
AUC 

Subject 1  INS1	𝐻𝛾, DCin3 𝐻𝛾, DCin3 L𝛾,  
INS4	𝛼, VCin2	𝐻𝛾, AMY2 𝐻𝛾, AMY4 𝐻𝛾, 
AMY4 𝛽, INS5 𝛽 ,  
INS4 L𝛾  

Ins, VCin,  
DCin, Amy 

Subject 2 INS3 𝐻𝛾 , DCin1 𝜃, INS4 𝐻𝛾, INS5		𝐻𝛾,  
OFC5	𝛽, INS1		𝐻𝛾,		HPC3	𝛽, INS1 𝜃 , 
INS1𝛼, INS1 𝛽 

HPC, Ins 

Subject 6 VCin4	𝐻𝛾, INS5	𝜃, INS4		𝐿𝛾 ,  
OFB1 𝐿𝛾, OFB3 𝐿𝛾, OFA1𝐿𝛾,  
INS3		𝐿𝛾, OFB3 𝛽, OFA3 𝐿𝛾, VCin2		𝐻𝛾  

Ins, DCin 

Subject 7 AOFC1		𝜃, AOFC3		𝜃 , INS4	𝐿𝛾,	 
POFC2	𝛽, POFC4	𝛽, AOFC2	𝐿𝛾,  
POFC4	𝛼, AOFC3		𝛼,	INS1 𝛽,  
AOFC2	𝐻𝛾 

POFC, Insula,  
AOFC 

Subject 11 HPC2- 𝜃, POFC1 H𝛾,  
DCIN4 𝛽, DCIN4	𝐻𝛾,  
AOFC1 𝜃,	AOFC1 L𝛾, POFC2 L𝛾, DCIN4	𝜃, 
HPC4𝛽, HPC4 H𝛾, DCIN4	𝛼 

HPC, DCin 
 

  



 
 

26 
 

Supplementary Table 8. Multiclass decoder performance (F1-Score) related to figure 6-A. 
 

Subject  neutral class 
F1-Score,  
p-value from 
shuffled models 

Positive class 
F1-Score, 
p-value from 
shuffled models 

Negative class 
F1-Score, 
p-value from 
shuffled models 

Accuracy All  

S1  0.73 +- 0.01 
Median = 0.73 
p=4	 ∗ 10!"# 

0.77+- 0.013 
Median = 0.77 
p=4	 ∗ 10!"$ 

0.44 +- 0.015 
Median = 0.47 
p=8	 ∗ 10!$% 

0.66+- 0.006 
Median = 0.66  

S2  0.73+- 0.016 
Median = 0.75 
p=1.5	 ∗ 10!%&  

0.75 +- 0.017 
Median = 0.75 
p=1.1	 ∗ 10!%' 

0.70+- 0.02 
Median = 0.71 
p=2.5	 ∗ 10!$( 

0.72 +-0.0127 
Median = 0.73 

S6  0.77 +-0.014 
Median = 0.79 
p=7.65	 ∗ 10!") 

0.65 +- 0.02 
Median = 0.70  
p=1.6	 ∗ 10!$( 

0.59 +- 0.018 
Median = 0.6  
p=7.3	 ∗ 10!$& 

0.67 +- 0.014 
Median = 0.66 

Average 
of all 
three 
subjects 

0.74 ± 0.013 0.72 ± 0.037 0.57 ± 0.07 0.68 ± 0.016 

 
 
 

Supplementary Table 9. Multiclass decoder performance related to figure 6-C. 
 

Subject  Accuracy 

Insula 0.62 ± 0.006 

OFC 0.52 ± 0.006 

Dorsal ACC 0.58 ± 0.008 

Ventral ACC 0.58 ± 0.007 
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Supplementary Table 10. P-value regarding statistical test for panel F in figure 2. All values are obtained by two-sided 
non-parametric pairwise ranksum test across n=100 datasets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 11. P-value regarding statistical test for panel G in figure 2. All values are obtained by two-sided 
non-parametric pairwise ranksum test across n=100 datasets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Subject Identifier p-values 

Subject 1 1.8 ∗ 10!"# 

Subject 2 4.8 ∗ 10!"# 

Subject 3 5.5 ∗ 10!"% 

Subject 4 3.18 ∗ 10!"# 

Subject 5 6.41 ∗ 10!"# 

Subject 6 4.8 ∗ 10!"# 

Subject 7 3 ∗ 10!$" 

Subject 8 2 ∗ 10!%% 

Subject 9 8 ∗ 10!%&  

Subject 10 2.63 ∗ 10!"$ 

Subject Identifier p-values 

Subject 1 1 ∗ 10!%" 

Subject 2 5 ∗ 10!%* 

Subject 6 2.4 ∗ 10!%+ 

Subject 7 5.3 ∗ 10!' 

Subject 11 2.5 ∗ 10!%$ 
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