milliPillar: a platform for the generation and real-time assessment of human engineered cardiac tissues

Manuel Alejandro Tamargo^{1,2‡}, Trevor Ray Nash^{1,2‡}, Sharon Fleischer^{1‡}, Youngbin Kim¹, Olaia Fernandez Vila^{1,3}, Keith Yeager¹, Max Summers¹, Yimu Zhao¹, Roberta Lock¹, Miguel Chavez¹, Troy Costa¹ and Gordana Vunjak-Novakovic^{1,2*}.

Supporting Information

Figure S1. milliPillar molds.

Figure S2. Preparing the milliPillar reactor.

Figure S3. Mechanical testing of milliPillar PDMS pillars.

Figure S4. Alignment and ventricular characterization of milliPillar tissues cultured for 100 days.

Figure S5. Detailed schematic of functional outputs from custom milliPillar software.

Figure S6. Detailed schematic of ET/MCR stimulation regimen.

Table S1. Comparison of design principles and properties of engineered heart tissuemodels.

Video S1. Spontaneously beating BS2 milliPillar tissue with NHDFs

Video S2. WTC11 milliPillar tissue paced at 1 Hz with iPSC-CFs

Video S3. WTC11-GCaMP6f milliPillar tissue paced at 1 Hz with NHCFs.

Video S4. Pillar tracking of milliPillar.

Video S5. milliPillar tissue pre-stimulation.

Video S6. milliPillar tissue post-stimulation.

File S1. milliPillar molds CAD design.

File S2. milliPillar stimulator resources.

File S3. milliPillar analysis software.

1	Mold top half ("core" with filling and clamping features)
2	Mold bottom half ("cavity" with holes for casting ejection)
3	Mold ejection hole plugs
4	Carbon (graphite) electrodes

Figure S1. milliPillar molds. Visual representation of the different components of the mold as labeled in the CAD file.

Figure S2. Preparing the milliPillar reactor. (A) Simplified graphical protocol for the milliPillar platform fabrication process; Part #2 and #3 were assembled and carbon rods were placed into designated inserts in part #2 (1) Degassed PDMS was used to fill part #2 and after an additional degassing step, it was topped with part #3 (2). A Hex screw was added to the top of the mold (3), and two clamps were used to firmly clasp each end of the hex screw (4). (**B**) Simplified graphical protocol visualizing the PDMS cleanup and carbon rod preparation and exposure. Once the platform was safely excavated from the mold (1), tweezers were used to remove the PDMS tabs to expose electrodes (2). A scalpel was also used to ensure exposure of the inner surface of the rod by scratching off the PDMS film (3). A hole was drilled into the ends of the carbon rod (4). Oxygen plasma treatment was used to bond the bottom of the platform onto a glass slide (5). Platinum wires that connect to the stimulator were tied to the ends of the rods securely (6). Platforms were autoclaved and placed into a 4- well plate.

Figure S3: Mechanical testing of milliPillar PDMS pillars. (A) Force as a function of distance coefficients calculated using a microtester. **(B)**Representative force as a function of distance testing curve showing no apparent hysteresis of PDMS pillars. **(C)** Batch to batch variation among four batches of milliPillar platforms, n=4-6.

Figure S4. Alignment and ventricular characterization of milliPillar tissues cultured for 100 days.(A) Immunostaining of milliPillar cardiac tissues cultured for 100 days sarcomeric α -actinin (magenta).(B) Ventricular characterization of milliPillar cardiac tissue by immunostaining for MLC2v (green), MLC2a (red), DAPI (blue).

Feature	Measurements				
BPM (BF/CI)	beats per minute				
Tau [s] (Cl)	exponential decay constant; time at which the peak intensity is				
	reduced to 1/e of its maximum value				
Full width half max (FWHM) [s] (CI)	time between the two 50% of peak intensity value				
Full width 90 max (FW90M) [s] (CI)	time between the two 10% of peak intensity value				
Contract 50 [s] (CI)	time between left 50% intensity to full peak intensity value				
Relax 50 [s] (CI)	time between full peak to right 50% intensity value				
Contract 90 [s] (CI)	time between left 10% intensity to full peak intensity value				
Relax 90 [s] (CI)	time between full peak to right 10% intensity value				
RR interval [s] (CI)	average distance between peaks				
SDRR [s] (CI)	standard deviation of RR intervals				
RMSSD [s] (CI)	root mean squared successive RR differences (RMS of change in				
	RR interval)				
Post Rest Potentiation Force Generation [uN]	force generated after 20 seconds of rest following exertion by				
(BF)	stimulation at 4 Hz				
1 Hz Force Generation [uN] (BF)	average force generated during stimulation at 1 Hz				
Max Beating Frequency [Hz] (BF)	maximum beating frequency, regardless of stimulation frequency				
Contraction Velocity [ms] (BF)	maximum velocity reached by the tissues during contraction				
Relaxation Velocity [ms] (BF)	maximum velocity reached by the tissues during relaxation				
Excitation Threshold (ET) [V] (BF/CI)	minimum voltage the tissue can capture and respond to at 1 Hz				
Maximum Capture Rate (MCR) [Hz] (BF/CI)	maximum frequency the tissue can capture and respond to at 5 V				

Α

Figure S5. Detailed schematic of functional outputs from custom milliPillar software. (A) Table describing the functional metrics obtained from real-time brightfield and calcium imaging. **(B)** Schematic of a calcium trace with functional metrics labeled. **(C)** Representative example of a distribution curve of tissues generated and excluded using FW90M as a quality control metric. The Top 10% and Bottom 10% were excluded from this batch to remove outliers and create a normally distributed population.

Figure S6. Detailed schematic of ET/MCR stimulation regimen. (A) Table describing the timestamp, voltage, and frequency which tissues are stimulated at during analysis. **(B)** Schematic of the ET segment of the analysis indicating when the tissue stops responding to the 1Hz stimulation (red arrow). **(C)** Schematic of the MCR segment of the analysis indicating when the tissue stops responding to the stimulation at 5V (red underline).

	Tissue Volume	Cells per Tissue	Force Generation (Measured at 1- 1.5 Hz Stimulation)	Well Volume	Independent Culture Wells	Throughput	Charge Injected Reported	Electrical Stimulation During Tissue Culture	Electrical Stimulator Commercially Available	Analysis Tool in Public Repository	Platform Available in Public Repository
Turnbull et al, 2014	100 µL	1×10^{6}	0.57 ± 0.07 mN/mm ²	NA	Yes	Low	No	No	No	No	No
Mannhardt el al, 2016	100 µL	1×10^{6}	~0.12 mN (0.4 mN/mm ²)*	500 μL	Yes	Medium	No	No	No	No	No
Jackman et al, 2016	70 μL	3.75 × 10⁵	23.2 ± 1.6 mN/mm ²	1.5 mL	No	Low	No	No	No	No	No
Tiburcy et al., 2017	500 μL	1x10 ⁴ - 15x10 ⁶	6.2 ± 0.8 mN/mm ²	NA	No	Low	Yes	No	NA	No	No
Ronaldson- Bouchard et al, 2018	200 µL	2x10 ⁶	~2.5 mN/mm²	30 mL	No	Low	No	Yes	No	Yes	No
Dostanić, et al 2019	3 µL	4.7x10 ⁴	~0.081 mN (0.33 mN/mm ²)*	200 µL	Yes	High	No	No	No	No	No
Zhao et al, 2020	2 µL	1.1x10 ⁵	0.051 ± .025 mN/mm ²	NA	No	Low	No	Yes	No	No	No
Thavandiran, et al, 2020	12 μL	7.5x10 ⁴	NA	300 μL	Yes	High	No	No	No	No	No
milliPillar, 2021	15 μL	5.5x10 ⁵	3.22 ± 0.17 mN/mm ²	400 μL	Yes	Medium	Yes	Yes	Open Source	Yes	Yes

Table S1. Comparison of design principles and properties of engineered heart tissue models. * Indicates force generation approximated using available information from published data and a cross sectional area calculated by the radius from IHC images. Cross sectional area was calculated by assuming a cylindrical tissue shape (Area= πr^2).

Supplementary Videos

Video S1. Spontaneously beating BS2 milliPillar tissue with NHDFs. A

representative video of a spontaneously beating milliPillar tissue made with 75% BS2derived cardiomyocytes and 25% NHDFs. Brightfield videos were recorded for clear visualization of pillar movement and force calculation.

Video S2. WTC11 milliPillar tissue paced at 1 Hz with iPSC-CFs. A representative video of a milliPillar tissue made with 75% WTC11-derived cardiomyocytes and 25% iPSC-derived cardiac fibroblasts. Tissues were stimulated at 1 Hz using 5 V/cm and 20 nC/mL charge per pulse for recording. Brightfield videos were recorded for clear visualization of pillar movement and force calculation.

Video S3. WTC11-GCaMP6f milliPillar tissue paced at 1 Hz with NHCFs. A representative video of a milliPillar tissue made with 75% WTC11-GCaMP6f-derived cardiomyocytes and 25% Normal Human Ventricular Cardiac Fibroblasts. Tissues were stimulated at 1 Hz using 5 V/cm and 20 nC/mL charge per pulse for recording. Brightfield videos were recorded for clear visualization of pillar movement and force calculation.

Video S4. Pillar tracking of milliPillar. Custom analysis software can track the location of the pillar heads throughout the analysis stimulation regimen.

Video S5. milliPillar tissue pre-stimulation. A representative video of a milliPillar tissue 7 days post-fabrication (pre-stimulation) stimulated at 1Hz using 5V/cm and 20 nC/mL charge per pulse for imaging and analysis. Brightfield videos were recorded for clear visualization of pillar movement.

Video S6. milliPillar tissue post-stimulation. A representative video of a milliPillar tissue 28 days post-fabrication (21 days post-stimulation, Ramp protocol) stimulated at 1Hz using 5V/cm and 20 nC/mL charge per pulse for imaging and analysis. Brightfield videos were recorded for clear visualization of pillar movement.

Supplementary Files

File S1. milliPillar molds CAD design. A .STEP file that includes the design of the milliPillar Platform

File S2. milliPillar stimulator resources. A .zip file that includes the design and software for the milliPillar Stimulator

File S3. milliPillar analysis software. A .zip file that includes the brightfield and fluorescent calcium analysis software.