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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): Expert in pancreatic cancer genomics and transcriptomics 

This manuscript by Monberg et al. uses cutting-edge single-cell technologies to investigate genetic and 

transcriptomic heterogeneity within cell lines commonly used for PDAC research – including both 

cancer-derived lines, and immortalized lines used as controls. This work is potentially of high value and 

impact to the field because it revisits basic assumptions about the biology of commonly used cell lines 

and culturing techniques in light of new profiling methods that can reveal previously hidden 

heterogeneity. The authors report previously underappreciated genetic and transcriptomic 

heterogeneity both within individual cultures of these cell lines, and between independent cultures of 

the same lines. Based on these findings, the authors express concern about the widespread use of these 

cell lines in the field, and urge careful consideration about whether/how to include these lines in future 

preclinical studies. 

Despite the high potential value to field, this study has several fundamental flaws as currently 

constructed that, in my opinion, should preclude publication in current form. Chief among these are the 

lack of technical replicates to account for variability in the profiling technologies themselves, and major 

deficiencies in the bioinformatic analyses of the single-cell data. I describe these concerns in more detail 

below, and urge that major steps are taken by the authors to address these issues. The analysis of 

single-cell data is a new and rapidly-evolving in the field, and I think we as a field need to be very careful 

that observations made with single-cell technologies are very rigorously analyzed and validated given 

the high complexity and inherent noisiness of this data type. 

Major concerns 

1. The authors perform single-cell profiling (mostly scCNV and scRNA) on separate cultures of the same 

cell lines (e.g. MiaPaca2 lines from three sources) and, observing differences in the single-cell data from 

these different sources, they conclude that the underlying cultures are different. However, the authors 

do not seem to account for the alternative explanation that some of the differences they observe are 

due to technical variability between runs of the single-cell profiling methods themselves. The single-cell 

data is not a perfect representation of the underlying samples. It has inherent technical biases and 

artifacts that can vary between runs, and can also suffer from sampling bias as <10K cells are generally 

profiled in a single run. In the context of this study, where single-cell data is being used to draw 

conclusions about differences in the underlying biosamples, I think it is essential to perform technical 

replicates where cells from the same culture are split into two aliquots and assayed independently. I am 

unbale to draw conclusions about the differences between three MiaPaca2 cell sources, for example, 

based on a single replicate from each. Given the emphasis of these authors on reproducibility and rigor, 

this seems to be a particularly important flaw. 



2. Several of the transcriptome comparisons use GO term enrichment to point to potential biological 

differences between subclusters. However, it seems to me that in several instances the authors are 

using an FDR cutoff of 0.5 instead of the standard 0.05, and are thus basing conclusion on results that 

are not statistically significant. In all cases where this GO data is presented or discussed I think the 

authors should make explicitly clear which results exceed the threshold for statistical significance and 

refrain from overinterpreting results that do not meet this threshold (e.g. Figure 2C, 3B, and the results 

section “Epigenetic alternations define …” where results in the supplemental excel file are discussed). 

3. Aside from the GO analyses discussed above, I am concerned with the lack of other analyses into the 

biological differences between clusters, as well as the lack of independent experimental validation of 

these differences. Clustering analysis of single-cell data rely on arbitrary “resolution” parameters that 

can dramatically alter the results. Thus, in my opinion it is critical not to rely on clustering analyses to 

conclude that two groups of cells are biologically different, but rather, to use these analyses to help 

point to biological features (genes, pathways, etc) that may differ between groups of cells, and then 

validate these. I suggest that the authors perform additional analyses into the potential biological 

differences between cell clusters to include at a minimum differential gene expression analyses (not just 

GO enrichment) and cell cycle analyses (now readily inferred from single-cell RNA-seq data – see PMID: 

32312741 for example; differences in cell cycle stage could easily confound these culture-to-culture 

comparisons). Moreover, findings should be validated with independent experiments. For example, 

differentially expressed genes between two cell culture sources can be validated by FISH at the single-

cell level or at least rt-qPCR at the bulk level. 

4. With regard to the scATAC-seq analysis in figure 3, the number of cells profiled seems very low and 

probably too small to draw conclusions from clustering analysis like those shown in supplemental Figure 

6 where all of the cells essentially are essentially in one large “blob.” I was also unable to find quality 

control assessment for any of these libraries (or scRNA-seq libraries) including read counts per cell and 

signal/noise metrics like Transcription Start Site (TSS) enrichment. In my opinion, these QC analysis 

should be included in supplement if not already there somewhere. 

5. A number of the figure panels are very hard to interpret due to illegibly small or blurry text, clutter, 

and/or lack of labeling (e.g. 1C,D,G,H; 2B,D,G). This detracts from the manuscript because I am unable to 

independently assess these data as presented, and am left to rely only on the authors 

description/interpretation in text. I suggest a major overhaul of these panels in any resubmission. 

Reviewer #2 (Remarks to the Author): Expert in pancreatic cancer genomics and organoids 



In this study, Monberg et al report that there exist an occult polyclonality in preclinical pancreatic cancer 

models, which drives in vitro evolution. In a nutshell this polyclonality reflects as heterogeneity in 

transcriptomic profile – even within the same cancer cell line cultured in 2D vs 3D or over an early or 

late passage period. The authors utilized state-of-the-art technologies in genomic/transcriptomic 

profiling (e.g., scRNA, snATAC seq) and covered a spectrum of in vitro models from the 

traditional/routine methods (i.e., 2D) up to organoids, which they rightly note has become a well 

appreciated preclinical model for studying human cancer. 

The study obviously involved a considerable amount of effort that has the potential to impact the choice 

and use of cell lines for future pancreatic research. The authors also did a nice job in describing their 

Methods, especially on cell culture conditions (very important in the context of my comments below). 

However, I am bit concerned about whether the overall message conveys any substantial novelty given 

that cancer cell line heterogeneity is already a well-known issue. In addition, the rationale for choosing 

the cell lines (e.g., Panc-1, MiaPaCa2, HPAF-II and BxPC-3) are unconvincing, and the potential aspects of 

clinical translation are not particularly clear. These issues should be addressed to improve the impact of 

this work. 

Major comments 

1. There are numerous studies detailing the heterogeneity of pancreatic cancer cell lines, including 

differences in marker expression, nutrient utilization (e.g., glycolysis vs OXPHOS), and growth properties. 

Deer et al (cited as ref. #11 in the manuscript) reviewed many aspects of divergence among pancreatic 

cancer cells. This reviewer therefore believes that the manuscript in the current state has not 

demonstrated novelty despite the technologies applied. For example, could the authors relate any of 

the observed transcriptomic differences to phenotypic differences – e.g., do the three ‘strains’ of 

MiaPaca2 cells differ in growth rate, nutrient consumption, etc, and does that correlate with their 

respective gene changes? This will help readers to better contextualize the potential translational 

relevance of this study. 

2. It seems the rationale for selecting the cell lines was just based on the fact that they are commonly 

used in research. This does not necessarily add value. These cell lines even differ in their growth media 

conditions (as rightly noted by the authors in ‘Methods’); that alone can drive differences in 

transcriptomics. The cell lines should thus be presented based on their distinct phenotypes. One good 

parameter could be basal differences in their growth rate or migration (fast vs slow, etc), which can be 

related to cancer progression. Then, determine whether cells that more closely mimic pancreatic cancer 

features undergo similar degree of heterogeneity upon culture or are more robust. This level of detail 

should be provided. With such information, the potential value of using these cell lines will become 

more or less clear especially when complemented with the novel technologies used in this study. 



3. Based on the above point on differences in culture condition, the authors may consider focusing more 

on cells that are grown under the same culture conditions, e.g., the MiaPaca2 ‘strains’ – transcriptomic 

and phenotypic differences, overlap with pancreatic cancer subtypes, etc. This ‘strains’ comparison is 

most likely to stimulate interest and is potentially a novel aspect of this work, with far-reaching 

implication considering that exchanging cell lines between labs is a routine practice in cancer research. 

The authors wrote… “We report phenotypic divergence between these assumptively “identical” cultures 

that appears to be driven by changes at the RNA level”. What ‘phenotype’ is this? Given the authors’ 

finding that passage duration can impact gene signatures, did they confirm that the 3 strains of 

MiaPaca2 were of the same/similar passages? 

4. Another important aspect that should be developed more is the “normal” or “control” cell lines 

(HPNE, HPDE). This reviewer very much agrees that these cell lines are not entirely ‘normal’ and in fact 

manifest several key features of established cancer cell lines. The authors have a unique opportunity to 

leverage on their various sequencing data to drive home that point. Although an attempt was made in 

Figures 1E-H, the pancreatic cancer cell lines should be included in such comparisons. Perhaps also 

determine the degree of gene overlap between the individual pancreatic cancer cell lines and 

HPNE/HPDE cells. 

5. That long-term culture of organoids or even any cell line, leads to transcriptomic changes is very much 

expected, albeit not well studied. Therefore, the authors may rather be specific and provocative here by 

emphasizing the unique features of the early vs late passage organoids. While the authors report that 

late passages acquire ‘classical’ subtype features, this observation is not novel as it has been reported in 

a yet to be published work (Raghavan et al, 2020, bioRxiv). Therefore, the authors should focus on other 

aspects such as proliferation, metabolism, expression of cancer pathway signatures, etc. 

6. Besides, organoids normally do not do well with prolonged passaging as they best mimic human 

tumors at the early passages. This by itself raises concerns on the utility of comparing the early to late 

passages. The authors should discuss this concern, including e.g., the rationale for such comparison, in 

the Results and Discussions parts of the manuscript. 

7. Where did these organoids come from? In describing the organoid generation, the authors started 

with ‘Dissociated cells…” Are these patient-derived organoids or organoids made from cell lines? This is 

important because if the former, then details of acquisition and ethical approval should be provided; if 

the latter, then specify which cell line was used, etc. The lack of this information makes it hard for this 

reviewer to objectively critic this organoid part further. 

Minor comments 



On the brief title: “Intratumoral heterogeneity…”. Here ‘intratumoral’ is misleading since the study is 

purely in vitro. 

While the manuscript is well written and easy to follow, there might be a few grammatical errors, e.g., 

“prototypal”was used rather than “prototypical” in the Introduction and “proscribed” (actually means 

‘forbidden’) used in the Methods (instead of, I guess, ‘prescribed’). Such errors in choice of word or 

spellings should be checked throughout the manuscript to ensure clarity. 

Reviewer #3 (Remarks to the Author): Expert in single-cell sequencing, analysis of cancer subclones and 

computational genomics 

This study by Monberg at al. sets out to investigate the intratumoral heterogeneity of PDAC preclinical 

models. The study focused on the genomic and transcriptomic heterogeneity of cell line models of PDAC 

(BxPc-3, HPAF-11), between labs (3 x MiaPaCa-2 cell line sources), cell growth (Panc-1 2D vs 3D), a PDAC 

organoid and 2 commonly used “normal” pancreas immortalized cell lines. This paper has some 

extremely interesting findings, and others which are more confirmatory through newer techniques such 

as scRNA-seq/scCNV analysis. 

However, as the paper is opening up critical questions of clonal variability among common pancreatic 

cancer cell lines and “normal transformed” lines, extensive detail on the growth conditions (serum, lot # 

etc.), passage number, length of time in culture before sequencing needs to be made clear in the 

materials and methods section. 

The variability of clonal populations within the parental MiaPaCa-2 has long been established but this is 

the first time through scRNA-seq; additional the custodial variability shows interesting clonal 

distinctions; however, the passage numbers of the three different stocks was not disclosed which would 

need to be factored into. How long the cells were cultured in the host laboratory before analysis was not 

disclosed either. Also the impact of different sources of serum in the media can also play a role in how 

cells behave. This may be true for the “normal transformed” HPDE line which may have been cultured 

over years of sub clonal growth selection, therefore lab passage number is important information to 

disclose. 

How long was the Panc-1 cell line grown in 3D before analysis? 

Additionally, the passage number of the PDO was not shared – what refers to early and late passage? 10 

passages separate the PDO cultures but from what starting point? Can the authors clarify what they 

consider to be “early passages of derivative PDOs”? Can name of PDO be shared, as this would be good 

information for the research community. 

The functional impact of sub-clonal populations with differing transcriptomic enriched pathways was not 

looked at. Although much literature will attest to the diverging biological functionality of 2D vs 3D; the 

biological impact of sub clonal populations within differing custodial vials of MiaPaCa-2 would have 



added to the impact of the study; particularly as these cell lines are used to study drug toxicity and 

response to new therapeutic agents. Do these clonal diverse populations affect response to in vitro drug 

testing? 

This study was carried out very comprehensively and study showed in the most part a high degree of 

concordance between the CNV profiles, scRNA-seq data and the bulk WES-seq data which adds to the 

strength of the findings. The data analysis mainly used publicly available software sources and data 

made available. 

Challenging the status of PDAC cancer cell “models” in this paper highlights the vulnerabilities of 

reproducibility of research, and questions the repeatability and productivity of real findings. 

Furthermore, the implication of “normal transformed” with major chromosomal copy number events 

and genomic alterations highlights the urgent needs for better development, characterization and 

sharing of effective normal controls for in vitro research, all of which are critical for progress against this 

devastating disease. 

Minor comments: 

Results description of figure 1 (and supplementary data) a bit disjointed and difficult to follow as 

references to figures/supplementary files is disorderly. 

Submitted version of supplementary excel file is formatted incorrectly. 

Reviewer #4 (Remarks to the Author): Expert in single-cell ATAC-seq 

In this work, Monberg et al. generate single-cell RNA and copy number profiling for multiple cell lines 

used as models of pancreatic adenocarcinoma (PDAC), along with commonly used "control" lines. This 

includes detailed investigations of cell lines obtained from multiple sources, as well as those grown in 

differing physical conditions (2D vs 3D). The main overall conclusions are: (i) significant transcriptomic 

variability between commonly used cell lines, (ii) single cell CNA profiling exhibits substantial genetic 

drift in multiple PDAC lines and in a "normal" control line, (iii) there is transcriptomic variability between 

supposedly identical lines from different sources, and (iv) there is transcriptomic variability depending 

on if the line is grown in 2D vs 3D, which scCNV-seq and follow up sn-ATAC-seq confirms is majority 

epigenomic plasticity rather than genomic. 

Overall, the findings and data generated by this study will be an important resource for the community. 

The manuscript could be greatly improved in several ways, most notably in relation to detailing of 

computational methods and validation of some of the scCNA findings. Major and minor comments 

below. 



Major ----- 

A major impact of this study comes from the resulting data to which researchers can compare their 

results without having to generate de novo. However, there is no data availability statement included in 

the manuscript. 

The figures need a significant amount of improvement to be publication quality and many are too 

pixellated to read. In particular: 

- Fig 1C is pixellated and it's impossible to read chromosome names 

- Fig 1D has no X or Y axes and is too pixellated to make out what's going on 

- Figures are referenced out of order which makes it highly confusing to read 

- Figure 4E has zero average expression (grey) for several points but the size indicates a decent 

proportion of non-zero expression? 

The methods for the analysis of the scCNA data are inadequately described. Most of the methods 

description come down to the fact that "the Cell Ranger DNA software" was run, but this does not 

appear to be a peer reviewed approach and is in fact a discontinued product. The authors should detail: 

- how are raw sequencing reads processed to copy number calls? What is the bin size? Is any GC 

correction performed? 

- how are copy number (breakpoints) determined? how is ploidy determined? 

- how are cells clustered into clades / clones? 

- what does "Heatmap data for trees containing all leaves within the maximum node on a per-sample 

basis were exported" mean? 

Can authors report % genome non diploid or # breakpoints as a measure of genomic heterogeneity 

rather than number of clones which will be sensitive to the definition of a clone? 

The authors find BxPC3 has copy number > 4 in TERT as a striking finding - this should be validated using 

e.g. FISH to confirm it is not an artefact of the analysis. 



Similarly, the authors find "AURKA amplification in HPDE, a purportedly “control” cell used in PDAC 

research, including in experimental therapeutics studies" as a major finding of the method, but this 

should be validated as above. 

In figure 1E and 1F the authors compare their pseudobulk single cell CNV data to WES. However, it is not 

actually detailed where this WES comes from. Is this existing bulk data? Was it generated for this study? 

How was it processed and computationally analyzed? 

The authors find that HPDE is more transcriptionally similar to HPAF-II when looking at "average 

distance in rescaled diffusion space" - given the complexity of the underlying algorithm to arrive at these 

distances, can the authors show this result holds when using a simpler distance or similarity metric? For 

example, Pearson correlation has been show to work well ( 

https://pubmed.ncbi.nlm.nih.gov/30137247/ ). 

The authors assert that "HPNE cells are non-ductal in derivation (as demonstrated by lack of epithelial 

markers)", but only show expression profiles for 2 epithelial markers (EPCAM and KRT8). Can the 

authors show a more comprehensive list of epithelial markers (e.g. E-Cadherin, KRT18, KRT19)? Also 

given this is shallow scRNA-seq there is a chance these genes are expressed but simply not detected (i.e. 

a zero count from scRNA-seq does not confirm "non-expression"). Can the authors validate this 

observation via FISH/IHC? 

In multiple places in the manuscript (e.g. MP2 analysis) the authors find cells cluster distinctly. However, 

can this be ruled out as some technical artefact e.g. the effect of cell cycle, sequencing depth, etc? Could 

the authors take marker genes and IHC to confirm it's real? 

Figure 4E - these do not seem to be all the classical/basal genes - how was this subset selected? Again 

authors use "not expressed" when really it should be not detected. 

The authors identify distinct expression of basal genes between early/late and the switching on of 

several classical genes from early/late, and conclude "We thus observe a 

subtype admixture over time", but it seems rather the transcriptomic profiles don't actually match the 

classical/basal subtypes rather than representing an admixture. Since Fig 4E/F represent average 

expression over cells, can the authors check this distinction by examining whether classical/basal 

identity is truly maintained at single cell resolution and the changes represent subtype admixture 

switching, or whether the actually expression profiles don't agree with the classical / basal subtyping 

(which on its own would be an important observation). 



Minor ----- 

"chromosomal locations as provided by 10x Genomics software were mapped to gene-specific loci" how 

often do genes span breakpoints? 

The authors introduce that they perform clonal assignment using clonealign but then state "An 

important caveat of this method is that inferCNV’s inherent design filtered out a large number of cells 

sequenced by scCNVseq" - is "inferCNV" a typo or is inferCNV used as part of the analysis too? 

Discussion of basal/classical assignment: "sorted as" -> "assigned as" 

"we paneled for genes relevant to the Moffitt subtyping" -> what does panel mean as a verb? 



 

 

We thank the reviewers for their time and investment in our manuscript. We greatly appreciate 

their effort and comments to improve the quality of this work. In our efforts to proceed with the 

publication of our manuscript, titled “Occult polyclonality of preclinical pancreatic cancer models drives in 

vitro evolution", we have chosen to address the reviewers’ comments to the best of our abilities in the 

responses detailed below. Reviewer comments are in Italics, our responses are non-italicized. References cited 

for each reviewer have been listed at the end of the rebuttal document, organized on a per-reviewer basis. 

Supporting figures, tables, and discussions have been incorporated into the body of each response. Additionally, we 

have attached a copy of all revisions figures and tables, with annotated legends, at the end of this document.  

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author):  

Major comments 

1. There are numerous studies detailing the heterogeneity of pancreatic cancer cell lines, including 

differences in marker expression, nutrient utilization (e.g., glycolysis vs OXPHOS), and growth properties. 

Deer et al (cited as ref. #11 in the manuscript) reviewed many aspects of divergence among pancreatic 

cancer cells. This reviewer therefore believes that the manuscript in the current state has not demonstrated 

novelty despite the technologies applied. For example, could the authors relate any of the observed 

transcriptomic differences to phenotypic differences – e.g., do the three „strains‟ of MiaPaca2 cells differ in 

growth rate, nutrient consumption, etc, and does that correlate with their respective gene changes? This will 

help readers to better contextualize the potential translational relevance of this study. 

 

- We agree with and thank the reviewer for highlighting the importance of biological activity and functional 

readouts of transcriptionally-derived differences across these cell lines. To address the question of growth 

across the different cell lines, we have conducted a cell cycle scoring analysis on MP2 cell lines and show 

that, cell cycle differences between cell lines are not extreme enough to explain the very large variability 

we see *between* cell lines. We find that a large proportion of cells are in S or G2M phase in all of these 

cell lines (MP2 51.5-62.6%). We do not wish to include these data in the Revised Manuscript, but hope 

that the reviewer is satisfied with our explanation as provided in Reviewer-only Revisions Figure 2. 

 

- While we did not conduct “traditional” growth or migration assays for this study, we point to our GSEA 

analysis findings, as supportive evidence that the phenotypes across the MiaPaca2 strains do indeed differ. 

For example, we have updated Main Figure 2 to now reflect only-significant GSEA pathways that are 

differentially enriched across the 3 strains, emphasizing differences in Hallmark Oxidative Phosphorylation 

and Hallmark Protein Secretion pathways, which indicate phenotypically distinct metabolic changes across 

MiaPaca2s. Next, we have strengthened this analysis by conducting inferCNV on the 3 MiaPaca2 strains, 

compared to HPNE as a reference control. The inferCNV results have also been added to Main Figure 2, 

and show differences in predicted scCNV events most strikingly in chromosomes 5, 11, 15, 17, and 19. 

This also suggests a true phenotypic difference between the cell strains. The main text has been amended to 

reflect this improved analysis and also point out the distinction between events that inferCNV predicted to 

be differential across the strains, versus the events that were actually sequenced at the scCNV level in these 

cells.    

 

 

2. It seems the rationale for selecting the cell lines was just based on the fact that they are commonly used in 

research. This does not necessarily add value. These cell lines even differ in their growth media conditions 

(as rightly noted by the authors in „Methods‟); that alone can drive differences in transcriptomics. The cell 



 

 

lines should thus be presented based on their distinct phenotypes. One good parameter could be basal 

differences in their growth rate or migration (fast vs slow, etc), which can be related to cancer progression. 

Then, determine whether cells that more closely mimic pancreatic cancer features undergo similar degree of 

heterogeneity upon culture or are more robust. This level of detail should be provided. With such 

information, the potential value of using these cell lines will become more or less clear especially when 

complemented with the novel technologies used in this study. 

 

- We thank the reviewer for their perspective and wish to emphasize that the aim of this study was not to 

present a comparative analysis across the phenotypes of well-known PDAC cell lines. Given the widely-

accepted use and culture conditions of the cell lines studied here, we do not believe that we need to 

continue to overstate the value of these lines to the PDAC field, or their relevance for preclinical study. 

Many previous reports have already done so [Refs. 1-5]. Instead, we provide here novel findings of the 

existence of multiple different genomic and transcriptomic clones within each line, point out the 

reprogramming induced by transitioning to a 3D culture medium,  To ensure that readers understand the 

extensive phenotype study that has already been done on these lines at the bulk level, we have clarified our 

language in the introduction to include the references described here, now stating on page 3: 

- “Here we present  an in-depth single cell genomic and transcriptomic assessment of clonal 

heterogeneity in a panel of established and globally utilized PDAC cell lines (Panc-1, MiaPaCa2, 

HPAF-II and BxPC-3), immortalized “control” cells (HPNE and HPDE), and in an independent 

PDO which is compared to its earlier passage prior to prolonged ex vivo propagation. We 

demonstrate that pancreatic cell lines -  neoplastic and non-neoplastic -  are composed of 

remarkable sub-clonal heterogeneity at single cell resolution, which is unlikely to be detectable by 

conventional “bulk” profiling, and has not been previously reported on, despite extensive 

“traditional phenotypic” characterization of these lines [21-28].”  

 

- These cell lines have already been exhaustively characterized by “traditional” phenotypic assays (described 

in main text Ref. 11, Revisions Refs. 6-8, and innumerable other publications). The results of these studies 

have provided the foundation for the wide use and applicability of these cell lines, as well as established 

their exemplary phenotypes as “hallmark pancreatic cancer” cell lines. Because of this, our study does not 

aim to reinvent the wheel. Instead, we sought to apply high-resolution tools to better characterize 

preclinical models whose features and phenotypes are so well-understood in the field of pancreas research 

that they may not be considered by researchers as potential sources of experimental convolution. 

 

3. Based on the above point on differences in culture condition, the authors may consider focusing more on 

cells that are grown under the same culture conditions, e.g., the MiaPaca2 „strains‟ – transcriptomic and 

phenotypic differences, overlap with pancreatic cancer subtypes, etc. This „strains‟ comparison is most 

likely to stimulate interest and is potentially a novel aspect of this work, with far-reaching implication 

considering that exchanging cell lines between labs is a routine practice in cancer research. The authors 

wrote… “We report phenotypic divergence between these assumptively “identical” cultures that appears to 

be driven by changes at the RNA level”. What „phenotype‟ is this? Given the authors‟ finding that passage 

duration can impact gene signatures, did they confirm that the 3 strains of MiaPaca2 were of the 

same/similar passages? 

 

- The reviewer is correct in requesting further explanation of the interpretation of our findings, especially 

with respect to the portion of our study concerning MiaPaca2 strains. The MP2A strain was obtained 

directly from the ATCC and expanded twice in our hands. MP2B and MP2C strains were also thawed and 

expanded twice in our hands, with all three strains being permitted to grow in parallel, in the same 



 

 

incubator, for 4 weeks total. As described in the Methods section of the manuscript, aliquots of each of the 

cultures were sent for fingerprinting and confirmed to be MiaPaca2 cells prior to harvesting the cells for 

scRNAseq + scCNVseq. Our goal, in designing the experiment in this way, was to mimic, as closely as 

possible, what any lab would do in preparation for an experiment or drug screen using cell lines. The 

general phenotype of MiaPaca2 cells is very well described in literature, as these represent a form of 

PDAC driven by a KRAS G12C mutation (present in ~1.6% of PDAC cases) instead of the KRAS G12D 

mutation (present in >40% of PDAC cases). We apologize for the use of the word “phenotype” in 

describing our findings, and will instead be replacing it with terminology referring to transcriptomic 

features, avoiding the functional connotation that “phenotype” carries.  

 

- In the MiaPaca2 strains, the point we wished to highlight is not necessarily that passage duration drives 

transcriptional reprogramming, as we’ve shown with our PDO data. Instead, we wished to demonstrate that 

while passage number and supposed culture conditions of a cell line may be nearly identical across 

different laboratories, the practicality of such findings and their translational implications might greatly 

vary.  

 

- To further address the extent of transcriptomic divergence across MiaPaca2 strains, we mapped scRNAseq 

data from each strain to gene sets representative of existent clinical subtypes of pancreatic cancer, depicted 

in Supplementary Figure 5. To that end, we find that MP2A and MP2C are most representative of the 

Moffitt Classical subtype, which has been shown to yield more favorable outcomes in the clinic, but this 

“representation” is based solely on the expression of a very few genes specific to the subtype. The MP2B 

strain possesses a seemingly more heterogeneous phenotype, harboring cells of both Moffitt Classical and 

Basal clinical subtypes. However, as we note in the main text , "Rather, our data indicates that PDAC cell 

lines are sub-optimal models for application of tissue-based classification systems like Moffitt, largely 

because they might lack expression of substantial numbers of transcripts required for meaningful 

classification". 

 

4. Another important aspect that should be developed more is the “normal” or “control” cell lines (HPNE, 

HPDE). This reviewer very much agrees that these cell lines are not entirely „normal‟ and in fact manifest several 

key features of established cancer cell lines. The authors have a unique opportunity to leverage on their various 

sequencing data to drive home that point. Although an attempt was made in Figures 1E-H, the pancreatic cancer 

cell lines should be included in such comparisons. Perhaps also determine the degree of gene overlap between the 

individual pancreatic cancer cell lines and HPNE/HPDE cells. 

 

- To visualize the degree of overlap in structural events affecting key PDAC progressor genes, we have amended 

supplementary figure 2 to include HPDE in comparison to the other cell lines within the same figure. In this 

figure, we can see overlap in key structural events between HPDE and other pancreatic cancer cell lines. This 

overlap includes deletion of FGFR1 common to both HPDE and PANC1, as well as amplification of GNAS 

common between HPDE, HPAF2, and BXPC3. 

 

Although we focus on the comparison between HPDE and HPNE in the main text, the FISH also confirms the 

finding from the scCNV data that HPDE, HPAF2, and BXPC3 all have at least some degree of amplification of 

AURKA relative to HPNE. 

 

5. That long-term culture of organoids or even any cell line, leads to transcriptomic changes is very much 

expected, albeit not well studied. Therefore, the authors may rather be specific and provocative here by 

emphasizing the unique features of the early vs late passage organoids. While the authors report that late 

passages acquire „classical‟ subtype features, this observation is not novel as it has been reported in a yet to 



 

 

be published work (Raghavan et al, 2020, bioRxiv). Therefore, the authors should focus on other aspects 

such as proliferation, metabolism, expression of cancer pathway signatures, etc. 

 

- We thank the reviewer for their astute observation that reprogramming of PDOs toward one clinical 

phenotype versus another is an insufficient comparison. Because of this, a comparison of Moffitt 

phenotypes was only allocated 2 panels of Main Figure 4. By conducting pseudotime analysis and 

subsequent GSEA (using Gene Ontology terms) on scRNAseq pseudotime-derived clusters, depicted in 

Main Figures 4A-4D, we show that as this particular PDO progresses in culture, genes associated with 

DNA Replication, Cell Cycle, Cell Growth (and many more pathways associated with 

proliferation/metabolism) are differentially enriched between the 2 resulting fates of the late-passage PDO, 

and that these 2 resulting fates are also phenotypically unique from the GSEA enrichment profile of the 

early PDO. We also conducted inferCNV in early versus late passage PDO clusters (Main Figure 4D) and 

show differential copy number aberrations in the late passage, implying a rather substantial transcriptomic 

reprogramming over time in culture. 

 

6. Besides, organoids normally do not do well with prolonged passaging as they best mimic human tumors 

at the early passages. This by itself raises concerns on the utility of comparing the early to late passages. 

The authors should discuss this concern, including e.g., the rationale for such comparison, in the Results 

and Discussions parts of the manuscript. 

 

- We agree that prolonged culture of organoids, especially of the patient-derived nature, can produce 

misleading experimental results. However, in the field of pancreatic cancer research, it is not well-

documented, or reported on, for that matter, how long organoids can be in culture before profound 

transcriptional reprogramming takes place. For these reasons, it is critical to the pancreatic cancer research 

field that parameters/best practices be established to encourage laboratories and research groups working 

with organoid models to regularly characterize their specimens to assess the extent of “drift” from the 

original tumor. We have amended our discussion and presentation of PDO results to reflect these concerns.  

 

7. Where did these organoids come from? In describing the organoid generation, the authors started with 

„Dissociated cells…” Are these patient-derived organoids or organoids made from cell lines? This is 

important because if the former, then details of acquisition and ethical approval should be provided; if the 

latter, then specify which cell line was used, etc. The lack of this information makes it hard for this reviewer 

to objectively critic this organoid part further. 

 

- We thank the reviewer for their concern for research ethics and proper management of clinical tissues. This 

PDO was generated from biopsy cores taken during an EUS-FNA diagnostic procedure at a metastatic site 

from a diagnosed pancreatic cancer primary lesion. The biopsy cores were dissociated according to the 

Methods described, and the PDO was thus grown from those cells which survived dissociation. The patient 

was seeking treatment at MD Anderson Cancer Center. The details of our IRB specifications and clinical 

tissue acquisition protocols have been added to the materials and methods section.   

 

Minor comments 

On the brief title: “Intratumoral heterogeneity…”. Here „intratumoral‟ is misleading since the study is 

purely in vitro. 

 

- We agree that the “intratumoral” label is not entirely specific or appropriate for the context presented. Brief 

title now reads: “Characterizing heterogeneity of PDAC preclinical models.” 



 

 

 

While the manuscript is well written and easy to follow, there might be a few grammatical errors, e.g., 

“prototypal” was used rather than “prototypical” in the Introduction and “proscribed” (actually means 

„forbidden‟) used in the Methods (instead of, I guess, „prescribed‟). Such errors in choice of word or 

spellings should be checked throughout the manuscript to ensure clarity. 

 

- We thank the reviewer for their mindfulness and concern of word choice. “Prototypal” , meaning 

“representing or constituting an original type after which other similar things are patterned”, used in our 

Introduction and Results sections (paragraph 1 of both) was indeed what we had intended. “Proscribed” 

appears to have been a typo, it has been corrected and is no longer used in the manuscript.  

 

Reviewer #2 (Remarks to the Author):  

This study by Monberg at al. sets out to investigate the intratumoral heterogeneity of PDAC preclinical 

models. The study focused on the genomic and transcriptomic heterogeneity of cell line models of PDAC 

(BxPc-3, HPAF-11), between labs (3 x MiaPaCa-2 cell line sources), cell growth (Panc-1 2D vs 3D), a 

PDAC organoid and 2 commonly used “normal” pancreas immortalized cell lines. This paper has some 

extremely interesting findings, and others which are more confirmatory through newer techniques such as 

scRNA-seq/scCNV analysis. 

 

However, as the paper is opening up critical questions of clonal variability among common pancreatic 

cancer cell lines and “normal transformed” lines, extensive detail on the growth conditions (serum, lot # 

etc.), passage number, length of time in culture before sequencing needs to be made clear in the materials 

and methods section. 

 

- We thank the reviewer for their rigorous attention to detail! The growth conditions and percentage of fetal 

bovine serum used for each culture are now specified in the methods. Catalog numbers for all cell lines used 

in this study have also been added. The cell lines were all in culture for 4 weeks following thawing, prior to 

being harvested for sequencing. The Methods section has now been edited to reflect the passage number of 

each line used, where applicable.  

 

The variability of clonal populations within the parental MiaPaCa-2 has long been established but this is 

the first time through scRNA-seq; additional the custodial variability shows interesting clonal distinctions; 

however, the passage numbers of the three different stocks was not disclosed which would need to be 

factored into.  

 

- We thank the reviewer for this comment. Indeed, passage numbers are important! We wish to emphasize 

that we are referring to passage numbers in our hands, and we (nor can any laboratory) cannot account for 

true passage numbers in lines that are long standing and have been used for decades. We also wish to note 

that the general lack of “passage accountability” in these long-standing lines does present myriad issues for 

research in general. In this study, the MP2-A was obtained from the ATCC, thawed & plated, and 

underwent two expansions prior to harvesting for sequencing. MP2-B was labeled at passage 2 when it was 

“donated” to us by a collaborating lab, and plated for an additional two expansions in our hands, and then 

harvested for sequencing. MP2-C was thawed and plated from passage 3, underwent 2 expansions, and was 

then harvested for sequencing experiments. The Methods have been edited to reflect this information.  

 

How long the cells were cultured in the host laboratory before analysis was not disclosed either.  



 

 

- MP2-B was obtained at “passage 2” from a collaborating lab, and was in culture in our hands for less than 

10 passages prior to sequencing.  

 

Also the impact of different sources of serum in the media can also play a role in how cells behave.  

- We agree with the reviewer. Thus, in our experimental design, we were careful to use the same “type” of 

FBS for our cell lines, catalog information is now listed in our Methods section.  

 

This may be true for the “normal transformed” HPDE line which may have been cultured over years of sub 

clonal growth selection, therefore lab passage number is important information to disclose. 

- We agree with the reviewer. However, HPDE cell line is commercially available from Kerafast, and while 

it is true that any cell line may have been cultured over years of subclonal growth selection, we tried our best 

to avoid this by ordering a new stock from Kerfast for this experiment. The cells were plated, underwent 4 

passages/expansions, were fingerprinted by the MDACC Core to ensure cellular molecular identity, and 

were then harvested for sequencing in this experiment set. 

 

How long was the Panc-1 cell line grown in 3D before analysis? 

 

-  Panc1 cells from frozen stock were thawed- half into a 2D culture dish, half into matrigel for spheroid 

generation. The cells in both culture conditions then underwent 2 passages over the course of 4 weeks of 

total growing time prior to being harvested for parallel processing of scRNAseq + scCNVseq.  

 

Additionally, the passage number of the PDO was not shared – what refers to early and late passage? 10 

passages separate the PDO cultures but from what starting point? Can the authors clarify what they 

consider to be “early passages of derivative PDOs”? Can name of PDO be shared, as this would be good 

information for the research community. 

 

- We apologize for the lack of clarification regarding early and late passaging of the PDO. This organoid 

was generated and allowed to grow in PDO media/matrigel for no more than 4 passages prior to being 

initially sequenced. Thus, “early” = Passage 4, “late” = Passage 14 of the PDOs. The Methods have been 

edited to reflect this information.  

 

- To protect patient privacy, the PDO described here is titled PDO1. Given that we did not order the PDO 

from a large biobank or repository (such as the ATCC) and generated the PDO “in house”, it is not 

available to the research community at this time. However, we fully acknowledge the importance of equal 

access and sharing of critical/rare specimens within the research community, and support doing so.  

 

The functional impact of sub-clonal populations with differing transcriptomic enriched pathways was not 

looked at. Although much literature will attest to the diverging biological functionality of 2D vs 3D; the 

biological impact of sub clonal populations within differing custodial vials of MiaPaCa-2 would have added 

to the impact of the study; particularly as these cell lines are used to study drug toxicity and response to new 

therapeutic agents. Do these clonal diverse populations affect response to in vitro drug testing? 

 

- We agree with the reviewer that our study would be strengthened by a “functional” element of 

investigation, although that was not within the scope of our research questions when we designed the work. 

While we did not conduct in vitro drug testing in these cell lines, to demonstrate functional relevance 

detectable at the scRNA level, we applied an in-house bioinformatic pipeline to predict compounds using 

the Broad Institute’s Clue.io Database derived from the Connectivity Map Project [Ref. 9] in Panc1 2D 



 

 

versus 3D samples. In doing so, we find striking differences in compounds that even individual clusters 

within cell lines may be susceptible to, indicated by a red color, or incur minimal transcriptional 

consequences from, indicated by a blue color (Reviewer-only Revisions Figure 6). In particular,  we show 

here that Panc1 3D Cluster 0 is most likely sensitive to PI3K/mTOR inhibitors including dactolisib 

(Reviewer-only Revisions Figure 4A), and Panc1 2D Cluster 0 would likely respond to HSP inhibitor 

BIIB021 (Reviewer-only Revisions Figure 4B). It is important to note that in the data presented in Main 

Figure 3, Panc1 2D clusters were grouped together after determining high transcriptomic similarity. But the 

scRNAseq data shown here is essentially the same as what we’ve presented in the Main text and figures. 

While we do not wish to include these analyses in our final manuscript, nor do we have the resources at 

this time to conduct a drug screen in silico to validate these predictions, we are sharing this data with the 

reviewers here to demonstrate a Proof-of-Concept that diverse clonal populations my very well impact 

response to therapeutics, thereby highlighting the importance of our study to the research community’s 

selection of appropriate preclinical models for cancer research.  

 

Reviewer-only Revisions Figure 4. Comparative analysis of scRNA subclusters derived from Panc1 3D (A)  and 

2D (B) models. Using Clue.io database, genes differentially up or downregulated per cluster were correlated to 

chemical agents that would induce transcriptional reprogramming (red) or not (blue). Clear differences between 

subclusters across samples demonstrate intrasample heterogeneity, as well as spheroid reprogramming resulting in 

predicted sensitivity to MTOR inhibition. 

 
 

 

This study was carried out very comprehensively and study showed in the most part a high degree of 

concordance between the CNV profiles, scRNA-seq data and the bulk WES-seq data which adds to the 

strength of the findings. The data analysis mainly used publicly available software sources and data made 

available. 

Challenging the status of PDAC cancer cell “models” in this paper highlights the vulnerabilities of 

reproducibility of research, and questions the repeatability and productivity of real findings. Furthermore, 

the implication of “normal transformed” with major chromosomal copy number events and genomic 

alterations highlights the urgent needs for better development, characterization and sharing of effective 

normal controls for in vitro research, all of which are critical for progress against this devastating disease. 



 

 

 

Minor comments: 

Results description of figure 1 (and supplementary data) a bit disjointed and difficult to follow as references 

to figures/supplementary files is disorderly. 

- The reviewer is completely correct, and we appreciate their contribution to the improvement of our study. 

The figure legends have been adjusted to be more clear, and the order of the figures and panels within them 

now reflects their discussed order in the text, as much as we could to still allow for the figures to be 

aesthetically pleasing.  

 

Submitted version of supplementary excel file is formatted incorrectly. 

- We thank the reviewer for this comment. We have distilled the GSEA results initially submitted in 

Supplementary Excel File to a single table now submitted as Supplementary Table 2. We hope this has 

solved the formatting issue and has made our results more clear and accessible.  

 

Reviewer #3 (Remarks to the Author):  

Major ----- 

 

A major impact of this study comes from the resulting data to which researchers can compare their results 

without having to generate de novo. However, there is no data availability statement included in the 

manuscript. 

 

- The reviewer is correct in that all data should be accessible and made public to the community. We have 

already submitted all scRNAseq + snATACseq data to GEO, and scCNV data to the ENA. In our initial 

submission to Nature Communications, we included a data availability statement specifying  these details, 

as well as Reviewer Tokens for GEO so that the Reviewer could interrogate the data we present here.  

 

The figures need a significant amount of improvement to be publication quality and many are too pixellated 

to read. In particular: 

- Fig 1C is pixellated and it's impossible to read chromosome names 

- Fig 1D has no X or Y axes and is too pixellated to make out what's going on 

- Figures are referenced out of order which makes it highly confusing to read 

- Figure 4E has zero average expression (grey) for several points but the size indicates a decent proportion 

of non-zero expression? 

 

- We are happy to improve the quality of our submitted figures, and have thus increased the resolution and 

improved the readability of our figures, as per the Reviewer’s recommendation. We’ve also rearranged the 

text to reflect the figure numbers so that they are in a more chronological order. We hope that these 

changes have addressed concerns of readability and quality.  

 

- In order to address size and readability, we have added axes labels to Main Figure 1D from the original 

format, and have now moved it to Supplemental Figure 1C. This allows for more space for Figure 1C so 

that readers can fully appreciate the copy number variations across thousands of cells in each scCNVseq 

dataset. In the “new” Supplemental Figure 1C, we have also improved the legend to better depict variations 

in event heterogeneity across cells between cell line samples.  

 

- Regarding the reviewer’s comment on Figure 4E: we are unsure how to address this concern, and are not 

exactly sure why the reviewer has raised this as an issue. We agree that a large proportion of cells in the 



 

 

PDO have non-zero expression of certain genes depicted, and there are also large proportions of cells that 

have very low relative expression of certain genes, as well (represented as near-zero values in the dotplot). 

To provide qualitative evidence for this portion of the analysis, we have included here tables derived from 

our scRNAseq data showing the average expression values for each of the genes described (Reviewer-only 

Revisions Tables 2 + 3, below). We do not wish to include this data in the supplementary data or describe 

it in the main text, but are affixing it here to sufficiently address the reviewer’s comment.  

 

Reviewer-only Revisions Tables 2 + 3 (Table 2 = Moffitt Basal Dataset, Table 3 = Moffitt Classical 

Dataset).  

 
 

The methods for the analysis of the scCNA data are inadequately described. Most of the methods description come 

down to the fact that "the Cell Ranger DNA software" was run, but this does not appear to be a peer reviewed 

approach and is in fact a discontinued product. The authors should detail: 

- how are raw sequencing reads processed to copy number calls? What is the bin size? Is any GC correction 

performed? 



 

 

- how are copy number (breakpoints) determined? how is ploidy determined? 

- how are cells clustered into clades / clones? 

- what does "Heatmap data for trees containing all leaves within the maximum node on a per-sample basis 

were exported" mean? 

 

- The Cell Ranger DNA software is a publicly-available software pipeline, which is also contained in the 

MD Anderson Cancer Center High Performance Cluster for computing purposes. The link to this widely-

used and accepted software package is here: https://support.10xgenomics.com/single-cell-

dna/software/pipelines/latest/what-is-cell-ranger-dna .  

- All of the specific algorithmic features of the software are also contained in this page, which is 

maintained by 10x Genomics. The library preparations reagents for constructing scCNVseq 

libraries are no longer sold by 10x Genomics as a function of a lawsuit with Biorad and also as a 

result of the extreme price of these products having decreased accessibility to the general research 

community. However, the software package itself is not at all defunct and is still highly applicable 

to scCNVseq datasets, wherever they happen to exist, and can be applied to scCNV datasets 

generated by other library preparation kits, i.e. those sold by MissionBio and Takara.  

 

- We now provide more details for the analysis,  

- The Cell Ranger DNA software first preprocesses the data by aligning the reads to the reference 

genome and marking potential PCR duplicates. Viable cells are identified by thresholding barcodes 

with sufficient reads. Coverage of reads is computed over 20 kb bins over the genome.   

 

- The cells are clustered using the complete linkage hierarchical clustering method on a coarse-

grained copy number matrix, whose window size allows for 200 reads per cell.  

 

- Copy numbers are then called for each of the cell clusters using a Poisson model with 

multiplicative effect of the CNV, sequencing depth, GC content, and mappability. The effect of 

GC content is modeled by a quadratic function of the percentage of GC fitted on the data. Bins are 

grouped into segments using a likelihood-ratio model to determine breakpoints, and the sequencing 

depth is estimated by finding a value that results in most integer CNVs for the segments. The 

mappability is defined as simulated reads that can be mapped back to account for repetitive 

genome regions.  

 

- However, over the process of our revisions, and encouraged by this reviewer’s comments regarding the 

potential issues with the 10x genomics software, we have revisited our analysis of scCNVseq data, updated 

our methods section, and also reconfigured Main Figure 1C and Supplementary Figure 2 to avoid relying 

on the 10x software’s definition of a clone. Instead, we only use the 10x software output of segment 

coordinates and integer copy number values, and display the values for relevant regions or genes on a per-

cell rather than per-clone basis. Our main findings of clonality and chromosomal amplifications/deletions 

remain very similar to what was initially reported in our first submission, but we hope the reviewer finds 

this analysis more technically acceptable. Our methods section for supplemental figure 2 now reads:  

 

Gene coordinates (as defined by Ensembl v84 annotation) were intersected with the node_cnv_calls.bed file for 

each sample to get an integer copy number value per cell, per gene in a list of key PDAC progressor genes. The segments 

output by the CellRanger software are always at least 20kb, and often much larger, so this intersection almost always 

resulted in a one-to-one correspondence of segments to genes. In the handful of cells where multiple segments overlapped 

the same gene, the copy number for the segment with the most overlap by coordinates was used. For the heatmap of non-

HPNE cell lines, a random 1000 cells per sample were chosen for visualization purposes using the “sample” function in R. 

https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna


 

 

 

Can authors report % genome non diploid or # breakpoints as a measure of genomic heterogeneity rather 

than number of clones which will be sensitive to the definition of a clone? 

 

- Certainly. The results of such quantification are given below in Reviewer-only Revisions Table 4.  

 

Reviewer-only Revisions Table 4. Percent of genome non-diploid on a per-sample basis as derived from 

scCNVseq. This serves as a measure of genomic heterogeneity 

 
 

 

The authors find BxPC3 has copy number > 4 in TERT as a striking finding - this should be validated using 

e.g. FISH to confirm it is not an artefact of the analysis. 

 

- The reviewer is correct! We have conducted FISH analysis to confirm our initially reported findings, and 

have included those results in Supplementary Figure 3. We have also amended the Main Text on page 6 to 

describe FISH results as they pertain to TERT amplifications across samples.  

 

Similarly, the authors find "AURKA amplification in HPDE, a purportedly “control” cell used in PDAC 

research, including in experimental therapeutics studies" as a major finding of the method, but this should 

be validated as above. 

- Again, the reviewer is completely correct! FISH has been done, and confirmed the AURKA amplification 

in HPDE, the results of which are now included in Supplementary Figure 3. The findings of this analysis 

have been added to the Main Text, page 7.   

 

In figure 1E and 1F the authors compare their pseudobulk single cell CNV data to WES. However, it is not 

actually detailed where this WES comes from. Is this existing bulk data? Was it generated for this study? 

How was it processed and computationally analyzed? 

 

- The reviewer points out an excellent oversight in our initial submission. WES was generated by our 

laboratory for this experiment and dataset. As such, the Methods section has been amended to include how 

WES was done and analyzed in our laboratory, as per our own previously-published protocols and methods 

in Semaan et al., 2021 [Ref. 10] The Main Text has also been edited on page 6 to reflect the curation of this 

dataset, now reading:  

- “(WES) on HPDE cells curated in our laboratory from the same pool used to generate scCNV and 

scRNAseq datasets confirmed that HPDE cells had undergone further bi-allelic losses of … “  

 

The authors find that HPDE is more transcriptionally similar to HPAF-II when looking at "average distance 

in rescaled diffusion space" - given the complexity of the underlying algorithm to arrive at these distances, 

can the authors show this result holds when using a simpler distance or similarity metric? For example, 

Pearson correlation has been show to work well ( https://pubmed.ncbi.nlm.nih.gov/30137247/ ). 

 

https://urldefense.com/v3/__https:/pubmed.ncbi.nlm.nih.gov/30137247/__;!!PfbeBCCAmug!12MRvOWFElZl9vCebSSLWfzKdLJ8GX-0N1FcmX_En9gK37wTzRgsFA1Bd3C-pyVNpg8$


 

 

- Absolutely! We thank the reviewer for their thoughtfulness in considering Methods Complexity, and 

therefore the ability of readers to understand our work. While we do not wish to include the Pearson 

correlation method in our publication, we have conducted the analysis here for the reviewer’s 

consideration, showing that our reported results with Diffusion Space are consistent with “more 

traditional” analytical methods.  Given the similarity of this reviewer’s comment with those made by 

Reviewer 4, we have attached the results of a Pearson correlation analysis in Reviewer-only Revisions 

Figure 1, panels C and D, as well as here, below. The main text of the manuscript has been altered to 

reflect this emphasis on algorithm reliability, now stating on page 4:   

-  “To ensure rigor and reproducibility in our work, and to assure the reliability of our analysis when 

yet simpler algorithms are applied, we confirmed our findings by running a pearson correlation 

analysis (data not shown). In doing so, we report that the overarching structure of how cell line 

clades are organized remains highly similar to what was determined by diffusion mapping.”  

 

Reviewer-only Revisions Figure 1, continued. Pearson correlation analysis of cell lines to corroborate reported 

findings of Diffusion Space scRNAseq analysis. 

 

The authors assert that "HPNE cells are non-ductal in derivation (as demonstrated by lack of epithelial 

markers)", but only show expression profiles for 2 epithelial markers (EPCAM and KRT8). Can the authors 

show a more comprehensive list of epithelial markers (e.g. E-Cadherin, KRT18, KRT19)? Also given this is 

shallow scRNA-seq there is a chance these genes are expressed but simply not detected (i.e. a zero count 

from scRNA-seq does not confirm "non-expression"). Can the authors validate this observation via 

FISH/IHC? 

 



 

 

- Given that the HPNE cell line was validated by way of Fingerprinting by the MD Anderson Cytogenetics 

Core and does not express epithelial-associated genes at the scRNAseq level, we believe that conducting 

IHC or FISH for these specific genes would be excessive. Further, EPCAM and KRT- genes are canonical 

markers for pancreatic ductal adenocarcinoma. HPNE cells, as published and as described in our 

manuscript, are not PDAC cells. HPNE cells instead represent a normal ductal-like phenotype, and do not 

express additional KRT markers when the scRNAseq assay is applied. Their “normal” genetic 

backgrounds, identified in scCNVseq and confirmed by WES, also provide support for this observation. 

We’ve included a violin plot in Reviewer-only Revisions Figure 5 showing expression across cell lines of a 

more exhaustive list of epithelial markers.  

 

Reviewer-only Revisions Figure 5. Violin plot of expression of common epithelial marker genes in PDAC cell 

lines, showing very low relative expression  in HPNE cells. Ductal marker SPP1 included as reference.  

 

 
 

 

In multiple places in the manuscript (e.g. MP2 analysis) the authors find cells cluster distinctly. However, 

can this be ruled out as some technical artefact e.g. the effect of cell cycle, sequencing depth, etc? Could the 

authors take marker genes and IHC to confirm it's real? 

 

- We thank the reviewer for their rigor in reviewing the quality of our submitted sequencing dataset. To 

ensure that clusters determined by scRNAseq were “real”, we insisted on including clonealign in our 

reported findings as a way to orthogonally validate scRNAseq-determined clones by the specific genomic 

events that might be driving those clusters. In Main Figures 2E-J and Supplemental Figures 6A-D, we 

describe the result of such analyses, pointing out that in MP2 and Panc1 samples (respectively), the “real” 

scRNA-derived clusters “boil down” to 4 categories: Clone 1, Clone 2, Clone 3, or unassigned. We then 

report specific GSEA differences across those clones as a function of their genetic uniqueness and the 

resulting transcriptional profiles. In doing so, we emphasize that scRNAseq-based “clusters” can be 

arbitrary if they are not orthogonally validated in some way. Here, our clonealign analysis linking 



 

 

scCNVseq data argues exactly that point, and GSEA confirms transcriptional “realness” of such scRNAseq 

clones. Data stringency and analytical methods applied in scRNAseq, scCNVseq, and clonealign filtering 

ensured the highest data quality and ameliorated technical artifacts that may have otherwise been due to 

sequencing depth or cell cycle (all analysis packages applied have rigorous, peer-reviewed methods for 

overcoming the technical biases of these elements). Because we would be incapable of conducting such an 

analysis with IHC or FISH data alone, we believe that the findings presented here are not only “real”, but 

apply a relatively novel approach to assessing the validity of scRNAseq clustering methods.  

 

- It is also important for us to note here that for the Panc1 2D/3D samples, we computationally merged 

scRNAseq datasets with snATACseq datasets, adding an additional validation method to understand the 

functional/”real” significance of clusters designated by scRNAseq analysis pipelines. Depicted in Main 

Figures 3F-I, we demonstrate that in addition to clusters being driven by genomic amplifications/deletions 

(Supplemental Figure 6), epigenetic differences drive cluster distinctions at the scRNAseq level in between 

these samples.  

 

- We have also conducted a cell cycle analysis on the scRNAseq data of the cell lines, and have explained 

this analysis in our rebuttal to Reviewer #1, with the results depicted in Reviewer-only Revisions Figure 2. 

We do not wish to include these data in our final manuscript, but by our analysis, it is clear that the 

differences between clusters are not being driven by cell cycling differences across the cells of each 

sample.  

 

 

Figure 4E - these do not seem to be all the classical/basal genes - how was this subset selected? Again 

authors use "not expressed" when really it should be not detected. 

 

- The Moffitt Classification schema for pancreatic ductal adenocarcinoma transcriptional subtypes referred 

to in our manuscript is cited in the Main Text, and also listed at the end of this rebuttal document [Ref. 11]. 

We did not independently select these genes, they have been published in the literature for a number of 

years and are now applied in clinical trials for patient stratification, examples of which are also cited in the 

Main Text. As for the issue of not detected at all versus expression being low or uncommon (but not 

completely absent), we have included Reviewer-only Revisions Tables 3 + 4 above, quantifying the 

expression of each gene in each dataset, hoping that the reviewer will be satisfied with this explanation. We 

are happy to amend the language of the text to reflect the extremely low expression of certain Moffitt-

associated genes in our dataset, and not “lack of expression”, and have done so on page 14 of the Main 

Text.  

 

The authors identify distinct expression of basal genes between early/late and the switching on of several 

classical genes from early/late, and conclude "We thus observe a 

subtype admixture over time", but it seems rather the transcriptomic profiles don't actually match the 

classical/basal subtypes rather than representing an admixture. Since Fig 4E/F represent average 

expression over cells, can the authors check this distinction by examining whether classical/basal identity is 

truly maintained at single cell resolution and the changes represent subtype admixture switching, or whether 

the actually expression profiles don't agree with the classical / basal subtyping (which on its own would be 

an important observation). 

 

- We agree with the reviewer that the distinction between subtype admixture switching versus disagreement 

with molecular profiles is important. To address this, we have generated a heatmap showing all measurable 



 

 

genes within the scRNA analysis assay across early versus late PDO cultures. As you can see clearly in 

Reviewer-only Revisions Figure 6 below, there is very clear expression of many genes from both subtypes 

across many cells in the PDO late sample, whereas the majority of cells of the PDO early sample almost 

exclusively express genes associated with one subtype. As such, we will not be amending Main Figure 4 

nor will we alter the original manuscript text regarding this issue, as the findings in Reviewer-only 

Revisions Figure 6 are agreeable with what we initially reported. However, given the importance this issue 

raises, we have decided to add this heatmap analysis to our newly-created Supplemental Figure 8 to 

support findings reported in Main Figure 4.  

 

Reviewer-only Revisions Figure 6. Heatmap annotated per cell in Early versus Late PDO culture (columns) and 

genes (rows) associated with Moffitt Classical and Basal molecular subtypes. PDO1 early expresses genes almost 

exclusively associated with the Basal Subtype, while many cells within PDO1-late express genes that are either 

classical or basal in nature. 

 
 

 

 

Minor ----- 

 



 

 

"chromosomal locations as provided by 10x Genomics software were mapped to gene-specific loci" how 

often do genes span breakpoints? 

- Since the bin size is 20kb, genes spanning breakpoints are naturally rare. 

 

The authors introduce that they perform clonal assignment using clonealign but then state "An important 

caveat of this method is that inferCNV‟s inherent design filtered out a large number of cells sequenced by 

scCNVseq" - is "inferCNV" a typo or is inferCNV used as part of the analysis too? 

 

- We thank the reviewer for catching this important error on our part! We absolutely meant to refer to 

clonealign, NOT inferCNV here, and the main text has been amended to reflect this! Thank you very 

much!  

 

Discussion of basal/classical assignment: "sorted as" -> "assigned as" 

 

- Happy to adjust. Main text amended appropriately.  

 

"we paneled for genes relevant to the Moffitt subtyping" -> what does panel mean as a verb? 

 

- We had intended for “panel” to convey the process of obtaining a list or panel of genes and quantifying 

their expression in the scRNAseq assay. In this case, we understand the confusion our language here may 

create, and have opted to alter the Main Text. The text now reads, “Within the PDO scRNAseq analysis 

object, we searched for and quantified the expression of genes included in the Moffitt transcriptional 

subtyping schema, to understand subtype-specific ...". We hope that the newly-worded text is more 

understandable to the readership, and is preferred by the reviewer.  

 

Reviewer #4 (Remarks to the Author):  

 

Major concerns 

 

1. The authors perform single-cell profiling (mostly scCNV and scRNA) on separate cultures of the same cell 

lines (e.g. MiaPaca2 lines from three sources) and, observing differences in the single-cell data from these 

different sources, they conclude that the underlying cultures are different. However, the authors do not seem 

to account for the alternative explanation that some of the differences they observe are due to technical 

variability between runs of the single-cell profiling methods themselves. The single-cell data is not a perfect 

representation of the underlying samples. It has inherent technical biases and artifacts that can vary 

between runs, and can also suffer from sampling bias as <10K cells are generally profiled in a single run. 

In the context of this study, where single-cell data is being used to draw conclusions about differences in the 

underlying biosamples, I think it is essential to perform technical replicates where cells from the same 

culture are split into two aliquots and assayed independently. I am unbale to draw conclusions about the 

differences between three MiaPaca2 cell sources, for example, based on a single replicate from each. Given 

the emphasis of these authors on reproducibility and rigor, this seems to be a particularly important flaw. 

  

We appreciate the reviewer’s dedication to ensuring the integrity of single-cell studies and raising 

very important commentary on the state of single-cell datasets. In our study conception and 

design, we were also acutely aware of the limitations and “cautionary tales” of generating single-

cell experimental datasets, and thus generated the data presented in our manuscript according to 



 

 

the following principles.  

 

- To minimize the technical variability between sequencing runs, samples were sequenced 

together, in a single sequencing batch, according to their data type, to eliminate the potential of 

“sequencing-induced” batch effects, which are notorious to scRNAseq data.  

 

- Given the exceptionally high cost of sequencing reagents, which is not at all feasible in the typical 

laboratory setting, we opted to forego constructing duplicate libraries and sequencing pools for 

this dataset. However, as further confirmation that “technical replicates” are not warranted in this 

experimental design, we have included here a comparative analysis of scRNAseq data between 

the Panc1 2D/3D (“Panc1.2D”) samples described in our manuscript with a previously-sequenced 

scRNAseq dataset derived from a Panc1 2D sample (“Panc1.2D.old”, done in our laboratory by 

the first author, M. Monberg). In doing so, we find a very close transcriptional similarity between 

the “old” and “new” Panc1 2D samples, and both are more transcriptionally similar to each other 

by both Pearson Correlation and Diffusion Map (Reviewer-only Revisions Figure 1, Supplemental 

Figure 1, respectively) than they are to the Panc1 3D model or any other cell lines described in 

our manuscript. The figures of this comparison are included for the reviewer’s consideration to 

this point that constructing duplicate libraries of each sample would have added very little to the 

dataset and primary findings as they are currently described in the main text.  

 

- The reviewer very thoughtfully considers the number of cells per sample required to adequately 

represent a sample’s heterogeneity, and also rightly questions the use of technical replicates to 

accurately capture biological variation. The reviewer comments that any sample size less than 

10,000 cells is inadequate for characterization purposes. However, existing literature shows as 

few as 500 cells per sample may be used to draw significant conclusions from scRNAseq data, 

so long as adequate sequencing depth per cell within a sample is achieved, and appropriate 

filtering and quality control analysis of the dataset is conducted [Refs. 12-14]. Data for the 

number of cells and sequencing depth per sample is contained in Reviewer-only Revisions Table 

1 below. In our own recently published work, we also demonstrate that few cells from extremely 

limited tissue biopsies, not sequenced in technical replicates, were adequate to predict 

therapeutically-relevant inter-cellular interactions at the single-cell RNA level [Ref. 15] In Main 

Figure 1A, cells from each sample cluster together,  a UMAP organization based on biological 

identity that is supported by another PDAC preclinical models paper recently published in Nature 

Communications [Ref. 16], that strongly suggests that batch effect does not drive the 

organization of cells in the scRNAseq analysis assay. To further confirm the non-existence of 

batch effect in a quantitative way in our scRNAseq dataset, we show in Reviewer-only Revisions 

Figure 1 below that within the scRNAseq datasets, the cells within each sample form their own 

“clades”, demonstrating that the cells are clustering as a function of biological similarity and not 

as a function of technical artifacts. If there was a batch effect present, we would see samples 

sequenced together in individual runs clustering in the same families. Instead, we see samples 

clustering in a way that supports our hypotheses of biological identities across the cell lines. 

Further, in Main Figures 2 and 3, where we dissect heterogeneity between MiaPaca2 and Panc1 

samples, we show that clustering or UMAP separation at the scRNAseq level is driven by 

transcriptomic consequences of differential genomic events/chromatin accessibility, rather than 

“technical variation” within the samples themselves. Given that cell lines are inherently less 

heterogeneous than tissue biopsies, that each sample in this study was sequenced to a depth 

well above the “minimum required” read count, and that the very nature of single-cell profiling 



 

 

guarantees hundreds of technical replicates within each sample, we are confident that the data 

presented here does truly capture the biological heterogeneity across these cell lines.  

 

 

Reviewer-only Revisions Table 1.Sequencing metrics for scRNAseq data, provided in response to 

concerns raised by Reviewer #1.  

Reviewer-only Revisions Figure 1. Pearson correlation analysis of cell lines to corroborate reported 

findings of Diffusion Space scRNAseq analysis. To address reviewer comments regarding technical 

replicates of samples, we show that a technical replicate of Panc-1 2D is ranked as highly similar to the 

other Panc-1 samples by both cladogram organization (A) and heatmap (B). This provides evidence that 

cell number and sequencing depth in the original presented dataset are sufficient to both ameliorate 

batch effects and to proscribe against generation of technical replicates for all samples. 



 

 

 
 

2. Several of the transcriptome comparisons use GO term enrichment to point to potential biological 

differences between subclusters. However, it seems to me that in several instances the authors are using an 

FDR cutoff of 0.5 instead of the standard 0.05, and are thus basing conclusion on results that are not 

statistically significant. In all cases where this GO data is presented or discussed I think the authors should 

make explicitly clear which results exceed the threshold for statistical significance and refrain from 

overinterpreting results that do not meet this threshold (e.g. Figure 2C, 3B, and the results section 

“Epigenetic alterations define …” where results in the supplemental excel file are discussed). 

 

- The reviewer makes an excellent point concerning the statistical significance of our GSEA findings at the 

single-cell level. It is important to note that for the figures referred to in this comment, Hallmark Pathways, 

not GO, were used. As such, we have amended Main Figure 2C to include a legend with FDR cutoff 0.05, 

and listing only such pathways that were enriched at that level in the final figure. In Main Figure 3B, where 

GSEA was also included, the original legend did include cutoff values of both 0.5 and 0.05, and has been 

left unchanged. We recognize the confusion that might be caused by including pathways that do not have 

an FDR < 0.05. In the case of MP2 comparisons, there are pathways that have FDR < 0.05 for one sample 

but an insignificant FDR for another, an example being Oxidative Phosphorylation, where the FDR value 

for MP2-A is 0.05, but is insignificantly enriched in MP2-B, and insignificantly downregulated in MP2-C 

(Figure 2C). This comparison thus demonstrates differential enrichment of a pathway in one sample over 

the others, and supports our argument that “validated”/fingerprinted cell lines that are “supposed to be” the 

same, are, in fact, not the same at the single-cell level. We have amended the main text as such, see page 9, 

which now reads “MP2-A is enriched in GSEA Hallmark pathways related to P53, oxidative 

phosphorylation, and protein secretion. In contrast, MP2-B downregulated GSEA Hallmark 

interferon gamma response, and MP2-C has no statistically significant enrichment in Hallmark 

Pathways based on scRNAseq GSEA analysis  (Figure 2C). 

 



 

 

-  The main text also describes which pathways were of significance across samples, as well as which 

pathways identified at the scRNAseq level also significantly correlated with genomic events detected at the 

scCNV level. The main text referring to those findings on a per-sample basis has also been left unaltered, 

and we have created Supplemental Table 2 to summarize GSEA enrichment profiles which are specific to 

scCNV-derived scRNAseq clones.   

 

3. Aside from the GO analyses discussed above, I am concerned with the lack of other analyses into the 

biological differences between clusters, as well as the lack of independent experimental validation of these 

differences. Clustering analysis of single-cell data rely on arbitrary “resolution” parameters that can 

dramatically alter the results. Thus, in my opinion it is critical not to rely on clustering analyses to conclude 

that two groups of cells are biologically different, but rather, to use these analyses to help point to 

biological features (genes, pathways, etc) that may differ between groups of cells, and then validate these. I 

suggest that the authors perform additional analyses into the potential biological differences between cell 

clusters to include at a minimum differential gene expression analyses (not just GO enrichment) and cell 

cycle analyses (now readily inferred from single-cell RNA-seq data – see PMID: 32312741 for example; 

differences in cell cycle 

stage could easily confound these culture-to-culture comparisons). Moreover, findings should be validated 

with independent experiments. For example, differentially expressed genes between two cell culture sources 

can be validated by FISH at the single-cell level or at least rt-qPCR at the bulk level. 

 

- We agree wholeheartedly with the reviewer that scRNAseq analysis-deemed clusters are insufficient to 

denote true biological difference within samples. The scRNAseq data described in our manuscript were 

analyzed according to parameters that were  assessed by experts in the field of scRNAseq, whom we cite as 

authors (Drs. Ken Chen, Fang Wang, Roshan Sharma). We chose clustering parameters based on the 

principal components deemed appropriate by the Seurat analysis package. Further, the GSEA findings 

reported in Main Figures 2 + 3 are done so based on genes that are differentially expressed between 

clusters within samples, NOT based on “whole gene lists” of genes expressed on a per-cluster basis. Thus, 

in full agreement with the reviewer, the findings we have submitted for review are much in line with their 

prescribed analysis. The legends of Main Figures 2 + 3 have been amended to more clearly articulate the 

findings depicted, and our Methods have also been amended to more thoroughly describe how differential 

expression was conducted across the subclusters within samples to obtain the depicted results.  

 

- Also in agreement with the reviewer, we believe that orthogonal validation of all reported findings is 

critical to the integrity of our work. For this reason, both scCNVseq and scRNAseq were conducted on cell 

lines as “complimentary” yet still independent datasets. Further, included in our analysis scCNVseq of cell 

lines are findings derived from our clonealign analysis to “link” events at the CNV level with biologically-

relevant, independently-determined scRNAseq clusters. We subsequently conducted GSEA analysis on 

ONLY those scRNA-based clusters that correlated to genomic events  in the scCNV seq data (Main 

Figures 2D-2I, Supplemental Figure 6E), an analysis unique to this study as very few published works have 

paired scCNVseq with independently-collected scRNAseq data of the same samples.  

 

- With regards to the reviewer’s concern that Cell Cycle stages may have confounded our analyses: we have 

included here the results of cell cycle analysis of MP2 (Reviewer-only Revisions Figure 2B) and Panc1 

(Reviewer-only Revisions Figure 2C) samples in Reviewer-only Revisions Figure 2, below, and quantified 

the percentage of cells per sample occupying each cell cycle phase. We do see that the clustering within a 

given cell line may be driven in part by cell cycle. For example, cluster 1 vs. cluster 4 in the MP2 analysis 

(where cluster 4 contains primarily MP2-A cells in G2M phase, while cluster 1 contains primarily of MP2-



 

 

A cells in G1 or S phase). However, cell cycle differences between cell lines are not extreme enough to 

explain the very large variability we see *between* cell lines. We find that a large proportion of cells are in 

S or G2M phase in all of these cell lines (MP2 51.5-62.6%, Panc1 42.2-51.9%). 

 

- To further validate that events called at the scCNV level were not a function of sequencing artifact, we 

have conducted FISH analysis to probe for the major scCNV events reported in the Main Text, and 

included those data in Supplemental Figure 3.  

 

- As additional confirmation that scCNVseq events could be validated with our independently-acquired 

scRNAseq data, we ran inferCNV on scRNAseq data per sample, and find a concordance between events 

predicted at the transcriptomic level with the actual scCNVseq groupings (Main Figure 2D, Supplementary 

Fig. 6E).  

 



 

 

Reviewer-only Revisions Figure 2 (Cell Cycle Scoring). Cell Cycle Scoring Analysis of scRNAseq data across 

Panc-1 samples and MP2 samples.  A) Table shows sample (row) by cell cycle phase (columns), numbers are 



 

 

percentages of cells in each sample occupying each cycle phase. B) UMAP embedding of MP2 samples across 



 

 

clusters and cycle phases. C) Same as (B) for Panc-1 2D and 3D samples.  

 

 

 

4. With regard to the scATAC-seq analysis in figure 3, the number of cells profiled seems very low and 

probably too small to draw conclusions from clustering analysis like those shown in supplemental Figure 6 

where all of the cells essentially are essentially in one large “blob.” I was also unable to find quality control 

assessment for any of these libraries (or scRNA-seq libraries) including read counts per cell and 

signal/noise metrics like Transcription Start Site (TSS) enrichment. In my opinion, these QC analysis should 

be included in supplement if not already there somewhere. 

 

- We agree with the reviewer that the number of cells used in snATACseq may appear quite small. However,  

rigorous quality control metrics were indeed run on the data, the results of which have been added to the 

supplemental data (Supplementary Fig. 7A, 7B), and are also attached here (Reviewer-only Revisions 

Figure 3) for the reviewer’s consideration. We subset nuclei according to the following criteria: TSS 

Enrichment > 2, nucleosome signal < 10,  blacklist ratio < 0.05, percent reads in peaks > 15, peak region 

fragments between 1,000 and 20,000. The methods have been amended to reflect these parameters.  After 

ensuring the quality of nuclei were sufficient, as proscribed by the Signac Package developed by the Satija 

Lab (cited in Main Text and Methods) as well as recent publications including this data type [Refs. 17-18], 

a final count of 9,785 nuclei are represented by the Panc1 2D sample, and 7,453 nuclei of Panc1 3D are 

depicted in the figures. As discussed above, the resulting number of nuclei is more than sufficient, by 

current research standards, to draw accurate conclusions and conduct correlative investigations across 

samples in this dataset.  

 

-  As per the scRNAseq data quality control metrics, those are included in our submission to the GEO portal 

and are now publicly available. It is not common practice in the literature to list quality control metrics of 

scRNAseq data in the supplementary or main figures, so we did not include them in this manuscript. 

However, cell count and sequencing depth per scRNAseq sample are listed in Reviewer-only Revisions 

Table 1. 

 

Reviewer-only Revisions Figure 3. Quality control data of nuclei sequenced in snATACseq assay for Panc-1 3D 

(A, B), and Panc-1 2D (C, D) samples. TSS Enrichment Plots for Panc-1 3D (B) and Panc-1 2D (D) depicting the 

mean TSS enrichment score across nuclei are shown. Nuclei data were subsequently filtered according to 

appropriate QC parameters. 

 

 

 

 



 

 

5. A number of the figure panels are very hard to interpret due to illegibly small or blurry text, clutter, 

and/or lack of labeling (e.g. 1C,D,G,H; 2B,D,G). This detracts from the manuscript because I am unable to 



 

 

independently assess these data as presented, and am left to rely only on the authors 

description/interpretation in text. I suggest a major overhaul of these panels in any resubmission. 



 

 

- The reviewer is entirely correct. All figures have been updated to a higher resolution, and currently appear 

legible. However, if the figures are still considered too small or unclear in their labeling, we are more than 

glad to oblige by making further edits.  
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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This reviewer appreciates the authors for responding to the comments and issues raised about their 

original submission and thank them for the additional clarifications and data provided. A key issue 

remains the lack of “phenotypic” validation. The absence of a “phenotypic” characterization of the 

occult heterogeneity makes it hard to appreciate the translational directions that those heterogeneities 

unravel. In practice, most cell culture studies go beyond two passages – typically upwards of 10-15, and 

it is widely accepted that cell lines undergo changes as they are passaged hence the need to limit 

passage number. Granted, this study leverages on scRNAseq and scCNVseq to pinpoint what those 

“changes” might be a single cell level and on that basis is quite innovative. 

That said, as the authors rightly alluded to, it is hard to account for the number of passages that cells 

obtained from external sources have already undergone. Although the authors controlled for passage 

number in their own study, one cannot rule out that any additional heterogeneities the authors 

observed may be due to preexisting alterations beyond the authors’ control. Therefore, it is a bit difficult 

to visualize the context in which knowing that heterogeneities arose after two passages would matter if 

there is no accompanying phenotype. 

In sum, other than the concern on phenotypic link, the study is both innovative and interesting. 

Reviewer #2 (Remarks to the Author): 

I am happy with the authors detailed responses to the review comments. All queries were met with 

sufficient detail and I have no further comments to make on the study. 

Reviewer #3 (Remarks to the Author): 



The authors have done an impressive round of revisions and have addressed all my concerns. 

Reviewer #4 (Remarks to the Author): 

The authors have not fundamentally addressed my concerns. I reiterate the most serious concerns 

below: 

• Lack of validation. None of the inferences from scRNA-seq are validated with independent methods, 

even though methods are readily available for validating differentially expressed genes between cell 

clones/populations (e.g. RT-qPCR), even at the single-cell level (e.g. RNA FISH). In their rebuttal the 

authors argue that that their clustering can’t be due to technical or sampling artifacts because they find 

differential gene enrichments by GSEA as well as differences using computationally inferred CNVs. 

However, this is a circular argument – both GSEA and inferCNV are analysis run on the same underlying 

data scRNA data that has not bee reproduced. 

With regard to GSEA (e.g. 2c) – the authors do not provide orthogonal validation that any of the genes in 

the analysis are actually differentially expressed in their cell cultures. They also do not indicate which 

enrichments exceed a significance level of FDR < 0.05 (do any?). Are those FDR values adjusted for 

multiple testing across many samples (rather than just within each sample)? For example, if FDR is 

calculated for each sample independently, the significance level should adjusted even lower when 

analyzing 3 samples together as in 2C. The authors do not even provide quantitative analysis or 

heatmaps of the expression values of the genes in those sets in each samples to evaluate the magnitude 

of expression differences. GSEA are notorious for spurious associations. The authors also seem to 

perform GSEA using a derived and unconventional metric where they multiply the -log10pvale from 

“FindMarkers” function in Seurat by the fold-change directions. However, the methods section does not 

adequately describe what was actually done here. Was this derived metric defined for the same 

superset of genes for all three samples? – this would be necessary to enable a fair pathway GSEA 

comparison across samples. Also, FindMarkers and fold-change calculations require definition of a 

foreground and background set of cells – how were these determined with 3 cells clones? 1 vs others? 1 

vs 2? Etc? These critical details are unclear, but in any case, GSEA analysis are not validation of the 

underlying scRNA data (they are derived from it) and do not address my concern. 

Re inferCNV – these data seem also to be derived from the scRNA-seq data. The authors claim in their 

rebuttal that “we ran inferCNV on scRNAseq data per sample, and find a concordance between events 

predicted at the transcriptomic level with the actual scCNVseq groupings (Main Figure 2D, 

Supplementary Fig. 6E).” The authors emphasize this as an “orthogonal” validation of their data. 



However, Figure 2D and S6E are simply descriptive heatmaps that do not justify the claims made in text. 

There are no quantitive comparisons that I can find of these predictions to the actual measured scCNVs. 

This is a glaring omission. In any case, analysis of the inferCNV data, though potentially informative if 

performed in more depth than done here, would not be an orthogonal validation of scRNA-seq-derived 

conclusions. Most of the expression differences driving the clustering and GSEA are not due to genes in 

CNVs (or at least have not been shown to be such), and of course CNV analysis simply does not measure 

expression. The analysis of inferCNV to the measured CNV would simply validate that the “inferCNV” 

algorithm can accurately identify CNVs, at least in some cases. That is a fundamentally different type of 

validation that whit is needed to validate transcriptional differences between cell cultures. 

• Reproducibility. The authors are basing wide-ranging conclusions on single replicates of a technology 

in single-cell RNA-seq that is well known to suffer from technical noise, sampling limitations, dropout 

events, etc. Indeed, their own Reviewer-only Table 1 shows that they detect <2000 genes / cell, which is 

certainly a vast under-sampling of the genes expressed in a given cell, much less the quantitive range of 

transcripts expressed for each gene. I understand that single-cell experiments are expensive, but when 

basing conclusions about underlying biology on single-cell data (particularly with no independent 

experimental validation as per concern #1), replicates are strictly necessary to establish the 

reproducibility and thus validity of the conclusions. The fact that libraries were sequenced in parallel 

does not address this concern. It is well known that batch effects and other technical artifacts can have 

dramatic effects on the final clustering and other results of single-cell data analysis 

(https://pubmed.ncbi.nlm.nih.gov/29608179/). Indeed, there are myriad methods designed specifically 

to mitigate this problem by optimizing sample integration (e.g. Harmony, CCA / integration anchors in 

Seurat, etc; Recently benchmarked in https://pubmed.ncbi.nlm.nih.gov/34949812/). Have any of these 

methods been used to integrate samples? Without such integration methods, it is no surprise that 

UMAP dimensionality and graph-based clustering methods show differences between samples. And 

even with such integration, replicates and validation are essential. The need for experimental replicates 

(and validation) in differential gene/feature analysis for ‘omics data (e.g. RNA-seq, ATAC-seq, ChIP-seq, 

etc) has been well established for decades. It is even more important for sparsely sampled single-cell 

data with even higher risk of drawing spurious conclusions. 



In this second revisions document for the manuscript entitled “Occult polyclonality of preclinical pancreatic
cancer models drives in vitro evolution”, we are addressing all reviewer comments as requested in recent
communications with the Nature Communications editor. We hope that the reviewers will consider our
responses to be satisfactory.

Reviewer #1 (Remarks to the Author):

This reviewer appreciates the authors for responding to the comments and issues raised about their original
submission and thank them for the additional clarifications and data provided. A key issue remains the lack of
“phenotypic” validation. The absence of a “phenotypic” characterization of the occult heterogeneity makes it
hard to appreciate the translational directions that those heterogeneities unravel. In practice, most cell culture
studies go beyond two passages – typically upwards of 10-15, and it is widely accepted that cell lines undergo
changes as they are passaged hence the need to limit passage number. Granted, this study leverages on
scRNAseq and scCNVseq to pinpoint what those “changes” might be a single cell level and on that basis is
quite innovative.

That said, as the authors rightly alluded to, it is hard to account for the number of passages that cells obtained
from external sources have already undergone. Although the authors controlled for passage number in their
own study, one cannot rule out that any additional heterogeneities the authors observed may be due to
preexisting alterations beyond the authors’ control. Therefore, it is a bit difficult to visualize the context in which
knowing that heterogeneities arose after two passages would matter if there is no accompanying phenotype.

In sum, other than the concern on phenotypic link, the study is both innovative and interesting.

Thank you so very much for your help and support in the revision of this manuscript!

Reviewer #2 (Remarks to the Author):

I am happy with the authors detailed responses to the review comments. All queries were met with sufficient
detail and I have no further comments to make on the study.

Excellent! Thank you very much! We are so appreciative of your feedback!

Reviewer #3 (Remarks to the Author):

The authors have done an impressive round of revisions and have addressed all my concerns.

Happy to hear! Thank you for your gracious help and support in the publication of this study!

Reviewer #4 (Remarks to the Author)

The authors have not fundamentally addressed my concerns. I reiterate the most serious concerns below:

• Lack of validation. None of the inferences from scRNA-seq are validated with independent methods, even
though methods are readily available for validating differentially expressed genes between cell
clones/populations (e.g. RT-qPCR), even at the single-cell level (e.g. RNA FISH). In their rebuttal the authors



argue that that their clustering can’t be due to technical or sampling artifacts because they find differential gene
enrichments by GSEA as well as differences using computationally inferred CNVs. However, this is a circular
argument – both GSEA and inferCNV are analysis run on the same underlying data scRNA data that has not
bee reproduced.

- This manuscript described multiple data types that are used to validate our findings across cell lines.
Each dataset was generated in an independent experiment. scCNVseq libraries, which sequence the
DNA of sampled cells were constructed from the same passage as cells used for scRNAseq, Whole
Genome Sequencing (Bulk DNA)  and snATACseq, where appropriate. For FISH validation, as part of
this review process, another pool of cells for each sample was used. In this way, we have conducted at
minimum 3 independent experiments for data acquisition per sample. For all of the cell lines, at the very
least, we have conducted independent scCNV and scRNAseq experiments, across which we describe
consistent findings to link independently sequenced genomic events with RNA expression gathered
from an independent scRNAseq experiment. In the cases of HPDE and HPNE, we conducted FISH and
Whole Exome Sequencing (WES) to confirm the most prominent and unexpected events which had
been detected in the scCNVseq experiemt (Figure 1, bottom). In the case of our Panc1 comparison, we
paired scRNAseq with snATACseq experiments, and demonstrate how transcriptional differences
between 2D and 3D models are due to epigenetic modifications. In the example of Panc1, scRNAseq
experiments are used to orthogonally validate motif enrichment identified at the chromatin level in the
snATACseq assay.

- A batch effect occurs when samples are sequenced in different batches, collected at different times, or
processed by different library preparations that preclude a reliable analysis from being conducted
(https://sysbiowiki.soe.ucsc.edu/node/323). All samples for appropriate comparisons were sequenced
together, at the same time, on the same instrument. All libraries were built using the same library
preparation kits, at the same time. In our first rebuttal, we included a technical replicate of Panc1-2D
and conducted an analysis that was not a seurat-based scRNA method (utilized a Pearson correlation
of scRNAseq data, as the Reviewer had requested). We have shown that the cluster organization of the
samples with respect to each other remains the same. This analysis provides clear evidence that any
existing batch effect was not only ameliorated, but was not the culprit of the findings reported here. We
have included our initial response for the reviewer here, so that they may reconsider.

- From Response 1: “In our own recently published work, we also demonstrate that few
cells from extremely limited tissue biopsies, not sequenced in technical replicates, were
adequate to predict therapeutically-relevant inter-cellular interactions at the single-cell
RNA level [Ref. 4] In Main Figure 1A, cells from each sample cluster together,  a UMAP
organization based on biological identity that is supported by another PDAC preclinical
models paper recently published in Nature Communications [Ref. 5], that strongly
suggests that batch effect does not drive the organization of cells in the scRNAseq
analysis assay. To further confirm the non-existence of batch effect in a quantitative way
in our scRNAseq dataset, we show in Reviewer-only Revisions Figure 1 below that within
the scRNAseq datasets, the cells within each sample form their own “clades”,
demonstrating that the cells are clustering as a function of biological similarity and not as
a function of technical artifacts. If there was a batch effect present, we would see samples
sequenced together in individual runs clustering in the same families. Instead, we see
samples clustering in a way that supports our hypotheses of biological identities across
the cell lines. Further, in Main Figures 2 and 3, where we dissect heterogeneity between
MiaPaca2 and Panc1 samples, we show that clustering or UMAP separation at the
scRNAseq level is driven by transcriptomic consequences of differential genomic



events/chromatin accessibility, rather than “technical variation” within the samples
themselves. Given that cell lines are inherently less heterogeneous than tissue biopsies,
that each sample in this study was sequenced to a depth well above the “minimum
required” read count, and that the very nature of single-cell profiling guarantees hundreds
of technical replicates within each sample, we are confident that the data presented here
does truly capture the biological heterogeneity across these cell lines.”

Reviewer-only Revisions Figure 1. Pearson correlation analysis of cell lines to corroborate reported
findings of Diffusion Space scRNAseq analysis. To address reviewer comments regarding technical
replicates of samples, we show that a technical replicate of Panc-1 2D is ranked as highly similar to the
other Panc-1 samples by both cladogram organization (A) and heatmap (B). This provides evidence that
cell number and sequencing depth in the original presented dataset are sufficient to both ameliorate
batch effects and to proscribe against generation of technical replicates for all samples.

With regard to GSEA (e.g. 2c) – the authors do not provide orthogonal validation that any of the genes in the
analysis are actually differentially expressed in their cell cultures. They also do not indicate which enrichments
exceed a significance level of FDR < 0.05 (do any?). Are those FDR values adjusted for multiple testing across
many samples (rather than just within each sample)? For example, if FDR is calculated for each sample
independently, the significance level should adjusted even lower when analyzing 3 samples together as in 2C.
The authors do not even provide quantitative analysis or heatmaps of the expression values of the genes in
those sets in each samples to evaluate the magnitude of expression differences. GSEA are notorious for
spurious associations. The authors also seem to perform GSEA using a derived and unconventional metric
where they multiply the -log10pvale from “FindMarkers” function in Seurat by the fold-change directions.
However, the methods section does not adequately describe what was actually done here. Was this derived
metric defined for the same superset of genes for all three samples? – this would be necessary to enable a fair
pathway GSEA comparison across samples. Also, FindMarkers and fold-change calculations require definition
of a foreground and background set of cells – how were these determined with 3 cells clones? 1 vs others? 1
vs 2? Etc? These critical details are unclear, but in any case, GSEA analysis are not validation of the
underlying scRNA data (they are derived from it) and do not address my concern.



- We have made an adjustment to the Methods to more clearly describe what was done, with respect to
GSEA analysis. The point of conducting GSEA analysis in this manuscript was, broadly, to understand
what pathways might emerge from those genes which were differentially enriched in one sample
versus another. To do this, we analyzed groups of samples (either Panc1 2D versus 3D, and then all 3
MiaPaca2 samples) as merged seurat objects, and identified which genes were significantly
differentially expressed in one sample over the other (FindMarkers, object = mp2, ident.1 = “MP2.A”,
ident.2 = c(“MP2.C”, “MP2.B”); panc3_c2.markers <- FindMarkers(object = panc1, ident.1 = 2, ident.2 =
c(0,1,3,4,5,6)) for Panc1 cluster-specific markers), and then ran GSEA using the fgsea package
(Korotkevich 2019, https://github.com/ctlab/fgsea) on those genes which were significantly differentially
expressed, according to the formatting specifications of that analysis package. This is what we have
reported in Figures 2, 3, and Supplementary Figure 6. This is not a “convoluted” GSEA, but is a very
commonplace analysis and is widely used in the field. We have provided code snippets at the bottom of
this document to highlight the differences in these analyses, and have also submitted our source code
for the Reviewer’s convenience.

- To specify the difference in marker extraction that was used for the Panc1 versus the MiaPaca2
analysis, the methods have been amended. A screenshot of our re-submitted Methods is included
below for the Reviewer’s convenience. We hope that this addresses the reviewer’s concern.



Re inferCNV – these data seem also to be derived from the scRNA-seq data. The authors claim in their
rebuttal that “we ran inferCNV on scRNAseq data per sample, and find a concordance between events
predicted at the transcriptomic level with the actual scCNVseq groupings (Main Figure 2D, Supplementary Fig.
6E).” The authors emphasize this as an “orthogonal” validation of their data. However, Figure 2D and S6E are
simply descriptive heatmaps that do not justify the claims made in text. There are no quantitative comparisons
that I can find of these predictions to the actual measured scCNVs. This is a glaring omission. In any case,
analysis of the inferCNV data, though potentially informative if performed in more depth than done here, would
not be an orthogonal validation of scRNA-seq-derived conclusions. Most of the expression differences driving
the clustering and GSEA are not due to genes in CNVs (or at least have not been shown to be such), and
of course CNV analysis simply does not measure expression. The analysis of inferCNV to the measured CNV
would simply validate that the “inferCNV” algorithm can accurately identify CNVs, at least in some cases. That
is a fundamentally different type of validation that whit is needed to validate transcriptional differences between
cell cultures.

- We agree that GSEA is not validation of scRNAseq data, GSEA results are an analysis product of
scRNAseq analysis methods. This is why we use GSEA as a tool to help interpret our paired scRNAseq
data, snATACseq data, and scCNVseq data.

- inferCNV is derived from an scRNAseq experiment, but this software does not allow for the
measurement of absolute copy numbers, only relative copy number as based on expression of genes
at the RNA level. Therefore, if anything, inferCNV is used to provide a transcriptionally-relevant
framework for genomic events that may be defined at the actual CNV level, by an scCNVseq
experiment or a Whole Genome Sequencing assay (WES). Thus, it is not possible for an “absolute”
quantification of events from inferCNV to the scCNV experiment, as inferCNV does not provide this
information. Finding relative concordance between those independently-generated datasets is the state
of the field at this time. Certain algorithms have arisen to provide a better genome-transcriptome
linkage, such as clonealign, which we implemented for MiaPaca2 (Figure 2) and Panc1 (Supplementary
Figure 6) samples, which begin to allow us to use the scRNAseq assay to orthogonally confirm
amplification and deletion events in the scCNVseq experiment, and vise-versa. We subsequently
conducted GSEA analysis on ONLY those scRNA-based clusters that correlated to genomic events  in
the scCNVseq experiment (Main Figures 2D-2I, Supplemental Figure 6E). In that analysis, we do indeed
show that scRNAseq clustering is driven by genomic events in Panc1 and MiaPaca2 samples. This
study is not a deep characterization of all PDAC cell lines, as that would not address the point of the
manuscript.

• Reproducibility. The authors are basing wide-ranging conclusions on single replicates of a technology in
single-cell RNA-seq that is well known to suffer from technical noise, sampling limitations, dropout events, etc.
Indeed, their own Reviewer-only Table 1 shows that they detect <2000 genes / cell, which is certainly a vast
under-sampling of the genes expressed in a given cell, much less the quantitive range of transcripts expressed
for each gene. I understand that single-cell experiments are expensive, but when basing conclusions about
underlying biology on single-cell data (particularly with no independent experimental validation as per concern
#1), replicates are strictly necessary to establish the reproducibility and thus validity of the conclusions. The
fact that libraries were sequenced in parallel does not address this concern. It is well known that batch effects
and other technical artifacts can have dramatic effects on the final clustering and other results
of single-cell data analysis (https://pubmed.ncbi.nlm.nih.gov/29608179/).

- Please see above explanation addressing batch effects and technical variation in this specific study.
Further, the reviewer provides a publication as an explanation of their concerns. However, in our initial
rebuttal, we addressed this by explaining that the field has indeed moved quickly to ensure that batch
effects are not plaguing our studies, and new methods to improve sample collection and data analysis

https://urldefense.com/v3/__https://pubmed.ncbi.nlm.nih.gov/29608179/__;!!PfbeBCCAmug!wMkuPdObtXqG3pn_JWmjScEi564X4N870syfgRya6J3WXg8fUOR6jo3k7JKg43elSyw$


have not only been innovated on, but were implemented here and described for the reviewer in the
initial rebuttal.

- “... existing literature shows as few as 500 cells per sample may be used to draw
significant conclusions from scRNAseq data, so long as adequate sequencing depth per
cell within a sample is achieved, and appropriate filtering and quality control analysis of
the dataset is conducted [Refs. 1-3].”

- Indeed, it is not at all the convention in the current literature to sequence technical replicates of
all libraries for single cell studies. Of many landmark papers in PDAC (including organoid models,
cell lines, mouse models, and human tissue studies) and other pathologies published within the
last 2 years, not one demonstrated library construction of technical replicates in any of their
experimental designs, and followed scRNAseq quality control methods highly similar to what
we’ve demonstrated here [Refs. 5-12]. By sequencing technical replicates across multiple
sequencing runs (due to sequencer capacity limits that very much exist) and integrating them into
this analysis, we would also likely be introducing a batch effect to the data. In great deference to
the reviewer, we will not be repeating all of our sequencing and analysis, especially when we’ve
demonstrated (in Reviewer-only Figure 1) that inclusion of a technical replicate does not
fundamentally change the findings we are reporting. We hope that this explanation and data
inclusion is satisfactory to the reviewer.

Indeed, there are myriad methods designed specifically to mitigate this problem by optimizing sample
integration (e.g. Harmony, CCA / integration anchors in Seurat, etc; Recently benchmarked in
https://pubmed.ncbi.nlm.nih.gov/34949812/). Have any of these methods been used to integrate samples?
Without such integration methods, it is no surprise that UMAP dimensionality and graph-based clustering
methods show differences between samples. And even with such integration, replicates and validation are
essential. The need for experimental replicates (and validation) in differential gene/feature analysis for ‘omics
data (e.g. RNA-seq, ATAC-seq, ChIP-seq, etc) has been well established for decades. It is even more
important for sparsely sampled single-cell data with even higher risk of drawing spurious conclusions.

- We do not disagree that integration can be an extremely valuable tool in an analysis, and that batch
correction is absolutely essential in datasets where a batch effect exists.

- We would like to point out that in our scRNAseq + snATACseq analysis of Panc1 samples, both
datasets were co-embedded using seurat-based integration method (Main Figures 3C-3G), as it was
essential to compare gene expression across those data modalities. We can only assume that the
reviewer is therefore questioning our use of Seurat merge in the UMAP depicted in Main Figure 1, and
we will focus our explanation on that analysis here.

- Seurat integrate and Harmony are both notorious for being “too heavy handed” in their assumptions for
identifying anchors. As such, these algorithms have garnered criticism in the field [Refs. 13-17] and
newer methods have been published to address those problems and understand the true nuances of
biological diversity in the single cell assay [Ref. 13].

- As an explanation, stated in the text of Ref. 13: “Moreover, these methods [LIGER, Seurat v3,
and Harmony] did not explicitly distinguish technical variation from biological variation when
aligning multiple single-cell datasets, which might mitigate biological variation as well when
removing technical variation. In such case, these methods might favor the removal of batch
effects over conservation of biological variation, leading to failure in detecting cell populations
that only exist in one biological condition.”

https://urldefense.com/v3/__https://pubmed.ncbi.nlm.nih.gov/34949812/__;!!PfbeBCCAmug!wMkuPdObtXqG3pn_JWmjScEi564X4N870syfgRya6J3WXg8fUOR6jo3k7JKgzCSJ_qY$


- The point of this study is not to provide an integrated analysis of all of the PDAC cell lines and describe
them with respect to one another - this has been done in the literature and those studies have been
cited in our main text. Save for the normal cell lines, HPDE and HPNE, all of these lines are canonically
representative and PDAC epithelial cells. All of the cell lines were sequenced in the same batch, and
the “normal” assumptions Seurat Integrate would make to look to rectify possible batch effects becomes
inappropriate and also bioinformatically problematic. The nuances between these biological conditions
do not lend well to Integrative algorithms, as explained by studies referenced above [Refs. 13-17].

- As proof of concept, in the setting of a Seurat-based integration analysis, these PDAC cell line samples
are forced into forming one UMAP blob, as the Integrate algorithm is designed to group based upon
technical variation under the assumption of a batch-correction method (Reviewer-only Revisions 2
Figure 2a). Given that these samples were all sequenced and processed together, technical variation
between them is nearly non-existent, thus causing Integrate to falsely group the samples together:
Integrate is unable to recognize that these samples were all from the same batch to begin with.

- Given what is well-established about the underlying biology of each of these cell lines, the
bioinformatic output of a “normal” pancreatic cell line having overlap with cell lines harboring
both Wild Type KRAS (BxPC3), Mutant KRASG12D (Panc1 2D, 3D), and Mutant KRASG12C
(MiaPaca2), as a simple example, would lead to erroneous conclusions about the transcriptional
profiles of models.

- To further address the reviewer’s concern, we have included here an integrated analysis using scMC
[Ref. 13] in Reviewer-only Revisions 2 Figure 2b. As explained above, this algorithm was developed
after criticism of Seurat Integrate in the field, and works to mitigate biological variation over technical
variation. With scMC, we show that the overall cluster structure (which samples group together) is
preserved from what we report in Main Figure 1. We will not be including these analyses in our
manuscript, as the goal of our paper is NOT to conduct a multi-modal comparison of scRNAseq
integration methods.

- We would like to emphasize to the reviewer that we are interested in, for this study, are the differences
across individual experimental conditions, such as 2D versus 3D (were we provide both snATACseq
and scCNVseq data, along with scCNVseq from the parental Panc1 population), changes in laboratory
geography (MiaPaca2, where we also provide scCNVseq to compliment scRNAseq), and the
assumptions of “normal control” cell lines (where we have paired scRNAseq, scCNVseq, and FISH).
We do not wish to deeply characterize all PDAC epithelial lines as individual entities, and are not
interested in describing how similar Panc1 is to HPAF2 is to BXPC3 is to MiaPaca2, etc., and how
those similarities/differences change as a function of integration analysis methods.

Reviewer-only Revisions 2 Figure 2. A) Seurat Integrate-based UMAP, showing a nonsensical clustering of
scRNAseq from all 9 samples. B) scMC Integration-based UMAP, wherein sample organization based on a
biologically-informed algorithm shows sample grouping identical to what is depicted in Main Figure 1A.
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Code Snippets Corresponding to MiaPaca2 and Panc1 GSEA analysis from Figures 2 and 3 in the Main text.



##Hallmark pathway dataframes were generated for all 3 MP2 samples , which were combined manually in
Excel as an input for the ggplot script above.



##Begin Panc1 Code Snippets here





##Code Snippets complete.



REVIEWER COMMENTS 

Reviewer #5 (Remarks to the Author): Expert in ATAC-seq, transcriptomics and bioinformatics 

In this manuscript, Monberg and Geiger et al describe a deep molecular characterization of pancreatic 

cell lines and patient-derived organoids to describe an extensive genomic, transcriptomic, and 

epigenomic divergence across passages. The authors provide valuable analyses describing extensive 

genomic alterations resulting from cell culture passages over time, which manifest in a subset of cells, 

reflect in divergences in transcriptional states, and may be missed by bulk sequencing strategies. The 

results presented by the authors identify a need for other benchmarking assays besides the traditional 

microsatellite assays. Overall, the manuscript presents important results that should be considered for 

future studies with these (and others) cell lines. However, the authors provide little in terms of quality 

control to help the reader evaluate their analyses, and the description of the methods does not allow 

the reproducibility of the computational analyses. In addition, all figures need extensive polishing and 

currently do not allow the reader to reach some of the same conclusions as the authors. Therefore, I 

recommend major revisions before this manuscript is acceptable for publication in Nature 

Communications. 

## Major points 

1)The dearth of QC metrics reported for the functional genomics experiments and lack of detailed 

methods make it hard for the reader to evaluate the reported results in a more detailed manner. The 

manuscript would greatly benefit from supplementary tables with libraries overview (#cells/nuclei, 

average number of genes, nUMIs, read coverage, etc). It would be helpful to include nUMI by % 

mitochondrial scatter plots for barcodes that pass QC in each scRNA-seq library, and nReads by TSS 

enrichment for the snATAC-seq. See also next comment. 

2) The authors performed clustering using diffusion maps to determine batch effects across replicates in 

the scRNA-seq data. While this is informative to detect gross technical artifacts, it is expected that 

similar libraries will generally cluster together. However, this approach will likely miss less pronounced 

effects that lead to differences at the cluster level when integrating across libraries. Therefore, the 

manuscript would greatly benefit from additional QC metrics of the data to help detect less obvious 

technical factors potentially driving clustering. These would include UMAP projections colored by the % 

mitochondrial reads and number of UMIs (scRNA) and number of reads and TSS enrichment (snATAC), 

all faceted by library. All library integration analysis should include these supporting information (1A, 2A, 

2G, 2J, 3A, 3C, 3F, 3G). 

3) There seem to be considerably fewer nuclei in the snATAC-seq data in Figures 3F and G compared to 

3C. What fraction of snATAC nuclei from Figure 3C were mapped to the scRNA-seq data? If any nuclei 



were removed, what was the reason? The authors should clearly describe the criteria in the methods 

sections. 

4) The authors claim that the MiaPaCa2 lines segregate by the laboratory of origin but do not show 

direct evidence that this result is not from technical differences in sequence coverage and/or cell 

integrity. These aspects would likely not be captured by the diffusion map approach used by the 

authors, although it is encouraging to see very short branch heights for these libraries in Supp. Fig 1. My 

concern is that even after QC, there are still differences in technical aspects across cells. Suppose similar 

quality cells are clustering together in the shared cluster, but others are forming separate clusters. In 

that case, it could indicate that the clustering resolution was too high and the algorithm is forcing 

clusters based on technical aspects such as gene coverage. This can lead to artificial differential gene 

expression and gene enrichments downstream. It's important to note that unless the libraries were 

multiplexed directly in the 10X controller (e.g. using 10X CellHash CMOs), there may be technical 

differences driven by aspects such as background RNA (PMIDs 32138770 and 33367645) even if the cells 

were processed in the same batch of experiments or nuclei pool. Therefore, extensive exploration of the 

QC metrics is warranted. The same concerns apply to the Panc1 2D and 3D cultures. The plots requested 

in comment 2 will allow to determine how much technical differences are driving the clustering results 

in these analyses. 

5) For the integration between scCNV and scRNA-seq, additional QC should be provided. In addition to 

the QC plots described in the previous comments, the analyses in Figures 2G and J will benefit from a 

supplementary plot of the gene expression distribution in each cluster for genes associated with the 

regions with high CNV. One would expect that scRNA-seq barcodes assigned to specific CNVs will have 

higher gene expression for genes within the CNV region compared to barcodes not assigned to the same 

CNV cluster. This will help QC the mapping between scCNV and scRNA-seq data made by clonealign and 

improve confidence in the reported results. 

6) Despite comments from other reviewers, the figures are still not up to standard. It took me several 

attempts to identify some of the findings mentioned in the text in their corresponding figures. The 

authors should thoroughly polish their figures before this work is suitable for publication. In general, one 

gets the feeling that the authors copied and pasted raw plot outputs from R and other software directly 

into the manuscript without any additional polishing, which is not acceptable for a high-impact 

publication. For example, it is impossible to read any of the axes and color labels in Figure 1 without 

zooming in. Same for Figures 3D-E. Furthermore, almost half of the main figure panels have at least one 

axis label missing (Figures 1C-G, 2C,E,H, 3B,D,E, 4C,D). Figure1 is particularly egregious: panel C is a 

confusing collage of heatmaps with no x and y labels, and a symbol legend (copy num, read depth, etc.) 

that does not relate in any way the data presented in the plots in 1C (and may be related to panels F and 

G, instead). Panels F and G, besides not having any axes labels, have no color scale (which one has to 

guess is shared with panel C) and have line plots in the bottom with no axes or annotations indicating 

what the numbers mean, which the reader is once again left to guess their meaning. Panels F and G also 

have plots depicting the gene expression of BRCA1 and AURKA genes. The plots are overplotted and 



depict bottom-heavy violin plots without any statistical analyses, which does not allow the reader to 

confidently determine if the extent of variation in the gene expression levels is related to CNVs. 

7) The authors should better annotate figures to guide the reader and support their main claims. In 

several cases, the reader is left to take authors on their word for the conclusions. For instance, Figure 1G 

besides not having any axes labels, also has no mention of which region in the plot corresponds to 

chr20q or the AURKA locus. The authors mention a "purple bar" in the main text, which I believe is the 

region with a high "Het" value in the plot. Why not clearly label that region, instead? When space 

allows, authors should avoid unnecessary abbreviations in legends, such as the aforementioned "Het" 

label, to add less work to the reader. Similarly, the authors mention "evidence for a highly similar 

ancestral clone" (page 9) for the MiaPaCa2 strains. Yet, there is no corresponding annotation of this in 

Figure 1C nor any way to help the reader interpret Figure 2D with this finding in mind. Making these 

changes will make the manuscript more appealing to the broad readership of Nature Communications. 

## Minor points 

1) Figures are unnecessarily large due to abundant whitespace, and font sizes vary wildly across figure 

panels. 

2) The order of the figures should be changed according to the text to improve flow (Figure 1D is 

mentioned after Figure 1G, Figure 1G is mentioned after 1F, etc). This unnecessary back-and-forth 

makes the manuscript confusing for the reader. 

3) The authors use non-quantitative terms throughout the text to describe their results: "a swath of 

cells" (page 6). What fraction of cells does "a swath" means? Other examples include "tranquil" (page 5), 

"nearly all cells" (page 9), "relatively neutral" (page 7), "correspond almost perfectly" (page 10). Besides 

their non-quantitative nature, some of these terms are open to subjective interpretation ("relative 

genomic quiescence," "tranquil"). These terms should be substituted for accurate quantitative data 

representations (percentages, effect sizes, and p-values when appropriate). 

4) The authors should include volcano plots for the DE analyses to help QC results and understand why 

they chose to report the subset of genes on page 10. All DE results should be reported in a separate 

supplementary table. 

5) Supp table 1 further adds to the overall feeling of unpolishedness of the manuscript: it is a screenshot 

of an excel table where the spellcheck red underline is visible. 



6) Supp Fig 1 should have a label to the color scale. 



REVIEWER COMMENTS

Reviewer #5 (Remarks to the Author): Expert in ATAC-seq, transcriptomics and bioinformatics

In this manuscript, Monberg and Geiger et al describe a deep molecular characterization of pancreatic cell
lines and patient-derived organoids to describe an extensive genomic, transcriptomic, and epigenomic
divergence across passages. The authors provide valuable analyses describing extensive genomic alterations
resulting from cell culture passages over time, which manifest in a subset of cells, reflect in divergences in
transcriptional states, and may be missed by bulk sequencing strategies. The results presented by the authors
identify a need for other benchmarking assays besides the traditional microsatellite assays. Overall, the
manuscript presents important results that should be considered for future studies with these (and others) cell
lines. However, the authors provide little in terms of quality control to help the reader evaluate their analyses,
and the description of the methods does not allow the reproducibility of the computational analyses. In addition,
all figures
need extensive polishing and currently do not allow the reader to reach some of the same conclusions as the
authors. Therefore, I recommend major revisions before this manuscript is acceptable for publication in Nature
Communications.

## Major points
1)The dearth of QC metrics reported for the functional genomics experiments and lack of detailed methods
make it hard for the reader to evaluate the reported results in a more detailed manner. The manuscript would
greatly benefit from supplementary tables with libraries overview (#cells/nuclei, average number of genes,
nUMIs, read coverage, etc). It would be helpful to include nUMI by % mitochondrial scatter plots for barcodes
that pass QC in each scRNA-seq library, and nReads by TSS enrichment for the snATAC-seq. See also next
comment.

2) The authors performed clustering using diffusion maps to determine batch effects across replicates in the
scRNA-seq data. While this is informative to detect gross technical artifacts, it is expected that similar libraries
will generally cluster together. However, this approach will likely miss less pronounced effects that lead to
differences at the cluster level when integrating across libraries. Therefore, the manuscript would greatly
benefit from additional QC metrics of the data to help detect less obvious technical factors potentially driving
clustering. These would include UMAP projections colored by the % mitochondrial reads and number of UMIs
(scRNA) and number of reads and TSS enrichment (snATAC), all faceted by library. All library integration
analysis should include these supporting information (1A, 2A, 2G, 2J, 3A, 3C, 3F, 3G).

We thank the reviewer for their attention to data quality and commitment to ensuring that our analysis is up to
par. Given the similarity in content of Points 1 and 2, we have responded to both comments below.
We agree that diffusion maps alone do not fully address batch effect mitigation! As described in our Methods,
we filtered out all cells where mitochondrial genes exceeded 20%. The cells analyzed in our presented UMAPs
are only those cells that met QC criteria.

- Regarding the QC of snATACseq data, we kindly direct the Reviewer’s attention to Supplementary
Figure 7, where we have included in our submission the plots they are requesting here. For QC of
scRNAseq data, we agree that it would be generally helpful to include graphs in our supplementary
data, but given our explanation of QC Methods (described in our submitted methods) for filtering
criteria, for the sake of manuscript “flow” we do not wish to also incorporate these data elements.
However, to ensure the reviewer that adequate sequencing depth, cell count, and mitochondrial genes
were taken into account, we have included Reviewer-only Figures and Tables below.



- Data for the number of cells and sequencing depth per sample is contained in Reviewer-only
Revisions Table 1 below, and QC metrics for scRNAseq data in Reviewer-only Revisions Figure
1. In our own recently published work, we also demonstrate that few cells from extremely limited
tissue biopsies, not sequenced in technical replicates, were adequate to predict
therapeutically-relevant inter-cellular interactions at the single-cell RNA level [Ref. 1]. In Main
Figure 1A, cells from each sample cluster together,  a UMAP organization based on biological
identity that is supported by another PDAC preclinical models paper recently published in Nature
Communications [Ref. 2], that strongly suggests that batch effect does not drive the organization
of cells in the scRNAseq analysis assay. To further confirm the limited influence of an assumed
batch effect in a quantitative way in our scRNAseq dataset, we show in Reviewer-only Revisions
Figure 3 below, by Pearson Correlation instead of Diffusion Space analysis, that across the
scRNAseq datasets, the cells within each sample form their own “clades”, demonstrating that the
cells are clustering as a function of biological similarity and not as a function of technical artifacts.
If there was a batch effect present, we would see samples sequenced together in individual runs
clustering in the same families. Instead, we see samples clustering in a way that supports our
hypotheses of biological identities across the cell lines.

- To address additional concerns of bath effect mitigation, we also provide here a secondary
analysis using scMC [Ref. 3] for scRNAseq sample integration. We do not wish to include these
results in the main text of our manuscript, as we do not wish to redirect the point of our paper
towards a “methods comparison” for scRNAseq analysis. However, scMC was developed after
criticism of Seurat-based normalization in the field, where Seurat algorithms were actually a
culprit of grouping samples by technical instead of biological similarity. scMC instead works to
mitigate biological variation over technical variation, uses a different method for identifying
clusters and cellular neighbors than Seurat, and has been appreciated in the literature for its
accuracy at structuring UMAP groups based on cell type. With scMC, we show that the overall
cluster structure (which samples group together) is preserved from what we report in Main Figure
1.These results are shown below in Reviewer-Only Revisions Figure 3. This appears to be
aligned with the Reviewer’s primary concern in our analysis, and we hope that this analysis
addresses “biological versus technical” worries in our data.

- In Main Figures 2 and 3, where we dissect heterogeneity between MiaPaca2 and Panc1
samples, we show that clustering or UMAP separation at the scRNAseq level is driven by
transcriptomic consequences of differential genomic events in the case of MiaPaca2 cells, and
chromatin accessibility in the case of Panc1 cultures, rather than “technical variation” within the
samples themselves. In this regard, the orthogonally-collected genomic and chromatin data are
used to draw conclusions about the biological differences between the cell lines described, and
the scRNAseq data is used to “confirm” what is found to be significantly different in DNA-based
assays.

- Given that cell lines are inherently less heterogeneous than tissue biopsies, that each sample in
this study was sequenced to a depth well above the “minimum required” read count, and that the
very nature of single-cell profiling guarantees hundreds of technical replicates within each
sample, we are confident that the data presented here does truly capture the biological
heterogeneity across these cell lines.



Reviewer-only Revisions Table 1.Sequencing metrics for scRNAseq data, provided in response to
concerns raised by Reviewer #5.

Reviewer-only Revisions Figure 1. QC of scRNAseq data of PDAC cell lines showing RNA count,
mitochondrial gene percentages, and number of features per sample.



Reviewer-only Revisions Figure 2. Pearson correlation analysis of cell lines to corroborate reported
findings of Diffusion Space scRNAseq analysis. To address reviewer comments regarding technical
artifacts driving the clustering of samples, we show that inclusion a technical replicate of Panc-1 2D
sequenced from a different batch is ranked as highly similar to the Panc-1 samples described in our
manuscript by both cladogram organization (A) and heatmap (B). This provides evidence that cell
number and sequencing depth in the original presented dataset are sufficient to both ameliorate
assumed technical/batch effects and to proscribe against generation of technical replicates for all
samples.

Reviewer-only Revisions Figure 3. A) scMC Integration-based UMAP, wherein sample organization based on a
biologically-informed algorithm shows sample grouping identical to what is depicted in B) Main Figure 1A,
providing evidence to support that clustering and gene expression analysis is not a function of technical
variation in the data.



3) There seem to be considerably fewer nuclei in the snATAC-seq data in Figures 3F and G compared to 3C.
What fraction of snATAC nuclei from Figure 3C were mapped to the scRNA-seq data? If any nuclei were
removed, what was the reason? The authors should clearly describe the criteria in the methods sections.

- We agree with the reviewer that the number of cells used in snATACseq may appear quite small.
However,  rigorous quality control metrics were indeed run on the data, the results of which are
included in supplemental data (Supplementary Fig. 7A, 7B), and are also attached here
(Reviewer-only Revisions Figure 4) for the reviewer’s consideration. We subset nuclei according to
the following criteria: TSS Enrichment > 2, nucleosome signal < 10,  blacklist ratio < 0.05, percent
reads in peaks > 15, peak region fragments between 1,000 and 20,000. The methods have been
amended to reflect these parameters.  After ensuring the quality of nuclei were sufficient, as
proscribed by the Signac Package developed by the Satija Lab (cited in Main Text and discussed
in Methods) as well as recent publications including this data type [Refs. 4-5], a final count of
9,785 nuclei are represented by the Panc1 2D sample, and 7,453 nuclei of Panc1 3D are depicted
in the figures. As discussed above, the resulting number of nuclei is more than sufficient, by
current research standards, to draw accurate conclusions and conduct correlative investigations
across samples in this dataset.

- As per the scRNAseq data quality control metrics, those are included in our submission to the
GEO portal and are now publicly available. It is not common practice in the literature to list quality
control metrics of scRNAseq data in the supplementary or main figures, so we did not include
them in this manuscript. However, cell count and sequencing depth per scRNAseq sample are
listed in Reviewer-only Revisions Table 1.

Reviewer-only Revisions Figure 4. Quality control data of nuclei sequenced in snATACseq assay for
Panc-1 3D (A, B), and Panc-1 2D (C, D) samples. TSS Enrichment Plots for Panc-1 3D (B ) and Panc-1 2D
(D) depicting the mean TSS enrichment score across nuclei are shown. Nuclei data were subsequently
filtered according to appropriate QC parameters.



4) The authors claim that the MiaPaCa2 lines segregate by the laboratory of origin but do not show direct
evidence that this result is not from technical differences in sequence coverage and/or cell integrity. These
aspects would likely not be captured by the diffusion map approach used by the authors, although it is



encouraging to see very short branch heights for these libraries in Supp. Fig 1. My concern is that even after
QC, there are still differences in technical aspects across cells. Suppose similar quality cells are clustering
together in the shared cluster, but others are forming separate clusters. In that case, it could indicate that the
clustering resolution was too high and the algorithm is forcing clusters based on technical aspects such as
gene coverage. This can lead to artificial differential gene expression and gene enrichments downstream. It's
important to note that unless the libraries were multiplexed directly in the 10X controller (e.g. using 10X
CellHash CMOs), there may be technical differences driven by aspects such as background RNA (PMIDs
32138770 and 33367645) even if the cells were processed in the same batch of experiments or nuclei pool.
Therefore, extensive exploration of the QC metrics is warranted. The same concerns apply to the Panc1 2D
and 3D cultures. The plots requested in comment 2 will allow to determine how much technical differences are
driving the clustering results in these analyses.

- The reviewer makes an excellent point that scRNAseq data can be insufficient to determine whether
technical artifacts are driving data behavior; however, we have provided our QC metrics above, and
hope that these data are convincing enough of the quality of the sequencing results we describe.

- With MiaPaca2 samples, while we do make a note of describing differences in the scRNAseq of each
sample and conducted GSEA for pathway relevance, we provide evidence through
orthogonally-collected scCNVseq data that differences in MP2 strains are likely due to genomic events
specifically at chrs. 5, 10, 7, 12, and 14, as depicted in Main Figure 2. We use scRNAseq data to
confirm gene expression for corresponding scCNV-determined scRNA clusters. In this regard, even if
there were “technical” differences influencing the construction and analysis of scRNAseq libraries, the
likelihood of a technical artifact/difference inducing differential amplifications and deletions at the
chromosome level across these samples is highly unlikely.

5) For the integration between scCNV and scRNA-seq, additional QC should be provided. In addition to the QC
plots described in the previous comments, the analyses in Figures 2G and J will benefit from a supplementary
plot of the gene expression distribution in each cluster for genes associated with the regions with high CNV.
One would expect that scRNA-seq barcodes assigned to specific CNVs will have higher gene expression for
genes within the CNV region compared to barcodes not assigned to the same CNV cluster. This will help QC
the mapping between scCNV and scRNA-seq data made by clonealign and improve confidence in the reported
results.

- We agree. In Figures 2F and 2I, we provide this information in a different way! These figures are a
mapping of the percentage of cells/UMIs in each assay (CNV and RNA) that correspond to clonal
assignments (demarcated by colors green, yellow, or blue). Clonealign does this by working with a
gene x clone matrix that we derive, as described in our Methods. We have attached a copy of our
clonealign workflow that we ran for Panc1 and MP2 samples (Reviewer-only Revisions Figure 5). As
the reviewer may appreciate, there are many intermediary QC steps for running this analysis and
determining the confidence with which clones are called. We do not wish to include metrics from each
step of this pipeline in our manuscript submission, but will be happy to provide workflow information and
QC metrics to any laboratory/individual who wishes to recapitulate our results, as our data is also now
publicly available.

- In order to understand which genes are associated with clone-defined clusters, we provide
Supplementary Table 2. In this table, we show the results of significantly enriched GSEA pathways in
each clone, as defined per sample by specific chromosomal events. If this is insufficient to address
Reviewer’s concern, and the exact gene lists used as inputs for GSEA would be better to demonstrate
these results, we are happy to provide those gene lists for review.



Reviewer-only Revisions Figure 5: Clonealign workflow applied for calling scRNA clusters from scCNV-derived
clonal events. This workflow follows the published guidelines for implementing clonealign and will not be
included in our submitted manuscript.



6) Despite comments from other reviewers, the figures are still not up to standard. It took me several attempts
to identify some of the findings mentioned in the text in their corresponding figures. The authors should
thoroughly polish their figures before this work is suitable for publication. In general, one gets the feeling that
the authors copied and pasted raw plot outputs from R and other software directly into the manuscript without
any additional polishing, which is not acceptable for a high-impact publication. For example, it is impossible to
read any of the axes and color labels in Figure 1 without zooming in. Same for Figures 3D-E. Furthermore,
almost half of the main figure panels have at least one axis label missing (Figures 1C-G, 2C,E,H, 3B,D,E,
4C,D). Figure1 is particularly egregious: panel C is a confusing collage of heatmaps with no x and y labels, and
a symbol legend (copy num, read depth, etc.) that does not relate in any way the data presented in the plots in
1C (and may be related to panels F and G, instead). Panels F and G, besides not having any axes labels, have
no color scale (which one has to guess is shared with panel C) and have line plots in the bottom with no axes
or annotations indicating what the numbers mean, which the reader is once again left to guess their meaning.
Panels F and G also have plots depicting the gene expression of BRCA1 and AURKA genes. The plots are
overplotted and depict bottom-heavy violin plots without any statistical analyses, which does not allow the
reader to confidently determine if the extent of variation in the gene expression levels is related to CNVs.

- In our submission process, we have created all figures from vectorized JPEG-7000s in Adobe Illustrator
after exporting data from R at the highest-quality allowed by the software. We then adjusted the
resolution to 1000 ppi. We have tried our best to polish the figures as much as possible, and hope this
is now more acceptable to the reviewer.

- For figure labels, especially regarding 1C: we had included in the submitted Figure Legend the axes:
“Representative scCNV plots for cell lines. Columns indicate chromosomes, rows indicate individual
cells.” These heatmaps are exactly that: cells (in rows) are phylogenetically organized and events on a
per-chromosome level are depicted. Heatmap legend itself contains the color-coding for the events. We
have enlarged Figure 1 and split it into 2 pages- hopefully now it is easier to read. Similarly for Figures
1G-H, we have redone the labeling and hope that everything is now more clear.

- In order to be more quantitative of our assessment of BRCA1 and AURKA expression, we have
replaced the Violin Plots in the original Figure 1 with a DotPlot, clearly stating the percentage of cells in
each population that express the specific genes, and their relative levels of expression. This is now in
Figure 1, continued page, labeled as Figure 1H. Thank you for helping us to be more precise in the
presentation of our data!

7) The authors should better annotate figures to guide the reader and support their main claims. In several
cases, the reader is left to take authors on their word for the conclusions. For instance, Figure 1G besides not
having any axes labels, also has no mention of which region in the plot corresponds to chr20q or the AURKA
locus. The authors mention a "purple bar" in the main text, which I believe is the region with a high "Het" value
in the plot. Why not clearly label that region, instead? When space allows, authors should avoid unnecessary
abbreviations in legends, such as the aforementioned "Het" label, to add less work to the reader. Similarly, the
authors mention "evidence for a highly similar ancestral clone" (page 9) for the MiaPaCa2 strains. Yet, there is
no corresponding annotation of this in Figure 1C nor any way to help the reader interpret Figure 2D with this
finding in mind. Making these changes will make the manuscript more appealing to the broad readership of
Nature Communications.

- We apologize for the confusion in our figures and have diligently worked to address the reviewer’s
concerns. Specifically, we have clarified in the language of the text what is depicted in Figure 1G in both
the manuscript text and the figure legend. This is actually a “zoomed in” scCNV heatmap of chr20,



which can be generated with the 10x Genomics scCNV analysis software cited in our Methods. The
“x-axis”, so to speak, is labeled with chromosome regions within chr20, showing ranges from 8-16+
copy numbers of that region across HPNE cells (the rows of the heatmap). We apologize for the small
labels that had been in our initial figure version, and hope that this addresses the reviewer’s concern.

- The figure legend for Figure 1 now reads as screenshotted below:

## Minor points
1) Figures are unnecessarily large due to abundant whitespace, and font sizes vary wildly across figure panels.

2) The order of the figures should be changed according to the text to improve flow (Figure 1D is mentioned
after Figure 1G, Figure 1G is mentioned after 1F, etc). This unnecessary back-and-forth makes the manuscript
confusing for the reader.



- Thank you, we have adjusted figure label/flow wherever we could without disrupting the reporting of
results.

3) The authors use non-quantitative terms throughout the text to describe their results: "a swath of cells" (page
6). What fraction of cells does "a swath" means? Other examples include "tranquil" (page 5), "nearly all cells"
(page 9), "relatively neutral" (page 7), "correspond almost perfectly" (page 10). Besides their non-quantitative
nature, some of these terms are open to subjective interpretation ("relative genomic quiescence," "tranquil").
These terms should be substituted for accurate quantitative data representations (percentages, effect sizes,
and p-values when appropriate).

- The reviewer is correct, thank you very much. We have adjusted our language throughout the text to be
more quantitative and professional in tone.

4) The authors should include volcano plots for the DE analyses to help QC results and understand why they
chose to report the subset of genes on page 10. All DE results should be reported in a separate supplementary
table.

- On page 10, we describe the results of GSEA enrichment in scCNV-scRNA clones, as determined by
extensive clonealign filtering and analysis (see above, and Methods). The results of these analyses are
further divulged in Supplementary Table 1. The genes that were used as inputs for lists in
clonealign-based GSEA were deemed significant not by a “classical” DE gene analysis, but instead
through extensive clonealign analysis. From the GSEA output of significant pathway, we manually
selected genes that were important to pancreatic cancer biology to discuss in the text of the
manuscript. In this case, we did not select these genes based on their distribution in a volcano plot, but
instead as a function of CNV-RNA-GSEA significance cutoffs. We are happy to provide full gene lists for
all analyses conducted for review, but do not wish to include those lists in the published manuscript. We
have adjusted the language in the Methods section to describe how genes were chosen. The Methods
now read:

- GSEA of clonealign-defined scRNA clones

Pre-ranked GSEA was thus performed via the GSEA software version GSEA_4.0.3. Molecular

Signature Databases h.all.v7.1.symbols_1.gmt (hallmark pathways) and c6.all.v7.2.symbols.gmt

(oncogenic signature gene sets) were both used to align gene lists extracted from

clonealign-defined-scRNA clones in Seurat (see figures 2G, 2J, Supp. 6C, Supp. 6D), as

described above using FindMarkers. A false discovery rate (FDR) cutoff of 25% was used to

analyze the GSEA results for significant pathway enrichment per sample. Manual curation of

genes lists from significantly-enriched per-clone pathways was conducted to identify individual

genes relevant to pancreatic cancer biology (ie KRT13, LGALS1).

5) Supp table 1 further adds to the overall feeling of unpolishedness of the manuscript: it is a screenshot of an
excel table where the spellcheck red underline is visible.

- Thank you for catching this, we have revised the table.

6) Supp Fig 1 should have a label to the color scale.



- Agreed, the meaning of the numbers on the color scale is now described in the figure legend of Supp
Fig 1.
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REVIEWERS' COMMENTS 

Reviewer #5 (Remarks to the Author): 

* The scMC analysis performed by the authors in Reviewer Fig. 3 is very helpful and addresses my 

concerns about technical variation. I also share the concern regarding Seurat's (and Harmony's) 

clustering being driven by technical aspects, which is why I requested additional QC exploration. 

* The authors did not clarify how many nuclei were mapped to the scRNA-seq data in Figs 3F-G. The 

authors reply "a final count of 9,785 nuclei are represented by the Panc1 2D sample, and 7,453 nuclei of 

Panc1 3D are depicted in the figures". There are certainly not 7-9K ATAC nuclei in Figs 3 F-G. At most, 

there are a few hundred on each ATAC panel. Therefore, the vast majority of ATAC nuclei that passed 

QC in Fig 3C were not mapped to the scRNA-seq data. Again, I ask what fraction of snATAC nuclei from 

Figure 3C were mapped to the scRNA-seq data? If any nuclei were removed after integration, what was 

the reason? If only a minuscule fraction of ATAC nuclei mapped to the RNA data, then the ATAC-RNA 

integration most likely failed and the authors lack evidence to support their claim that "and [we] 

confirmed the overexpression of putative target candidate genes affiliated with the enriched motifs that 

we had identified in corresponding snATAC-seq datasets" (page 14). 

* The figure legend of Supp. Fig. 7 does not seem to correspond to the figure panels or it is out of order. 

* All other items were satisfactorily addressed. I believe the authors could still do simple changes to 

make the manuscript figures more interpretable to the reader, such as adding axis labels directly in the 

plots instead of the figure legends and adding additional annotations to guide the reader (e.g. gene 

tracks for AURKA and BRCA1 genes in Figs 1F-G). 



REVIEWERS' COMMENTS 
 
Reviewer #5 (Remarks to the Author): 
 
* The scMC analysis performed by the authors in Reviewer Fig. 3 is very helpful and addresses my concerns 
about technical variation. I also share the concern regarding Seurat's (and Harmony's) clustering being driven 
by technical aspects, which is why I requested additional QC exploration. 
 
* The authors did not clarify how many nuclei were mapped to the scRNA-seq data in Figs 3F-G. The authors 
reply "a final count of 9,785 nuclei are represented by the Panc1 2D sample, and 7,453 nuclei of Panc1 3D are 
depicted in the figures". There are certainly not 7-9K ATAC nuclei in Figs 3 F-G. At most, there are a few 
hundred on each ATAC panel. Therefore, the vast majority of ATAC nuclei that passed QC in Fig 3C were not 
mapped to the scRNA-seq data. Again, I ask what fraction of snATAC nuclei from Figure 3C were mapped to 
the scRNA-seq data? If any nuclei were removed after integration, what was the reason? If only a minuscule 
fraction of ATAC nuclei mapped to the RNA data, then the ATAC-RNA integration most likely failed and the 
authors lack evidence to support their claim that "and [we] confirmed the overexpression of putative target 
candidate genes affiliated with the enriched motifs that we had identified in corresponding snATAC-seq 
datasets" (page 14). 

Our apologies! We had misunderstood your comment in the previous revisions round, and hope we can 
now properly address this!  
 

- The reviewer is correct in their observation that not all nuclei mapped to RNA data. This was 
due to more stringent QC requirements in seurat’s merging algorithm. However, the “merged” 
analysis was not actually used to assay the putative gene targets described and depicted in 
scRNAseq dotplots in the bottom panels for figure 3, and the confusing explanation of that 
analysis is entirely our fault. As such, we have removed verbiage from the manuscript 
describing the merged analysis, and have kept the snATACseq-assay figure panels separated 
from the scRNAseq-assay figure panels. Now, each assay serves as an “orthogonal validation” 
for the other, and the methods section regarding this alteration has been amended.  

 
 
* The figure legend of Supp. Fig. 7 does not seem to correspond to the figure panels or it is out of order. 

Thank you very much for bringing this to our attention, and we apologize for the oversight. We have 
adjusted the figure legend.  

 
 
* All other items were satisfactorily addressed. I believe the authors could still do simple changes to make the 
manuscript figures more interpretable to the reader, such as adding axis labels directly in the plots instead of 
the figure legends and adding additional annotations to guide the reader (e.g. gene tracks for AURKA and 
BRCA1 genes in Figs 1F-G). 
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