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Fig. S1 Generation of WAS-specific iPSCs and isogenic gene-corrected iPSCs, related
to Fig. 1.

(a) Representative Alkaline phosphatase (AP) and NANOG immunostaining of colonies of reprogrammed WAS
patient fibroblasts. Scale bar = 0.5 mm. The experiment was repeated at least 3 times independently.

(b) Quantitative RT-PCR (qRT-PCR) analysis of the expression of endogenous pluripotency transcription factors
(Oct4, Sox2, Kif4, Mycl1 and Lin28) or transgenes (Oct4-tg, Sox2-tg, Kif4-tg, Mycl1-tg and Lin28-tg) in the two
patient WAS-iPSCs. No exogeneous reprogramming factor expression was detected. The gPCR was performed
in triplicate per sample, data are shown as mean + SEM.

(c) Quantification of the copy number of episomal vectors that may integrate in the genome. No ectopic
reprogramming factor or episomal vector sequence was detected. An iPSC line generated with integrative
retroviruses was included as a control. Copy numbers of the reprogramming factor transgenes were normalized
by the copy number of the same gene in the H9 ESC, except for copy numbers of EBNA1 that doesn’t exist in H9
ESC and were normalized by copy number of the FBXO15 gene. Mean + SEM, biological replicate for WAS iPSCs
n =4, for H9 ESCs n = 1, for retroviral iPSC n = 1.

(d) Representative hematoxylin and eosin (H&E) histological staining and immunostaining in teratomas derived
from a randomly selected gene-corrected WAS-iPSC clone show in vivo differentiation towards ectodermal,
mesodermal and endodermal tissues. The experiment was repeated at least 3 times independently. Scale bar =
50 pm.

(e) Verification of patient specific mutations by DNA sequencing in WAS-iPSC clones. Wild-type sequence is
shown on top of the chromatographs.

(f) Gene-targeting and gene-correction efficiencies at the WAS locus in WAS-iPSCs achieved in multiple clones.
(g9) Karyotyping analysis revealed normal karyotypes in randomly selected clones of WAS-iPSC lines, either before
or after gene editing.

(h) Representative fluorescence in situ hybridization image of random integration of WAS-c-HDAdV. Interphase
iPSC nuclei were hybridized with a TAMRA-Iabeled probe specific for WAS-c-HDAdV. Gene-corrected WAS-
iPSCs showed one hybridization signal (red puncta) per nucleus. A chromosome 11 probe (green puncta) was
used as control. Scale bar =10 pym. Blue: DAPI. The experiment was done once.

(i) FACS analysis of cell surface pluripotency markers TRA-1-60 and TRA-1-81 in WT and KO-iPSCs.
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Fig. S2 Recapitulation of WAS phenotypes using isogenic WAS iPSC models to Fig. 2.
(a-c) gqRT-PCR analysis of the expression of: endodermal (GATA4 and GATA6), mesodermal (CTnT and MSX1),
and ectodermal (FGF5) genes in embryoid bodies (EBs) generated from H9 ESCs, WAS-iPSCs and cWAS-iPSCs
(a); the WAS gene in EBs generated from H9 ESCs, WAS-iPSCs and cWAS-iPSCs (b); and the WAS and WASL
genes in ESCs and iPSCs following hematopoietic differentiation (c). The gPCR was performed in triplicate per
sample, data are shown as mean + SD.

(d) Representative FACS analysis of HPC populations in differentiated iPSCs and ESCs. Cells are in the Tra-1-
85+ gate. Numbers represent percentages.

(e) Representative images of hematopoietic colonies differentiated from WAS-iPSCs. Bar = 0.1 mm. The
experiment was repeated at least 3 times independently.

(f-h) FACS analysis of iMPs and iDCs. Histograms show expression of typical cell surface markers of macrophages
(f, 9) and dendritic cells (h).

(i) Top: qRT-PCR analysis of the CD43 gene in KO iMPs. Biological replicate n=3. ****p < 0.0001; bottom:
expression values of CD43 measured in RPKM (Reads Per Kilobase of transcript per Million mapped reads) in
macrophages, biological replicate n=2 (PB-MP), 1 (Ctrl-iMP), 3 (WAS-iMP1 and cWAS-iMP1), 2 (WAS-iMP2), 1
(CWAS-iMP2). Hypergeometric testing P-values are corrected for multiple testing using FDR, ****p = 5 x 107
bottom right: gqRT-PCR analysis of the expression of the CD43 gene in B cells. The gPCR was performed in
triplicate per sample, data are shown as mean * SD.

(j) Quantitative measurement of transwell migration of iMPs (n=1) as shown in Fig. 2C. RFU: relative fluorescence
unit.

(k) Transwell migration assay as shown in Fig. 2c. The experiment was repeated 3 times independently. Scale bar
=200 pym.

(1) Left: FACS contour plots of phagocytic activity of WAS-iMP1 and cWAS-iMP1; right: Replicates of fluorescent
images as shown in Fig. 2d. Scale bar = 200 ym.

(m) The FPKM value of the WASL gene in WT (n=2) and KO iMPs (n=3). Western blot of N-WASP (WASL) in WT
and KO iMPs. PPIB: loading control.

All statistics in this figure were done using two-sided Student’s t-test unless indicated otherwise. Data are shown

as mean + SEM.
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Fig. S3 Localization of wild type WASP in hematopoietic lineages.

(a) FACS analysis of WASP expression by intracellular staining in indicated hematopoietic lineages from human
umbilical cord blood cells.

(b) Representative immunofluorescence images of nuclear and cytoplasmic localization of WASP in wild-type
macrophages. Lamin B1 and phalloidin were used as nuclear and cytoplasmic landmarks, respectively. DNA was
stained with DAPI. Bar = 10 um. The experiment was repeated at least 3 times independently.

(c) Representative immunofluorescence image of the nuclear and cytoplasmic localization of WASP in wild-type
hematopoietic stem/progenitor cells (Lin"CD34*CD38 CD49f*), B cells (CD20*), T cells (CD3*) and dendritic cells
(CD11c* DC-SIGN*). Note that blood cells have scant cytoplasm that is demarcated from the nucleus by LMNB
staining. Green: WASP; Magenta: LMNB; Blue: DNA. Bar = 5 um. The experiment was done once.
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Fig. S4 WASP deficiency results in striking changes in the morphology of nuclear

speckles and overexpression of SRSF2 in B cell lines.

(a) Flow cytometry analysis of the expression of WASP™¢-mEOS and WASP-4255-mEQS in WASP™! B cells.

(b) Representative Western blot analysis of WASP in B cell lines with PPIB as a loading control. The experiment
was repeated at least 3 times independently.

(c) Representative TEM images of WAS™! B cell lines overexpressing wild-type WASP, WASP™6" and WASP425fs,
Bar = 1 ym in large panels; Bar = 0.5 ym in insets. IGC: interchromatin granule cluster. The experiment was done
once.

(d) Representative confocal immunofluorescence image of the nuclear speckle marker SRSF2. Nuclei were
stained with DAPI. Bar = 5 ym. The experiment was repeated at least twice independently.

(e) Representative single-plane confocal images of cWAS iMP1s, WAS iMP1s, WT iMPs and KO iMPs. Scale bar
=5 um. The experiment was repeated at least 3 times independently.

(f) Examples of segmentation of nuclear speckles in cWAS iMP1 and WAS iMP1. Scar bar =5 pm.

(g9) Representative Western blot analysis of SRSF2 protein in B cell lines, WT iMPs and KO-iMPs. PPIB was used
as a loading control. The numbers represent the normalized expression value of SRSF2 relative to WT B cells or
WT iMP cells. The experiment was repeated at least twice independently.

(h) Representative single-plane confocal images of nuclear speckle markers, SRSF2 and SF3B1, in WT and KO-

iMPs. Scale bar = 2 ym. The experiment was repeated twice independently.
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Fig. S5 WASP deficiency increases the expression of splicing factors in B cell lines and

primary T and B cells.

(a) A schematic diagram of the design of experiments of patient PBMCs.

(b) PCA of RNA-seq data of patients (P1 and P2, clinical score of 4 and 2, respectively) and normal donors (D1
and D2).

(c) Hierarchical clustering of all differentially expressed genes among indicated samples. Note that patient T and
B cells formed separate clusters outside of the T or B cell clusters, indicating that disease-associated gene
expression signature is dominant over the cell-type specific transcriptional program.

(d) Heatmap of upregulated splicing factors in WAS-T cells, two replicates per cell line.

(e) Heatmap of upregulated splicing factors in WAS-B cells, two replicates per cell line.

(f) Heatmap of upregulated splicing factors in B cell lines, two replicates per cell line.
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Fig. S6 WASP mutations disrupt normal AS programs, related to Fig. 4.

(a) Venn diagram shows shared and distinct differentially expressed isoforms in the three cell types.

(b) Heatmap shows GO enrichment of differentially expressed isoforms in the three cell types.

(c) GO enrichment of genes with differentially used junctions detected by Junction-seq between T cells from WAS
patients (n = 2) and normal donors (n = 2).

(d) Venn diagram showing the number of exons that are repressed in B and T cells from WAS patients compared
to those from normal individuals.

(e) Venn diagram showing the number of exons that are promoted in B and T cells from WAS patients compared
to those from normal individuals.

(f) GO Biological Process and KEGG pathway enrichment in genes containing commonly promoted exons in B
and T cells from patients (n=2) with WAS.

(g) Isoform-level analysis of RNAseq data of macrophages and B cell lines. The graph below shows RNA-seq
reads mapped to the cassette exon (middle) and its neighboring exons of the SENP1 and PCBP2 genes. The
numbers above the IGV tracks represent the percentage of exon-retained isoform in total isoforms.

(h) Selected AASEs validated by probe-based qPCR. The gPCR was performed in triplicate per sample, data are
shown as mean + SD, mutant cell lines n = 3.

(i) Splicing factor motif analysis from downstream exon of altered SE in WASP"!*36" B cells. Hypergeometric
testing p values are shown in the table.

(j) Splicing factor motif analysis from downstream exon of altered SE in WASP"*L425 B cells. Hypergeometric

testing p values are shown in the table.
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Fig. S7 Location of WASP ChIP peaks on splicing factor genes, related to Fig. 5-6.

(a) Heatmap of WASP ChiIPseq peaks in TSS regions in the genome of WAS™ B cells overexpressing wild-type
WASP cDNA. X-axis is shown in bp.

(b) Pie chart visualizing genomic annotation of WASP ChIPseq peaks from WAS™" B cells overexpressing wild-
type WASP.

(c) Location of WASP ChlPseq peaks of WT B cells in SF genes shown in Integrative Genomics Viewer (IGV).
(d) Location of WASP ChlPseq peaks of WASP-overexpressing WAS™/ B cells in SF genes shown in IGV.

(e) Top 5 de novo motifs in the promoter regions of upregulated SFs bound by WASP. Hypergeometric testing p

values are shown in the table.
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Fig. S8 ChIP-qPCR Validation for WASP ChiIPseq data, related to Fig. 5-6 and Fig. S7.

(a) Location of WASP ChlIPseq peaks of WT B cells in selected AASE genes shown in IGV. The input track is
shown above the corresponding WASP ChlIPseq track using the same scale. Black triangle indicates the cassette
exon; light blue vertical line indicates the center of the gPCR amplicon; elbow arrow below the gene models shows
the transcription start site and the direction of transcription; straight arrow in partial gene view shows the direction
of transcription; red gene name indicates more inclusion of the cassette exon in WASP deficient cells, blue more
exclusion, and black negative control.

(b) ChIP-gPCR validation of WASP ChIPseq data for genes in Fig. S8a, S7d and Fig. 5c¢c. UpEx: upstream exon.
DwnEx: downstream exon. Prom: Promoter. WASP ChIP was independently repeated twice in WT B cells and
once in WASP-overexpressing WAS™ B cells. The qPCR was performed in triplicate per sample, data are shown

as mean + SD, analyzed loci n = 23.
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Fig. S9 Validation of AASEs and rescue of WAS phenotype, related to Fig. 5.
(a) Sashimi plot of selected AASEs in genes associated with the GSEA immunity gene set in WAS mutant iMPs.

(b) Exon-specific gPCR validation for the selected AASEs shown in (a). Biological replicate n = 3. Data are shown
as mean = SD. Two-sided Student’s t-test. FN7: ***p = 0.0004 (KO-C52 iMP), ***p = 0.0008 (KO-C152 iMP), ****p
< 0.0001; DGZK_V1: *p = 0.0192, **p = 0.002, ***p = 0.0009 (KO-C52 iMP), ***p = 0.0007 (KO-C157 iMP), ****p
<0.0001; DGZK_V2: **p = 0.0013 (KO-C157 iMP), **p = 0.0079 (WAS-iMP1), ****p < 0.0001; HYALZ2: *p = 0.0262
(KO-C52 iMP), *p = 0.0251 (WAS-iMP2), **p = 0.0015 (KO-C152 iMP), **p = 0.001 (WAS-iMP1), ***p = 0.0002.
(c) Exon-specific gPCR validation for the CTTN AASE in B cell lines. Biological replicate n = 3. Data are shown as
mean + SD. Two-sided Student’s t-test, ***p = 0.0001 (Null), ***p = 0.0005 (Null + AEX2), ****p < 0.0001.

(d) Left column: gPCR validation of the knockdown of SFs. Middle and right columns: exon-specific qPCR analysis
of AASEs in after siRNA mediated knockdown of upregulated splicing factors (SRSF1, SRSF2, SRSF3, HNRNPD)
in KO iMPs, related to Fig. 5h. Biological replicate n = 3. Data are shown as mean = SD. Two-sided Student’s t-
test, **p = 0.0011 (SRSF2), **p = 0.0076 (CTTN), ***p = 0.0008 (SRSF2), ***p = 0.0002 (DGKZ_V1), ****p <
0.0001.

(e) CTTN splicing is rescued by knocking down SRSF2 in WASP mutant (null and null+F36*) B cells. Biological
replicate n = 3. Data are shown as mean + SD. Two-sided Student’s t-test, SRSF2: *p = 0.0204, **p = 0.0069:
CTTN: *p = 0.0188.

(f) TNF expression levels in WAS iMPs and cWAS iMPs. Top: The RNAseq data of TNF mRNA expression level,
biological replicate for WAS-iMP1 n = 3, for c WAS-iMP1 n = 3, for WAS-iIMP2 n = 1, for c WAS-iMP2 n = 1, for CB-
iMP n = 1. Bottom: ELISA quantitation of secreted TNF in the indicated macrophages upon stimulation with

lipopolysaccharide (LPS). Values shown are as mean + SEM. Biological replicate n =3.
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Fig. S10 Characterization of WASP binding partners and WASP condensates, related to
Fig. 6-7.

(a) Western blot analysis of lysosomal-associated membrane protein 1 (LAMP1) and RNA polymerase Il (RNAP2)
in whole cell and nuclei lysates. The experiment was done once.

(b) GO term enrichment of 99 WASP partners.

(c) Quantitation of known RNA-binding proteins (n=200) in the WASP interactome. x2 test, ***p<0.0001.

(d, e) Mean IUPred score (d) and the percentage of proteins with IlUPred score>0.5 (e) in 342 WASP partners and
3000 random proteins. Data are shown as mean + SEM. Mann Whitney test, ****p < 0.0001.

() Representative Coomassie-stained SDS-PAGE images of full-length human WASP and SRSF2. The
experiment was repeated 3 times independently.

(g) MST of the binding interaction between SRSF2 and WASP. The kq value is shown as mean + SEM, biological
replicate n=3.

(h) Representative confocal images of exogenous SRSF2-GFP and antibody staining of SRSF2. Scale bar = 2
pm. The experiment was repeated twice independently.

(i-k) Representative FRAP images (i) and quantitative analysis (j) of the half time of FRAP recovery and mobile
fraction of SRSF2-GFP fluorescence. Scale bar = 2 ym. Two-sided Student’s t-test. Data are shown as mean %
SD. Biological replicate n=3, *p = 0.0195, ***p < 0.0006 (KO-C152 iMP), ***p = 0.0009 (KO-C52 iMP), ****p <
0.0001. The experiment was repeated 3 times independently. In (k), cells were bleached at the positions with a
clear speckled GFP signal. Scale bar = 1 um. n=10 for WT iMPs, 9 for KO iMPs. Data are shown as mean + SD.
Two-sided Student’s t-test, NS: not significant.

(I) Representative FRAP images and time-lapse FRAP curves of HP1a-GFP fluorescence. n=15 (WT and KO
iMPs), 8 (HEK293T). Data are shown as mean + SEM. Scale bar =1 ym.

(m) Live-cell confocal images of WASP and nuclear actin (GFP-tagged nuclear actin chromobody) in HEK293
cells. Scale bar = 2 ym. The experiment was repeated 3 times independently.

(n) Immunofluorescence of FUS and endogenous WASP in WT iMPs with or without 1,6-HD treatment. Scale bar
=5 um. The experiment was repeated 3 times independently.

Source data for d, e, j, and k are provided as a Source Data file.
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Fig. S11 Colocalization of WASP with SRSF2, Pol Il and nascent RNA related to Fig. 7.

(a) Representative maximum projection of confocal images of endogenous WASP. Scale bar = 5 pm. The
experiment was repeated at least 3 times independently.

(b) Upper: representative single-plane confocal images of PLA signals for WASP-SRSF2 and SRSF2
immunofluorescence signals (left) and for WASP-Pol Il and Pol Il immunofluorescence signals (right). SRSF2Pright
foci label nuclear speckles (NS). Insets: magnified view of boxed locations. Lower left: schematic diagrams of the
categories for quantitative analysis. We define no overlap between PLA signals and SRSF2 or Pol Il signals as
“outside”, 0-50% overlap signals to total PLA signals as “contact”, and 50-100% as “inside”. Lower right: statistics
of the relative location of PLA signals to SRSF2 or Pol Il signals. 487 PLA signals from 15 cells were quantified
for the relative location to NSs. 167 PLA signals from 15 cells were quantified for the relative location to Pol II.
Data are shown as mean + SEM.

(c, d) Representative single-plane confocal images and colocalization analysis of optoWASP droplets (N-terminal
WASP, c) and optoWASP droplets (C-terminal WASP, d) with endogenous SRSF2 and active Pol Il, respectively.
Scale bar = 2 pym. Insets show the framed region in the images. The Pearson correlation coefficient of
colocalization (Pearson’s r) value was calculated using the Leica LAS X software. Analyzed image n=16inc, n
=12 in d, data are shown as mean * SD.

(e) Representative maximum Z-projection of confocal images of endogenous WASP co-stained with Pol Il. Scale
bar = 3 ym. The experiment was repeated twice independently.

(f) Selected RNA immunoprecipitation (RIP) events validated by gqPCR. RIP was independently repeated twice.

The gPCR was performed in triplicate per sample, data are shown as mean + SD, analyzed loci n = 8.
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Fig. S12 Models of the mechanisms by which WASP regulates splicing.
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