Supporting Information: Characterizing Mode Anharmonicity and Huang–Rhys Factors Using Models of Femtosecond Coherence Spectra

Matthew S. Barclay, ^(D),[†] Jonathan S. Huff, ^(D),[†] Ryan D. Pensack ^(D),^{*,†} Paul Davis ^(D),[†] William B. Knowlton, ^(D),^{†,§} Bernard Yurke, ^(D),^{†,§} Jacob C. Dean,[‡] Paul C. Arpin ^(D),^{*,¶} and Daniel B. Turner ^(D),^{*,†}

†Micron School for Materials Science and Engineering, Boise State University, Boise ID 83725, USA

‡Department of Physical Science, Southern Utah University, Cedar City UT 84720, USA
 ¶Department of Physics, California State University, Chico, Chico, California 95929, USA
 §Department of Electrical & Computer Engineering, Boise State University, Boise, ID
 83725, USA

E-mail: ryanpensack@boisestate.edu; parpin@csuchico.edu; danielturner926@boisestate.edu

Contents

S1 Derivation of Morse Oscillator ω -Only FCS Expression	S-3
S2 Franck–Condon Coefficients for Displaced Harmonic Oscillators of equal Curvatures	Un- S-7
S3 Detailed Measurement & Fit Results	S-9
S4 Quantum-Chemical Computations of Rhodamine 101	S-11
S5 Quantum-Chemical Computations of Cresyl Violet	S-15
S6 Second Harmonic Generation - Frequency Resolved Optical Gating	S-17
References	S-18

S1 Derivation of Morse Oscillator ω -Only FCS Expression

The Morse oscillator potential energy function can be written as

$$\hat{V}(x) = D_e \left(1 - e^{-a(x - x_e)}\right)^2,$$
(S1)

where x_e is the equilibrium bond distance, D_e is the well depth, and a is inversely related to the width of the potential well.

For a mass μ , the expression for the Morse oscillator FCS includes a useful dimensionless quantity $\lambda = \frac{\sqrt{2\mu D_e}}{a\hbar}$, the displacement, $\Delta = x'_e - x_e$, the effective natural frequency of the oscillator, $\omega_0^{\text{eff}} = \sqrt{\frac{2D_e a^2}{\mu}}$, the effective classical turning point of the n = 0 eigenfunction, $x_0^{\text{eff}} = \sqrt{\frac{\hbar}{\mu\omega_0^{\text{eff}}}}$, and, finally, the normalized displacement $\tilde{\Delta} = \Delta/x_0^{\text{eff}}$. With these definitions, one can derive that $a\Delta = \tilde{\Delta}\lambda^{-\frac{1}{2}}$.

The Franck–Condon factors for the case of identical but displaced Morse potentials are given by^{S1}

$$\operatorname{FC}_{n,m}^{\mathrm{MO}} = N_{m,\lambda} N_{n,\lambda} \zeta^{\lambda - n - \frac{1}{2}} \left(\frac{2}{1+\zeta} \right)^{\xi} \sum_{k,k'=0}^{n,m} \left[\frac{(-1)^{k+k'}}{k!k'!} \begin{pmatrix} \xi + n \\ m-k' \end{pmatrix} \begin{pmatrix} \xi + m \\ n-k \end{pmatrix} \zeta^{k} \left(\frac{2}{1+\zeta} \right)^{k+k'} \Gamma\left(\eta\right) \right],$$
(S2)

where n and m index the excited-state and ground-state vibrational eigenfunctions, respectively, and where we have defined variables

$$\zeta = e^{-\tilde{\Delta}/\sqrt{\lambda}} \tag{S3a}$$

$$\eta = 2\lambda - n - m + k + k' - 1 \tag{S3b}$$

$$\xi = 2\lambda - m - n - 1, \tag{S3c}$$

where we use binomial coefficients given by

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{\Gamma(a+1)}{\Gamma(b+1)\Gamma(a-b+1)},$$
(S4)

and where an auxiliary function is

$$N_{n,\lambda} = \left(\sum_{j=0}^{n} \frac{\Gamma(2\lambda - 2n - 1 + j)}{j!}\right)^{-1/2}.$$
(S5)

The energy levels are given by, $^{\rm S2}$

$$E_j = \hbar \omega_0^{\text{eff}} \left(\left(j + \frac{1}{2} \right) - \frac{1}{2\lambda} \left(j + \frac{1}{2} \right)^2 \right).$$
 (S6)

The parameter λ enumerates the number of bound energy levels.

Previously^{S3} we calculated the wavepacket oscillations at every ω_2 value,

$$M(\omega;\omega_2) = \sum_{n',n,m}^{n,\lambda,\lambda} \mathrm{FC}_{n,m}^{\mathrm{MO}} \mathrm{FC}_{n',m}^{\mathrm{MO}} \mathrm{FC}_{n',0}^{\mathrm{MO}} \left[\frac{1}{\omega - \omega_{n',m} + i\gamma/2} - \frac{1}{\omega - \omega_{n,m} - i\gamma/2} \right] \times \left(\frac{1}{(\omega_2 - \omega_{n',n})^2 - \gamma_2} \right),$$
(S7)

where γ_2 sets the width of each peak as a function of ω_2 and each $\text{FC}_{i,j}^{\text{MO}}$ is given by Eqn. (S2). To create the ω -only Morse oscillator FCS expression for $\omega_2 = \omega_0^{\text{msrd}}$, we set n' = 1 and n = 0, which is given by

$$M(\omega;\omega_0^{\text{msrd}}) = \sum_m^{\lambda} A_{\text{MO}}(\lambda,\tilde{\Delta},m) \left[\frac{1}{\omega - \omega_{1,m} + i\gamma/2} - \frac{1}{\omega - \omega_{0,m} - i\gamma/2} \right], \quad (S8)$$

where $A_{\text{MO}}(\lambda, \tilde{\Delta}, m)$ represents the dependency of the product of Franck–Condon coefficients on fundamental microscopic parameters λ and $\tilde{\Delta}$. The Franck–Condon factors can be expanded for n and n' and then simplified. We use algebra and various Gamma-function

identities to find that

$$FC_{0,0}^{MO} = \zeta^{\lambda - \frac{1}{2}} \left(\frac{2}{1+\zeta}\right)^{2\lambda - 1}$$
(S9)

and

$$FC_{1,0}^{MO} = \sqrt{\frac{(2\lambda - 2)(2\lambda - 3)}{2\lambda - 1}} \zeta^{\lambda - \frac{3}{2}} \left(\frac{2}{1+\zeta}\right)^{2\lambda - 2} \left(\frac{1-\zeta}{1+\zeta}\right),$$
(S10)

to produce

$$\mathrm{FC}_{0,0}^{\mathrm{MO}}\mathrm{FC}_{1,0}^{\mathrm{MO}} = \zeta^{2\lambda-2} \left(\frac{2}{1+\zeta}\right)^{4\lambda-3} \sqrt{\frac{(2\lambda-2)(2\lambda-3)}{2\lambda-1}} \left(\frac{1-\zeta}{1+\zeta}\right) \,. \tag{S11}$$

This expression contains no Gamma functions.

Similarly, we can combine the third and fourth coefficients, $FC_{0,m}^{MO}$ and $FC_{1,m}^{MO}$, to yield

$$FC_{0,m}^{MO}FC_{1,m}^{MO} = \frac{1}{(2\lambda - 2)\sqrt{2\lambda - 3}\Gamma(2\lambda - 3)} N_{m,\lambda}^2 \zeta^{2\lambda - 2} \left(\frac{2}{1+\zeta}\right)^{4\lambda - 2m - 3} \\ \times \sum_{k'=0}^m \left[S(k') \left(2\lambda - m + k' - 2\right) \right] \\ \times \sum_{k''=0}^m \left[S(k'') \left(2\lambda - 2 - \frac{2\zeta}{1+\zeta} (2\lambda - m + k'' - 2)\right) \right],$$
(S12)

where we have defined the auxiliary counting function

$$S(j) = \frac{(-1)^j}{j!} \begin{pmatrix} 2\lambda - m - 1\\ m - j \end{pmatrix} \left(\frac{2}{1+\zeta}\right)^j \Gamma\left(2\lambda - m + j - 2\right).$$
(S13)

Although the pair of summations in Eqn. (S12) cannot be simplified further, they can be computed synchronously in a single **for** loop for increased speed.

Finally, we can produce the total product of the four Franck–Condon factors as

$$A_{\rm MO}(\lambda,\tilde{\Delta},m) = N_{m,\lambda}^2 \zeta^{4\lambda-4} \left(\frac{2}{1+\zeta}\right)^{8\lambda-2m-6} \frac{1}{\sqrt{(2\lambda-1)(2\lambda-2)}} \Gamma(2\lambda-3) \left(\frac{1-\zeta}{1+\zeta}\right)$$
$$\times \sum_{k'=0}^m \left[S(k')\left(2\lambda-m+k'-2\right)\right]$$
$$\times \sum_{k''=0}^m \left[S(k'')\left(2\lambda-2-\frac{2\zeta}{1+\zeta}(2\lambda-m+k''-2)\right)\right]. \tag{S14}$$

In this approximation, we derive that the measured oscillation frequency, $\omega_0^{\rm msrd}$ can be used to compute

$$\omega_0^{\text{eff}} = \frac{\lambda \omega_0^{\text{msrd}}}{\lambda - 1}.$$
(S15)

S2 Franck–Condon Coefficients for Displaced Harmonic Oscillators of Unequal Curvatures

Iachello and Ibrahim^{S1} present the Franck–Condon factors for the displaced harmonic oscillator model when the ground-state and excited-state potentials have distinct curvatures, α and α' , respectively. Here we re-write their expression in our notation as,

$$\operatorname{FC}_{n,m}^{\mathrm{HO}}(\tilde{\Delta},\epsilon) = e^{-\frac{\epsilon^{2}\tilde{\Delta}^{2}}{2(1+\epsilon^{2})}} \left(\frac{\epsilon \cdot m!n!}{2^{m+n-1}}\right)^{1/2} \left(\frac{1}{1+\epsilon^{2}}\right)^{(m+n+1)/2} \times \sum_{l=0}^{\min[m,n]} \frac{1}{l!} \left(-\frac{1+\epsilon^{2}}{\epsilon^{2}\tilde{\Delta}^{2}}\right)^{l} \\ \times \frac{1}{4} \sum_{j=l}^{m} \sum_{j'=l}^{n} \left[\left((-1)^{(m-j)}+1\right) \left((-1)^{(n-j')}+1\right) (-1)^{j'} \\ \times \frac{(\epsilon^{2}-1)^{(m-j)/2} (1-\epsilon^{2})^{(n-j')/2}}{(1+\epsilon^{2})^{(j+j')/2}} \frac{\epsilon^{2j'+j} (2\tilde{\Delta})^{j+j'}}{(\frac{m-j}{2})! (\frac{n-j'}{2})! (j-l)! (j'-l)!} \right].$$
(S16)

where $\alpha_{\pm}^2 = \alpha^2 \pm \alpha'^2$, we have replaced the 'modulo 2' notation of Ref. [S1] with flip-flop factors in the sums over j and j', and where we use dimensionless parameters $\epsilon = \alpha/\alpha'$ and $\tilde{\Delta} = \alpha' \Delta$.

In Fig. (S1) we present simulated FCS spectra for the conditions of $\epsilon=1.1$, $\omega_{0e}=9$, $\gamma/\omega_{0e}=1$, $\omega_{eg}=400$, and $\tilde{\Delta} \in \{0.1, 0.5, 1.0, 2.0\}$. In all cases, the FCS computed for $\epsilon \neq 1$ yields more asymmetry of the two main peaks than for the corresponding $\epsilon = 1$ FCS.

Figure S1: Simulation results for the DHO model in which the ground-state and excited-state potentials have distinct curvatures.

S3 Detailed Measurement & Fit Results

In Tables (S1) and (S3), we present the quantitative fit results—with standard deviations arising from confidence intervals of the fits—for, respectively, three modes of rhodamine 101 and cresyl violet.

Table S1: Fit results of rhodamine 101. Frequency values are in units of THz.

	ha:	rmonic mo	del	anharmonic model					
$\omega_0/(2\pi)$	S	γ/ω_0	$\omega_{eg}/(2\pi)$	${\cal S}_{ m eff}$	$oldsymbol{\lambda}_{ ext{min}}$	γ/ω_0	$\omega_{eg}/(2\pi)$		
6.3	0.45 ± 0.09	2.72 ± 0.25	$515.0 {\pm} 0.5$	1.80 ± 0.10	11	2.26 ± 0.02	523.7 ± 0.0		
7.0	0.41 ± 0.07	2.97 ± 0.19	$515.0 {\pm} 0.4$	1.56 ± 0.01	11	2.31 ± 0.02	522.3 ± 0.1		
12.4	0.93 ± 0.02	$0.94{\pm}0.06$	534.0 ± 0.2		I	I	1		

Table S2: Fit results of two fundamental modes of rhodamine 101 to unequal-curvature harmonic model. Frequency values are in units of THz.

	unequal-curvature harmonic model								
$\omega_0/(2\pi)$	S	ϵ	γ/ω_0	$\mid \omega_{eg}/(2\pi)$					
6.3	0.14 ± 0.01	$2.10{\pm}0.01$	$2.26 {\pm} 0.01$	533.6 ± 0.1					
7.0	0.70 ± 0.01	1.15 ± 0.01	1.06 ± 0.13	522.7 ± 0.1					

Figure S2: Results of extending the unequal-curvature harmonic model fit of the 6.3 THz mode to detection frequency values beyond those of the measurement to reveal peaks at lower frequencies arising from the extremely large ϵ value.

Table S3: Fit results of cresyl violet. Frequency values are in units of THz. The value of $\boldsymbol{\mathcal{S}}_{\mathrm{eff}}$ for the 22.0 THz mode arises from a negative $\tilde{\Delta}$ value.

	ha	rmonic mo	del	anharmonic model					
$\omega_0/(2\pi)$	S	γ/ω_0	$\omega_{eg}/(2\pi)$	${\cal S}_{ m eff}$	$oldsymbol{\lambda}_{\min}$	γ/ω_0	$\omega_{eg}/(2\pi)$		
15.6	0.25 ± 0.01	0.85 ± 0.02	487.3 ± 0.1	0.32 ± 0.02	8	$0.94{\pm}0.01$	487.3 ± 0.1		
17.6	$0.24{\pm}0.01$	0.89 ± 0.02	$488.4{\pm}0.1$	0.15 ± 0.02	6	1.25 ± 0.02	487.6 ± 0.1		
22.0	0.01 ± 0.01	$0.89 {\pm} 0.01$	$492.3 {\pm} 0.0$	$0.20{\pm}0.14$	8	$0.90{\pm}0.01$	492.2 ± 0.0		

Table S4: Fit results of cresyl violet to unequal-curvature harmonic model. Frequency values are in units of THz. The error estimate of ∞ for the Huang–Rhys factor of the 22.0 THz mode results from a division by zero.

	unequal-curvature harmonic model								
$\omega_0/(2\pi)$	S	ϵ	γ/ω_0	$\omega_{eg}/(2\pi)$					
15.6	0.27 ± 0.01	$0.98 {\pm} 0.01$	$0.82 {\pm} 0.02$	486.6 ± 0.2					
17.6	0.22 ± 0.02	$1.09 {\pm} 0.01$	$0.87 {\pm} 0.02$	$491.9 {\pm} 0.3$					
22.0	$0.01\pm\infty$	$0.95 {\pm} 0.01$	$0.98 {\pm} 0.01$	$489.9 {\pm} 0.4$					

unequal-curvature harmonic model

S4 Quantum-Chemical Computations of Rhodamine 101

We used density functional theory (DFT) for geometry optimizations and harmonic frequency calculations of the electronic ground state of rhodamine 101, and we performed time-dependent DFT (TDDFT) for S₁ excited-state geometries and vibrational frequencies using the same level of theory as the ground state. We performed calculations at both the M05-2X/6-311+G(d,p) and B3LYP/6-311+G(d,p) level of theory for comparison.^{S4,S5} The applied polarizable continuum model (PCM) approximated a methanol solvent environment. We report the zwitterionic form of rhodamine 101 here, however structures protonated at the carboxylate yielded similar geometry changes. Franck–Condon vibronic simulations used the geometries and frequencies from the S₀ and S₁ rhodamine structures. By inspection of the computed geometries, see Fig. (S3), the significant geometric changes associated with the S₀–S₁ transition resulted in non-negligible Duschinsky mixing and ultimately unreliable vibronic results. Specifically, the o-benzoic acid side group tilts perpendicular relative to the xanthene core, with the carbonyl group of the benzoic acid also rotating slightly relative to the plane of the aromatic ring to which it is attached. We performed all quantum-chemical calculations using the Gaussian 16 suite.^{S6}

	M05-2X							B3LYP					
		S_0 S_1						S_0			S_1		
Atom	Cartesi	an Coordina	ates (Å)	Cartesi	an Coordina	ites (Å)	Cartesian Coordinates (Å)			Cartesian Coordinates (Å)			
Atom	х	Y	Z	х	Y	Z	х	Υ	Z	х	Y	Z	
0	-0.08185	-1.66038	-0.07268	-0.19764	-1.66456	-0.14481	0.00350	-1.67037	-0.04149	-0.17611	-1.65593	-0.06697	
О	0.82227	3.95684	2.74885	2.13789	3.37917	2.28913	-0.03167	4.10491	2.81969	2.01422	3.50403	2.39893	
О	0.14246	1.89113	2.19998	0.35575	2.01930	2.36162	-0.01256	1.93244	2.23345	0.26475	2.08829	2.41978	
Ν	4.62854	-1.96748	-0.04959	4.50798	-2.12098	-0.09780	4.74823	-1.85974	-0.01367	4.55570	-2.13066	-0.11669	
Ν	-4.80317	-1.73315	-0.01298	-4.92121	-1.57482	0.03807	-4.74283	-1.88470	-0.05462	-4.93212	-1.62104	0.02245	
С	3.50776	-1.22637	-0.14459	3.42121	-1.33058	-0.20205	3.59940	-1.14029	-0.10535	3.45207	-1.33090	-0.20433	
С	-3.64418	-1.03946	-0.08883	-3.74954	-0.90657	-0.05503	-3.59359	-1.15394	-0.12723	-3.74837	-0.93739	-0.06893	
С	2.23409	-1.84259	-0.09019	2.11097	-1.90108	-0.14997	2.33509	-1.78922	-0.05107	2.14448	-1.89990	-0.11552	
С	-2.40312	-1.71806	-0.03357	-2.51330	-1.62475	-0.03808	-2.32744	-1.79506	-0.04082	-2.50777	-1.64296	-0.01478	
С	3.60696	0.20134	-0.31058	3.56934	0.08611	-0.36385	3.65876	0.29301	-0.26082	3.59702	0.08473	-0.38472	
С	-3.66898	0.39413	-0.22096	-3.73265	0.52398	-0.15679	-3.65618	0.27848	-0.28316	-3.74375	0.49196	-0.19760	
С	1.11897	-1.03393	-0.15022	1.02931	-1.05872	-0.20549	1.19335	-1.00801	-0.11647	1.05068	-1.04895	-0.16218	
С	-1.24745	-0.96745	-0.11966	-1.34394	-0.91683	-0.15648	-1.18753	-1.00913	-0.11240	-1.33138	-0.91792	-0.12095	

Table S5: Optimized S_0 and S_1 geometries of rhodamine 101

Continued on next page

	M05-2X						B3LYP					
		S_0	11100	1	S_1		S_0 I S_1					
		ů.			-							
Atom	Cartesi	an Coordina	tes (A)	Cartesi	an Coordina	ates (A)	Cartesi	an Coordina	tes (A)	Cartesian Coordinates (Å)		
	A 0.11110	2 22971	Z	A 1.02710	2 20024	0.02820	A 9.95907	2 20260	Z	A 1.06969	Y 2 20126	Z 0.02212
C	2.11110	-3.33871	0.02533	1.93710	-3.39034	-0.03839	2.25207	-3.29209	0.19680	1.90808	-3.39120	0.02212
C	-2.32219	-3.21303	0.12709	-2.46036	-3.12322	0.11057	-2.21409	-3.29439	0.12080	-2.40757	-3.14330	0.13404
C	4.39223	-3.42703	0.03041	4.41201	-3.37017	-0.00917	4.75129	-3.32012	0.00922	4.43990	-3.36774	0.00355
C	-4.79317	-3.19190	-0.06369	-4.95549	-5.05210	-0.03430	-4.70465	1.04079	-0.07554	-4.90040	1 505502	-0.00740
C	5.97090 6.10760	-1.39160	0.120107	5.80957	-1.59194	-0.01431	6.06642	-1.24278	0.00335	5.92181 6.0004F	-1.59559	-0.09518
C	-0.10709	-1.08410	-0.13212	-0.20409	-0.88232	-0.04085	-0.00043	-1.2/42/	-0.22131	-0.22045	-0.95994	-0.12174
C	1.18131	0.37230	-0.27576	1.13054	0.35178	-0.32313	1.21573	0.40591	-0.24363	1.100400	0.35915	-0.29762
C	-1.23030	0.43725	-0.24420	-1.28030	0.49779	-0.27398	-1.21333	0.40161	-0.24741	-1.28482	0.49527	-0.25791
C	3.33701	-3.99181	-0.59934	3.14109	-4.09141	-0.65325	3.49832	-3.93012	-0.53929	3.10431	-4.12002	-0.58153
C	-3.02498	-3.73040	0.70024	-3.78078	-3.63080	0.71670	-3.50512	-3.88076	0.09622	-3.77395	-3.07228	0.74258
C	4.97385	0.81798	-0.41743	4.95279	0.66270	-0.46073	5.00733	0.96321	-0.35827	4.97843	0.67269	-0.52051
C	-4.99170	1.11089	-0.31223	-5.02943	1.28797	-0.17331	-4.99790	0.96325	-0.41863	-5.04764	1.25195	-0.26065
C	5.93409	0.06141	0.49173	5.89331	-0.14187	0.42787	6.02653	0.21384	0.49910	5.97358	-0.13132	0.31604
С	-6.06786	0.32658	0.42326	-6.11246	0.50867	0.55794	-6.09422	0.16089	0.27763	-6.17083	0.47927	0.42717
С	-0.00681	1.11303	-0.28861	-0.03444	1.15119	-0.36306	0.00160	1.12014	-0.27395	-0.02654	1.16364	-0.32912
С	2.47295	0.95232	-0.35516	2.45419	0.87650	-0.41197	2.49764	1.01386	-0.31001	2.47257	0.87756	-0.41982
С	-2.49513	1.08411	-0.27889	-2.53329	1.17756	-0.24587	-2.49540	1.00332	-0.32460	-2.54102	1.15840	-0.27274
С	0.02974	2.58139	-0.52422	0.05226	2.62068	-0.50933	-0.00085	2.59460	-0.52418	0.05337	2.63643	-0.49070
С	0.25579	3.51528	0.49066	0.61726	3.43748	0.48079	-0.01169	3.55755	0.50065	0.56649	3.48545	0.51430
С	-0.14550	3.00842	-1.84176	-0.39980	3.20188	-1.69849	0.00694	3.00817	-1.86410	-0.35923	3.19986	-1.71027
С	0.30456	4.86787	0.15909	0.72803	4.80781	0.24948	-0.01449	4.91226	0.14758	0.65462	4.85963	0.25993
С	-0.09952	4.36035	-2.15520	-0.31019	4.57193	-1.90556	0.00410	4.36050	-2.19542	-0.28575	4.57126	-1.93849
С	0.42591	3.08345	1.94762	1.08223	2.88665	1.82822	-0.01945	3.16579	1.98445	0.98955	2.97263	1.89608
С	0.12580	5.29429	-1.14984	0.25761	5.37960	-0.92577	-0.00682	5.31902	-1.18285	0.22296	5.40776	-0.94521
Н	2.03202	-3.62940	1.07655	1.84186	-3.67174	1.01478	2.16375	-3.58163	1.12329	1.86820	-3.65461	1.08336
Н	1.20065	-3.67195	-0.46884	1.01584	-3.68915	-0.53363	1.35101	-3.65619	-0.42749	1.04048	-3.70099	-0.45947
Н	-2.12313	-3.67934	-0.84276	-2.32692	-3.57950	-0.87191	-1.99361	-3.75784	-0.84276	-2.28420	-3.61255	-0.82147
Н	-1.48428	-3.46677	0.77485	-1.62821	-3.40651	0.72545	-1.36969	-3.53044	0.77619	-1.62188	-3.41976	0.78601
Н	4.65947	-3.72457	1.08733	4.45564	-3.86672	1.04643	4.85414	-3.62455	1.12089	4.54669	-3.86076	1.06562
Н	5.48152	-3.79911	-0.47261	5.29399	-3.98479	-0.50250	5.64249	-3.68016	-0.45547	5.32596	-4.01546	-0.50841
Н	-4.74114	-3.51019	-1.13042	-4.93239	-3.34214	-1.08580	-4.67860	-3.70535	-1.11548	-4.95894	-3.42755	-1.05335
Н	-5.73971	-3.54324	0.32541	-5.90137	-3.35746	0.39195	-5.63606	-3.70893	0.36625	-5.90370	-3.40375	0.43753
Н	6.47914	-1.49234	-0.90219	6.34460	-1.70238	-0.99494	6.56982	-1.33170	-0.91556	6.36385	-1.72954	-1.09295
Н	6.51602	-1.99322	0.78928	6.41259	-2.22329	0.68971	6.66986	-1.83106	0.77240	6.50188	-2.21328	0.59619
Н	-6.82168	-1.69315	0.41953	-6.93293	-1.48985	0.49252	-6.78149	-1.88922	0.32276	-6.96684	-1.53777	0.40444
Н	-6.41921	-1.06917	-1.18192	-6.51788	-0.82340	-1.09004	-6.35480	-1.30972	-1.28743	-6.50609	-0.92539	-1.18500
Н	3.35404	-3.79341	-1.67257	3.17451	-3.89791	-1.72690	3.50473	-3.78108	-1.62299	3.17226	-3.99648	-1.66840
Н	3.31910	-5.07070	-0.45524	3.07945	-5.16806	-0.50543	3.50438	-5.01395	-0.36289	3.10201	-5.19808	-0.38015
Н	-3.72532	-3.46294	1.74645	-3.84617	-3.34249	1.76703	-3.60846	-3.60953	1.75154	-3.84853	-3.40368	1.80090
Н	-3.64269	-4.84391	0.65033	-3.83133	-4.71673	0.65955	-3.48953	-4.97143	0.63816	-3.81112	-4.76181	0.67703
Н	5.33022	0.74833	-1.44938	5.30313	0.60982	-1.49616	5.34648	0.96119	-1.40224	5.28980	0.64960	-1.57339
Н	4.92126	1.87381	-0.15741	4.93222	1.71282	-0.17398	4.92454	2.00887	-0.05463	4.96620	1.72209	-0.21869
Н	-4.88650	2.11760	0.08963	-4.87603	2.27020	0.27167	-4.93522	1.97711	-0.01684	-4.91862	2.24023	0.18712
Н	-5.27900	1.20784	-1.36295	-5.34080	1.44661	-1.21013	-5.24875	1.06202	-1.48242	-5.31754	1.41908	-1.31175
Н	6.94019	0.47324	0.43440	6.91431	0.22952	0.35979	7.02261	0.65091	0.40042	6.99256	0.23693	0.17890
Н	5.59585	0.13247	1.52704	5.57341	-0.06852	1.46868	5.74262	0.27592	1.55452	5.72951	-0.03661	1.37882
Н	-5.84543	0.29032	1.49123	-5.87188	0.43038	1.61960	-5.94114	0.17081	1.36153	-6.00349	0.44610	1.50839
Н	-7.04419	0.79092	0.29450	-7.07822	1.00212	0.46343	-7.07817	0.59211	0.08001	-7.13623	0.96111	0.25781
Н	2.55109	2.02656	-0.45991	2.57535	1.94556	-0.52098	2.55178	2.09145	-0.40601	2.59472	1.94604	-0.54478
Н	-2.51854	2.16274	-0.36367	-2.52897	2.25764	-0.29991	-2.55292	2.08014	-0.42812	-2.55006	2.23837	-0.34859

Continued on next page

			M05	5-2X				B3I	ЛЪ			
	S ₀ S ₁				S ₀ S ₁							
Atom	Cartesian Coordinates (Å) Cartesian Coordinates (Å)		Cartesi	Cartesian Coordinates (Å) Cartesian Coord		an Coordina	inates (Å)					
Atom	х	Y	z	х	Y	Z	х	Υ	Z	Х	Υ	z
Н	-0.31461	2.27427	-2.61910	-0.81651	2.56324	-2.46734	0.01519	2.26158	-2.65075	-0.73120	2.54596	-2.49189
Н	0.48292	5.57630	0.95518	1.18336	5.42209	1.01403	-0.02275	5.63864	0.95050	1.06429	5.49938	1.03273
Н	-0.23819	4.68009	-3.17880	-0.67055	5.00319	-2.82961	0.01030	4.66012	-3.23732	-0.61386	4.98018	-2.88771
н	0.16135	6.34895	-1.38655	0.33721	6.44739	-1.07898	-0.00912	6.37483	-1.43003	0.28753	6.47769	-1.11036

Figure S3: Optimized geometries of the zwitterionic form of rhodamine 101 calculated at the (top) M05-2X/6-311+G(d,p) and (bottom) B3LYP/6-311+G(d,p) level of theory.

S5 Quantum-Chemical Computations of Cresyl Violet

We performed quantum-chemical computations on cresyl violet similar to those described in Section (S4). We only used M05-2X/6-311++G(d,p), and the Franck–Condon vibronic computations finished successfully. Table (S6) displays the notable vibronic modes of cresyl violet arising from the quantum-chemical computations including eleven fundamentals and one overtone. These results, which used a polarizable continuum model (PCM) of methanol, are consistent with a more comprehensive computational study of cresyl violet in water.^{S7} Huang–Rhys factors were extracted from vibronic simulations by Franck–Condon analysis of the intensity progression of each mode to determine their individual displacements and therefore Huang–Rhys factor.^{S8,S9} We assigned the measured vibronic spectra to the calculated modes based on frequency. The calculated 35.7 and 42.2 THz modes were not assigned, as the measurements did not exhibit any reproducible vibronic bands at nearby frequencies. Table S6: Huang–Rhys values (S) of computed vibronic modes of cresyl violet and measured frequencies.

mode	$\mathbf{class}^{\mathrm{a}}$	frequency (THz)	measured frequency (THz)	${\cal S}_{ m calc}$
$\nu_{0,9}$	f	7.8	7.2	0.068
$ u_{0,12} $	f	10.3	10.2	0.076
$ u_{0,19} $	f	14.3	14.6	0.045
$ u_{0,21} $	f	14.9	15.6	0.065
$ u_{0,23} $	f	16.1	17.0	0.034
$ u_{0,27} $	f	17.9	17.6	0.281
$ u_{0,32} $	f	20.5	20.0	0.045
$ u_{0,38} $	f	25.3	24.4	0.034
$ u_{0,27} $	0	35.7		0.281
$ u_{0,63} $	f	42.2		0.036
$\nu_{0,64}$	f	42.6	45.2	0.058
$\nu_{0,72}$	f	47.5	49.0	0.065
^a f: fund	lamental	o: overtone		

		S_{0}			S_1					
A +	Cartes	sian Coordinates	(Å)	Cartesian Coordinates (Å)						
Atom	X	Y	Z	Х	Y	Z				
С	-1.773283	-0.812503	-0.000008	1.767091	-0.819125	0.000 127				
С	-2.829865	-1.756089	-0.000232	2.843494	-1.753425	0.000147				
С	-4.127616	-1.346585	-0.000147	4.142321	-1.346439	0.000112				
С	-4.452253	0.044582	0.000143	4.457986	0.047569	0.000054				
С	-3.421723	0.999955	0.000105	3.407902	1.000579	0.000052				
С	-2.122947	0.558709	-0.000090	2.114557	0.566867	0.000099				
Ο	-1.127749	1.481730	-0.000318	1.130861	1.511491	0.000142				
С	0.155967	1.092052	-0.000126	-0.163535	1.079316	0.000064				
С	0.456137	-0.307593	-0.000106	-0.456807	-0.308332	0.000062				
Ν	-0.491624	-1.213301	-0.000141	0.496288	-1.262132	0.000128				
С	1.858337	-0.694211	0.000069	-1.847854	-0.681899	-0.000033				
С	1.119772	2.064371	-0.000395	-1.133355	2.049145	0.000027				
С	2.474734	1.699667	0.000214	-2.499187	1.698312	-0.000020				
С	2.862464	0.292876	0.000000	-2.870263	0.301706	-0.000097				
С	3.544650	-2.416495	0.000172	-3.524666	-2.427755	-0.000204				
С	2.216135	-2.047956	0.000197	-2.197764	-2.041394	-0.000081				
С	4.209457	-0.103914	-0.000083	-4.208818	-0.116707	-0.000244				
С	4.546394	-1.440739	-0.000041	-4.533031	-1.461942	-0.000293				
Ν	3.396900	2.653515	0.000381	-3.414115	2.670998	-0.000020				
Ν	-5.739963	0.423697	0.000833	5.731544	0.447555	-0.000070				
Η	3.126264	3.623006	0.000060	-3.130271	3.636663	0.000113				
Η	4.381033	2.456397	-0.000093	-4.401135	2.486771	0.000131				
Η	-6.479561	-0.256168	-0.001057	6.486671	-0.218655	0.000193				
Η	-5.996972	1.394771	-0.000725	5.972671	1.425047	0.000155				
Η	-4.931801	-2.068752	-0.000421	4.947484	-2.067726	0.000125				
Η	-2.570600	-2.805374	-0.000362	2.586246	-2.803246	0.000187				
Н	-3.635763	2.058996	-0.000219	3.621756	2.060323	0.000026				
Н	0.830463	3.105082	-0.000534	-0.838017	3.089273	0.000061				
Η	5.010075	0.621038	-0.000129	-5.017895	0.599559	-0.000338				
Н	5.586990	-1.731176	-0.000229	-5.571624	-1.760031	-0.000406				
Н	3.812410	-3.463643	0.000379	-3.780442	-3.477747	-0.000243				
Η	1.434100	-2.792150	0.000328	-1.406783	-2.775953	-0.000024				

Table S7: Optimized S_0 and S_1 geometries of cresyl violet

S6 Second Harmonic Generation - Frequency Resolved Optical Gating

We measured the pulse duration to be 8.8 fs by fitting the second-harmonic generation frequency-resolved optical gating signal (SHG-FROG) shown in Fig. (S4) to a Gaussian function.

Figure S4: SHG-FROG yields a pulse duration of 8.8 fs.

References

- (S1) Iachello, F.; Ibrahim, M. Analytic and Algebraic Evaluation of Franck–Condon Overlap Integrals. J. Phys. Chem. A 1998, 102, 9427–9432.
- (S2) Dahl, J. P.; Springborg, M. The Morse Oscillator in Position Space, Momentum Space, and Phase Space. J. Chem. Phys. 1988, 88, 4535–4547.
- (S3) Arpin, P. C.; Turner, D. B. Signatures of Vibrational and Electronic Quantum Beats in Femtosecond Coherence Spectra. J. Phys. Chem. A 2021, 125, 2425–2435.
- (S4) Becke, A. D. Density-Functional Thermochemistry. 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.
- (S5) Zhao, Y.; Truhlar, D. G. Density Functionals for Noncovalent Interaction Energies of Biological Importance. J. Chem. Theory Comput. 2007, 3, 289–300.
- (S6) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.

- (S7) Kostjukov, V. V. Photoexcitation of Cresyl Violet Dye in Aqueous Solution: TD-DFT Study. Theor. Chem. Acc. 2021, 140, 155.
- (S8) Dean, J. C.; Rafiq, S.; Oblinksy, D. G.; Cassette, E.; Jumper, C. C.; Scholes, G. D. Broadband Transient Absorption and Two-Dimensional Electronic Spectroscopy of Methylene Blue. J. Phys. Chem. A 2015, 119, 9098–9108.
- (S9) Henderson, J. R.; Muramoto, M.; Willett, R. A. Harmonic Franck–Condon Overlap Integrals Including Displacement of Normal Coordinates. J. Chem. Phys. 1964, 41, 580–581.