
Supplementary Material

Sparse and Skew Hashing of K-Mers
Giulio Ermanno Pibiri 1

1ISTI-CNR, Pisa, Italy

Abstract

This document contains the Supplementary Material for the paper “Sparse and Skew Hashing of K-Mers”.
Contact: giulio.ermanno.pibiri@isti.cnr.it

Window Size during Lookup Queries
Section 4.1 contains a description of the Lookup algorithm. Here, we
provide a further detail.

By design, we cannot compute the length of a super-k-mer from the
Offsets array (at least, not efficiently). That is, the offset t only indicates
that a super-k-mer begins at Strings[t]. So we start comparing the k-mer
at Strings[t] but we do not know exactly after how many symbols we can
stop the search. We could re-compute minimizers from the k-mers read
during the scan of Strings to derive this information but we want to avoid
doing so. In fact, we know that a super-k-mer g′ cannot contain more than
k − m + 1 k-mers unless the same minimizer appears again somewhere
in g′[0, 2k − m). Albeit rare, the latter case is possible and it is handled
as follows. If a super-k-mer is longer than 2k −m symbols, it is split into
blocks of 2k −m symbols each (except possibly the last one) and we just
pretend that every block is a distinct super-k-mer. Thus, at query time it is
safe to consider a window of size W = min(2k − m, tend − t) symbols,
where tend ≥ t + k is the successor of the offset t in Endpoints (i.e.,
tend is the smallest value in Endpoints that is lager-than or equal-to t).
Capping W to tend − t symbols if tend − t < 2k −m is necessary to not
falsely consider alien k-mers that are formed at the boundary between two
consecutive strings in the compact vector Strings.

Bucket Size Distribution
Table 1 shows an example of the skew distribution of bucket size, for some
indicative values of n (these values mimic the ones used in the experiments
in Section 5). More precisely, a value in a table represents the fraction of
buckets having size s (number of super-k-mers), for s = 1, 2, 3, 4, 5 (only
the first 5 sizes are shown for conciseness).

Space Breakdowns
It is also interesting to report how the space is subdivided into the different
dictionary components. Fig. 1 shows an example of space breakdown
for both regular and canonical dictionaries built from the Human dataset.
Very similar breakdowns are obtained for the other datasets. As expected,
the most space-consuming component in the dictionary is the Offsets

Offsets

Strings

Minim.

Skew Ind.

Other

(a) regular, 8.28 total bpk (b) canonical, 9.39 total bpk

0.329

0.366

0.434

2.312

5.951

0.296

0.206

0.407

2.312

5.063

Fig. 1. Space breakdowns for the Human dataset, for both (a) regular and (b) canonical
dictionaries. The numbers next to each bar indicate the bits/k-mer (bpk) spent by the
respective components.

component (61 − 63% of the total space). Hence, any effort to make
SSHash more compact should be spent in making this component more
light-weight. In this regard we recall that, because of the skew distribution
of bucket size, most of the offsets’ space is due to buckets of size 1: hence,
Offsets is an array made by integers in the range [0, N ) essentially shuffled
at random by the minimizers’ MPHF. Therefore, our choice of spending
dlog2(N )e bits per offset is basically optimal for such distribution. Lastly,
the space difference between a regular and a canonical dictionary almost
entirely resides in the Offsets component given that more minimizers are
used, thus realizing a denser sampling.

The second most space-consuming component is Strings (25 − 28%
of the total space), which costs 2N/n bits/k-mer regardless of the parsing
modality. While it could be possible to obtain better compression for
Strings using a compressor for DNA (we only need to sequentially
decompress a super-k-mer at lookup time) [Manzini and Rastero, 2004],
we do not consider this as a promising option to explore given that most of
the dictionary space is spent elsewhere (and given the slowdown in query
processing that would follow).

Both the MPHF on the minimizers (Minim.) and the skew index take
a small fraction of the total space (e.g., 5% and 2.5% respectively for the
regular variant, Fig. 1a). Other costs include those for representing the
endpoints of the paths (Endpoints array) and size of the buckets (Sizes
array): these costs are small, especially thanks to the use of the Elias-Fano
encoding.

© The Author 2022. 1



2 G. E. Pibiri

Table 1. Bucket size distribution (%) for k = 31 and some useful values of n (number of k-mers), by varying m (minimizer length).

size / m 11 12 13 14 15 16 17 18 19 20 21

1 16.1 24.0 35.3 51.3 71.6 85.9 92.8 95.6 96.8 97.4 97.7
2 8.7 12.6 15.7 19.7 17.0 10.0 5.2 2.9 2.0 1.6 1.4
3 6.1 8.3 9.4 10.4 5.7 2.2 1.0 0.6 0.5 0.4 0.4
4 4.6 6.0 6.6 6.1 2.3 0.8 0.4 0.3 0.2 0.2 0.2
5 3.8 4.6 5.1 3.7 1.1 0.4 0.2 0.1 0.1 0.1 0.1

(a) n = 0.5 × 109

size / m 11 12 13 14 15 16 17 18 19 20 21

1 13.7 19.8 29.7 42.4 61.5 79.5 89.8 94.4 96.3 97.1 97.5
2 7.5 10.6 14.4 17.7 19.4 13.6 7.3 3.9 2.4 1.7 1.4
3 5.2 7.3 8.8 10.4 8.4 3.7 1.4 0.8 0.5 0.4 0.4
4 4.0 5.5 6.0 7.0 4.1 1.3 0.5 0.3 0.2 0.2 0.2
5 3.2 4.4 4.5 5.0 2.2 0.6 0.3 0.2 0.1 0.1 0.1

(b) n = 1.0 × 109

size / m 11 12 13 14 15 16 17 18 19 20 21

1 11.2 15.6 23.0 33.9 48.2 67.8 83.2 91.3 94.9 96.4 97.1
2 6.1 8.5 12.1 15.3 18.9 18.0 11.4 6.2 3.5 2.3 1.8
3 4.3 5.9 8.1 9.1 10.4 6.7 2.8 1.2 0.7 0.5 0.4
4 3.3 4.5 5.9 6.3 6.5 3.0 1.0 0.4 0.3 0.2 0.2
5 2.7 3.7 4.6 4.8 4.2 1.5 0.5 0.2 0.2 0.1 0.1

(c) n = 2.5 × 109

size / m 11 12 13 14 15 16 17 18 19 20 21

1 8.7 11.2 15.1 23.6 41.4 62.9 78.2 86.9 91.6 94.1 95.4
2 4.8 6.1 8.4 13.5 19.9 19.1 13.7 9.2 6.4 4.7 3.8
3 3.3 4.2 6.0 9.6 11.5 7.7 4.1 2.2 1.3 0.8 0.6
4 2.5 3.3 4.7 7.3 7.2 3.7 1.6 0.8 0.4 0.2 0.1
5 2.1 2.7 3.9 5.9 4.8 2.0 0.8 0.4 0.2 0.1 0.1

(d) n = 5.0 × 109

References
Giovanni Manzini and Marcella Rastero. A simple and fast DNA compressor. Softw.

Pract. Exp., 34(14):1397–1411, 2004. doi: 10.1002/spe.619.


