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A Appendix for “The minimizer Jaccard estimator is biased and inconsistent” by Mahdi Belbasi,
Antonio Blanca, Robert S. Harris, David Koslicki, and Paul Medvedev

In this appendix, we will prove the main theorems of the paper as well as provide experimental details to aid reproducibility.

A.1 Matching configurations and the definition of CpA,B;wq and BpA,B;wq

In this section, we define the notion of matching configurations and then use them to define CpA,B;wq and BpA,B;wq. As discussed in Section 3,
the bias of pJ depends on the layout of the shared k-mers along the sequence. It turns out that the aspects of their sharedness that contribute to the
bias are captured by the amount and location of k-mers that are shared between windows tAi, . . . , Ai`wu and tBj , . . . , Bj`wu, for any i and j.

Let us define Spi, j, ℓq fi |tAi, . . . , Ai`ℓ´1u X tBj , . . . , Bj`ℓ´1u|, i.e. the number of shared k-mers in the windows of length ℓ starting at
positions i and j in A and B, respectively. We then define a matching configuration as a 5-tuple, written as

vCa,left, Ca,right;Cb,left, Cb,right; sw,

where s P t0, . . . , wu andCa,left, Ca,right, Cb,left, Cb,right P t0, 1, 2u. We then say that an index pair pi, jq with i, j P r0, L´w´1s has configuration
vCa,left, Ca,right;Cb,left, Cb,right; sw if the windows tAi`1, . . . , Ai`wu and tBj`1, . . . , Bj`wu share s k-mers (i.e., s “ Spi` 1, j ` 1, wq) and

Ca,left “

$

’

’

&

’

’

%

0 if Ai “ Bj ,

1 if Ai P tBj`1, . . . , Bj`wu,

2 otherwise;

Ca,right “

$

’

’

&

’

’

%

0 if Ai`w “ Bj`w ,

1 if Ai`w P tBj`1, . . . , Bj`w´1u,

2 otherwise;

Cb,left “

$

’

’

&

’

’

%

0 if Bj “ Ai,

1 if Bj P tAi`1, . . . , Ai`wu,

2 otherwise;

Cb,right “

$

’

’

&

’

’

%

0 if Bj`w “ Ai`w ,

1 if Bj`w P tAi`1, . . . , Ai`w´1u,

2 otherwise.

An index pair pi, jq has exactly one configuration, and not all configurations are possible; in particular, configurations where exactly one of
Ca,left or Cb,left is zero, or exactly one of Cb,right and Ca,right is zero, are impossible. Figure S1 shows some examples of configurations. We may
label configuration elements as sets (e.g. Ca,left “ t0, 2u) to indicate all the configurations that can be formed using values from that set, except for
impossible configurations. We use ˚ as shorthand for the set t0, 1, 2u of all possible values. For example, v˚, 0;˚, 0; sw refers to the configurations
v0, 0; 0, 0; sw, v1, 0; 1, 0; sw, v2, 0; 1, 0; sw, v1, 0; 2, 0; sw, v2, 0; 2, 0; sw. For a configuration C we use NpCq to denote the number of pairs pi, jq

such that the configuration of pi, jq is C.
In order to define BpA,B;wq, we define first the quantity CpA,B;wq. Let t0 “ 1

2w´s
, t1 “ 1

p2w´sqp2w´s`1q
, and t2 “

1
p2w´sqp2w´s`1qp2w´s`2q

.

CpA,B;wq fi
ÿw

s“0
t0Npv1, 0; 1, 0; swq ` t0Npv1, 0; 2, 0; swq ` t0Npv2, 0; 1, 0; swqq

`t1Npv2, t1, 2u; 1, 1; swq ` t1Npv1, 1; 2, t1, 2u; swq ` 2wt1Npv0, 0; 0, 0; swq

`t1sNpv0, 1; 0, 1; swq ` t1sNpv0, 1; 0, 2; swq ` t1sNpv0, 2; 0, 1; swq

`t1sNpv0, 2; 0, 2; swq ` 2t2sNpv2, 2; 2, 2; swq ` 4t2wNpv2, 1; 2, 1; swq

`t2ps ` 2wqNpv2, 1; 2, 2; swq ` t2ps ` 2wqNpv2, 2; 2, 1; swq

`t2p6w ´ s ` p2w ´ sq2qNpv2, 0; 2, 0; swq

In particular, CpA,B;wq is a linear combination of configuration counts, where each count is weighted by some function of its s value and
w. We also define DpA,B;wq “

řw
s“0 Npv˚, 0;˚, 0; swq. The term BpA,B;wq, which essentially determines the bias of the Jaccard estimator
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Fig. S1: Configuration examples with w “ 2: the pair p0, 1q has configuration v0, 0; 0, 0; 1w; pair p4, 4q has v0, 1; 0, 2; 1w; pair p7, 6q has
v0, 0; 0, 0; 2w.
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(see Theorem 1), is defined as follows:

BpA,B;wq fi
CpA,B;wq

4L
w`1

´ CpA,B;wq
´

DpA,B;wq

2L ´ DpA,B;wq
. (3)

A.2 Proof of Theorem 1

In all the following, we will assume that L ě 7pw ` 1q.

A.2.1 Approximating the minimizer union and intersection (Lemmas 1 and 3)
In this section, we will prove Lemmas 1 and 3. First, we recapitulate the proof of Fact 1 in our notation:

Fact 1. Let p P r0, L ´ 1s. Position p is a minimizer in A iff there exists a unique i P r´1, L ´ w ´ 1s such that p charges index i. In other
words, MA

p “
řL´w´1

i“´1 XA
i,p.

Proof. Figure 2 gives the intuition for the proof. For the only if direction, suppose that p charges index i. Then, by definition of charging,
ap “ mintai`1, . . . , ai`wu, and so p is a minimizer. For the if direction, suppose that p is a minimizer in A. Consider the leftmost window in
which it is a minimizer, i.e. the smallest i1 P rp´w`1, ps such that ap “ mintai1 , . . . , ai1`w´1u. Since i1 is smallest, then either i1 “ p´w`1

or ai1´1 ă ap. This is the definition of p charging index i1 ´ 1. For uniqueness, consider all the possible windows that p can charge, shown in
Figure 2. They are all pairwise incompatible, i.e. there is at least one position that is simultaneously required to be larger than ap and smaller than
ap.

The expected value of MA
p is called the density of the minimizer scheme, and we compute it exactly in the following Fact. We note that similar

derivations of the density also appeared in Schleimer et al. [2003], Roberts et al. [2004], but our proof accounts also for the edge cases.

Fact 4. For p P r0, L ´ 1s, we have ErMA
p s ď 2

w`1
. More precisely,

ErMA
p s “

$

’

’

&

’

’

%

2
w`1

for p P rw,L ´ ws;
w`1`p
wpw`1q

for p P r0, w ´ 1s;

L´p`w
wpw`1q

for p P rL ´ w ` 1, L ´ 1s.

Proof. Let ℓ “ maxp´1, p ´ wq and u “ minpL ´ w ´ 1, p ´ 1q. For i P rℓ ` 1, us, we have PrrXA
i,ps “

ş1
0 PrrXA

i,p | ap “ xs dx “
ş1
0 xp1 ´ xqw´1 dx “ 1

wpw`1q
. For i “ ℓ, we have PrrXA

i,ps “
ş1
0p1 ´ xqw´1 dx “ 1{w.

By Fact 1, MA
p “

řL´w´1
i“´1 XA

i,p. When p P r0, w ´ 1s, we have

MA
p “ XA

´1,p `

p´1
ÿ

i“0

XA
i,p “

1

w
`

p

wpw ` 1q
.

When p P rw,L ´ ws, we have

MA
p “ XA

p´w,p `

p´1
ÿ

i“p´w`1

XA
i,p “

1

w
`

w ´ 1

wpw ` 1q
“

2

w ` 1
.

When p P rL ´ w ` 1, L ´ 1s, we have

MA
p “ XA

p´w,p `

L´w´1
ÿ

i“p´w`1

XA
i,p “

1

w
`

L ´ p ´ 1

wpw ` 1q
“

L ´ p ` w

wpw ` 1q
.

We are now ready to prove Lemma 1.

Lemma 1. CpA,B;wq ď ErpIpA,B;wqs ď CpA,B;wq ` 2.
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Proof. From the definition of pIpA,B;wq and Fact 1, we have

pIpA,B;wq “

L´w´1
ÿ

i“´1

L´1
ÿ

p“0

L´w´1
ÿ

j“´1

L´1
ÿ

q“0

XA
i,pX

B
j,q 1pAp “ Bqq.

Observe that by definition of charging, XA
i,p “ 0 when p R ri ` 1, i ` ws. Therefore,

pIpA,B;wq “

L´w´1
ÿ

i“´1

i`w
ÿ

p“i`1

L´w´1
ÿ

j“´1

j`w
ÿ

q“j`1

XA
i,pX

B
j,q 1pAp “ Bqq.

We can ignore some of the boundary terms associated with position ´1 being charged without much loss in accuracy. Let

pIcore “

L´w´1
ÿ

i“0

i`w
ÿ

p“i`1

L´w´1
ÿ

j“0

i`w
ÿ

q“j`1

XA
i,pX

B
j,q 1pAp “ Bqq.

We claim that ErpIcores ď ErpIpA,B;wqs ď ErpIcores ` 2. The lower bound is immediate. For the upper bound, let us first separate out the terms of
pI with i “ ´1 or j “ ´1:

pIpA,B;wq ď pIcore `

L´w´1
ÿ

i“´1

i`w
ÿ

p“i`1

w´1
ÿ

q“0

XA
i,pX

B
´1,q 1pAp “ Bqq `

w´1
ÿ

p“0

L´w´1
ÿ

j“´1

j`w
ÿ

q“j`1

XA
´1,pX

B
j,q 1pAp “ Bqq

For the second term, observe that, by definition of charging, there is at most one value of q for which XB
´1,q “ 1. Then, since there are no

repeated k-mers in A or B, there is at most one value of p for which Ap “ Bq . Finally, by definition of charging, there is at most one value of i for
which XA

i,p “ 1. Hence the second term is at most one; by a symmetrical argument, the third term is at most one as well. This gives us the desired
upper bound.

It now suffices to show that ErpIcores “ CpA,B;wq.

ErpIcores “

L´w´1
ÿ

i“0

L´w´1
ÿ

j“0

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

ErXA
i,pX

B
j,qs1pAp “ Bqq

“

L´w´1
ÿ

i“0

L´w´1
ÿ

j“0

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

PrrXA
i,p “ 1, XB

j,q “ 1s1pAp “ Bqq

“

L´w´1
ÿ

i“0

L´w´1
ÿ

j“0

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx.

The probability PrrXB
j,q “ 1, XA

i,p “ 1 | ap “ bq “ xs will depend on the configuration of the indices i and j and on whether p “ i ` w or
q “ j ` w. Therefore, we rearrange the sums as follows. For a configuration c, we say that pi, jq Ñ c when the indices i and j are in configuration
c, so that

ErpIcores “
ÿ

c

ÿ

pi,jqÑc

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx

“
ÿ

c

ÿ

pi,jqÑc

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx (4)

`
ÿ

c

ÿ

pi,jqÑc

i`w
ÿ

p“i`1

ż 1

0
PrrXA

i,p “ 1, XB
j,j`w “ 1 | ap “ bj`w “ xs1pAp “ Bqq dx (5)

`
ÿ

c

ÿ

pi,jqÑc

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,i`w “ 1, XB
j,q “ 1 | ai`w “ bq “ xs1pAp “ Bqq dx. (6)

Figure 3 gives some examples to develop the intuition for what the inner term can evaluate to. We consider next each summation Equation (4),
Equation (5), and Equation (6) separately. We start with Equation (5). Note that in this case the value of q is fixed to j ` w, and so there is at
most one value of p in the summation that is not 0 (since Ap “ Bq). We partition the space of all configurations into four possible cases: (i)
c “ v˚, 0;˚, 0; sw, (ii) vt0, 2u,˚;˚, 1; sw, (iii) c “ v1,˚;˚, 1; sw, and (iv) c “ v˚,˚;˚, 2; sw.

First note that for any c, we have XB
j,j`w “ 1 if and only if bj`1, . . . , bj`w´1 are each greater than x. In case (i) when c “ v˚, 0;˚, 0; sw,

the only value of p for which the probability in Equation (5) is not zero is p “ i ` w. From the definition of charging, we have XA
i,i`w “ 1 and
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XB
j,j`w “ 1 if and only if ai`1, . . . , ai`w´1, bj`1, . . . , bj`w´1 are each greater than x. The number of distinct k-mers in this sequence is

2w ´ 2 ´ Spi ` 1, j ` 1, w ´ 1q “ 2w ´ 2 ´ Spi ` 1, j ` 1, wq ` 1 “ 2w ´ 1 ´ s. Therefore, PrrXA
i,p “ 1, XB

j,j`w “ 1 | ap “ bq “

xs “ p1 ´ xq2w´1´s and

i`w
ÿ

p“i`1

ż 1

0
PrrXA

i,p “ 1, XB
j,j`w “ 1 | ap “ bj`w “ xs1pAp “ Bw`jq dx “

ż 1

0
p1 ´ xq2w´1´s dx “ t0,

recalling that t0 “ 1
2w´s

, t1 “ 1
p2w´sqp2w´s`1q

, and t2 “ 1
p2w´sqp2w´s`1qp2w´s`2q

. For case (ii) with c “ vt0, 2u,˚;˚, 1; sw, because
Cb,right “ 1, the only value of p for which the probability in Equation (5) is not zero belongs to ri ` 1, i ` w ´ 1s. From the definition of charging,
we have XA

i,p “ 1 iff ai ă x and ai`1, . . . , ai`w , with the exception of ap, are all greater than x. As mentioned previously, we have that
XB

j,j`w “ 1 iff bj`1, . . . , bj`w´1 are each greater than x. Because Ca,left ‰ 1, we have Ai R tBj`1, . . . , Bj`w´1u. Therefore, we have one
hash value (i.e. ai) that is less than x, and 2w ´ 2 ´ pSpi ` 1, j ` 1, wq ´ 1q distinct hash values that are more than x. As a result,

i`w
ÿ

p“i`1

ż 1

0
PrrXA

i,p “ 1, XB
j,j`w “ 1 | ap “ bj`w “ xs1pAp “ Bj`wq dx “

ż 1

0
xp1 ´ xq2w´1´s dx “ t1.

For next two cases (i.e., case (iii) and (iv)) we show that the sum is 0. When c “ v1,˚;˚, 1; sw, the fact that Cb,right “ 1 means that Ca,right ‰ 0

which implies that p ă i ` w and that, if XA
i,p “ 1, then ai ă x. The fact that Ca,left “ 1 implies that Ai P tBj`1, . . . , Bj`wu. Therefore,

one of the values of tbj`1, . . . , bj`wu is less than x, which makes it impossible that XB
j,q “ 1. When c “ v˚,˚;˚, 2; sw, there is no value of

p P ri ` 1, i ` ws which satisfies Ap “ Bj`w , so 1pAp “ Bj`wq “ 0. Putting all the four cases together, we have shown that the inner
summation in Equation (5) is:

ÿ

c

ÿ

pi,jqÑc

i`w
ÿ

p“i`1

ż 1

0
PrrXA

i,p “ 1, XB
j,j`w “ 1 | ap “ bj`w “ xs1pAp “ Bqq dx

“

w
ÿ

s“0

t0Npv˚, 0;˚, 0; swq ` t1Npvt0, 2u,˚;˚, 1; swq. (7)

Deriving a closed form for Equation (6) is symmetric to Equation (5) with the exception that when c “ v˚, 0;˚, 0; sw, there is no value of q in
the range of the sum (i.e. q P rj ` 1, j ` w ´ 1s) such that Ai`w “ Bq . Hence, for the inner summation in Equation (6), we obtain

ÿ

c

ÿ

pi,jqÑc

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,i`w “ 1, XB
j,q “ 1 | ai`w “ bq “ xs1pAp “ Bqq dx

“

w
ÿ

s“0

t1Npv˚, 1; t0, 2u,˚; swq (8)

With a similar but more delicate case-by-case analysis, we also derive a closed form for Equation (4), whose proof we postpone until later.

Fact 5. Let

T “
ÿ

c

ÿ

pi,jqÑc

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx.

Then,

T “
ÿw

s“0
st1Npv0, 2; 0, 2; swq ` 2st2Npv2, 2; 2, 2; swq ` 2ps ´ 2qt2Npv2, 1; 2, 1; swq

` ps ´ 2qt1Npv0, 1; 0, 1; swq ` ps ´ 1qt1pNpv0, 1; 0, 2; swq ` Npv0, 2; 0, 1; swq ` Npv0, 0; 0, 0; swqq

` 2ps ´ 1qt2pNpv2, 1; 2, 2; swq ` Npv2, 2; 2, 1; swq ` Npv2, 0; 2, 0; swqq. (9)

Finally, observe that summing Equation (7), Equation (8) and Equation (9) and then collecting the coefficients for each configuration, we obtain
that ErpIcores “ CpA,B;wq as desired.

We proceed with the proof of Fact 5.

Proof of Fact 5. For ease of notation, for a configuration c and a pair pi, jq Ñ c, let

Hpc, i, jq “

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx.

Since p ‰ i ` w and q ‰ j ` w, we have that XA
i,p “ 1 and XB

j,q “ 1 iff ai ă x, bj ă x, and ai`1, . . . , ai`w , bj`1, . . . , bj`w , with the
exception of ap and bq , are each greater than x. This corresponds to 2w ´ 1 ´ s hash values needing to be greater than x. What remains is to
compute how many hash values need to be less than x.
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We will partition the space of configurations into four possible cases: v0,˚; 0,˚; sw, v2,˚; 2,˚; sw, v˚,˚; 1,˚; sw, and v1,˚;˚,˚; sw. First,
consider the case of c “ v0,˚; 0,˚; sw. In this case, Ai “ Bj . Therefore,

H pv0,˚; 0,˚; sw, i, jq “

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
xp1 ´ xq2w´1´s dx “

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

t1 “ t1Spi ` 1, j ` 1, w ´ 1q.

Next, consider the case of v2,˚; 2,˚; sw. This case is exactly the same as c “ v0,˚; 0,˚; sw, except that Ai ‰ Bj and so

H pv2,˚; 2,˚; sw, i, jq “

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
x2p1 ´ xq2w´1´s dx “ 2t2Spi ` 1, j ` 1, w ´ 1q

Next, observe that

Spi ` 1, j ` 1, w ´ 1q “ s ´

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if Ca,right “ 2 and Cb,right “ 2

1 if Ca,right “ 0 and Cb,right “ 0

1 if Ca,right “ 1 and Cb,right “ 2

1 if Ca,right “ 2 and Cb,right “ 1

2 if Ca,right “ 1 and Cb,right “ 1 ,

(10)

where recall that s “ Spi ` 1, j ` 1, wq. Therefore,

Hpv0, 2; 0, 2; sw, i, jq “ st1,

Hpv0, 1; 0, 2; sw, i, jq “ Hpv0, 2; 0, 1; sw, i, jq “ Hpv0, 0; 0, 0; sw, i, jq “ ps ´ 1qt1,

Hpv0, 1; 0, 1; sw, i, jq “ ps ´ 2qt1,

Hpv2, 2; 2, 2; sw, i, jq “ 2st2,

Hpv2, 1; 2, 2; sw, i, jq “ Hpv2, 2; 2, 1; sw, i, jq “ Hpv2, 0; 2, 0; sw, i, jq “ 2ps ´ 1qt2,

Hpv2, 1; 2, 1; sw, i, jq “ 2ps ´ 2qt2.

Now, when c “ v1,˚;˚,˚; sw, Ai P tBj`1, . . . , Bj`wu. However, we already argued that ai ă x and that bj`1, . . . , bj`w are all at least x.
Hence, we cannot have both XA

i,p “ 1 and XB
j,q “ 1, and this type of configuration does not contribute to the sum. The case of c “ v˚,˚; 1,˚; sw

is symmetric. Finally, observing that T “
ř

c

ř

pi,jqÑc Hpc, i, jq, we combine all the cases to get the desired equality of the fact statement.

We now restate Lemma 3, whose proof is a direct consequence of Lemma 1.

Lemma 3.
4L

w ` 1
´ CpA,B;wq ´ 10 ď Er pUpA,B;wqs ď

4L

w ` 1
´ CpA,B;wq.

Proof. Recall that MA
p denotes the indicator random variable for Ap being a minimizer in A. Then

Er pUpA,B;wqs “

L´1
ÿ

p“0

ErMA
p s `

L´1
ÿ

q“0

ErMB
q s ´ ErIpA,B;wqs “ 2

L´1
ÿ

p“0

ErMA
p s ´ ErpIpA,B;wqs.

From Lemma 1, we know that ErpIpA,B;wqs ě CpA,B;wq, and from Fact 4 we get that
řL´1

p“0 ErMA
p s ď 2L

w`1
. Combining these two facts, we

deduce

Er pUpA,B;wqs ď
4L

w ` 1
´ CpA,B;wq,

as desired. For the lower bound, from Fact 4 we can deduce that

L´1
ÿ

p“0

ErMA
p s ě

L´w
ÿ

p“w

ErMA
p s “

2pL ´ 2w ` 1q

w ` 1
ě

2L

w ` 1
´

4w ´ 2

w ` 1
ě

2L

w ` 1
´ 4.

The lower bound then follows from Lemma 1.
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A.2.2 Approximating the ratio of the minimizer union and intersection (Lemmas 4 and 5)
We begin this section with the proof of Lemma 4, where we obtain bounds for the variances of pIpA,B;wq and pUpA,B;wq.

Lemma 4.

(i) V arppIpA,B;wqq ď 8w2 IpA,Bq;
(ii) V arp pUpA,B;wqq ď 32w2 L.

Proof. For ease of notation, we let I “ IpA,Bq and U “ UpA,Bq. If p is a position in A, then define wp “

tAmaxt0,p´w`1u, . . . , Amintp`w´1,L´1uu and, if x “ Ap, we say that the k-mers in wp are nearby x in A.
We begin with part piq. For ease of notation set pI “ pIpA,B;wq and recall that

pI “

L´1
ÿ

p“0

L´1
ÿ

q“0

MA
p MB

q 1pAp “ Bqq.

Then,

ErpI
2

s “ E

»

–

¨

˝

L´1
ÿ

p“0

L´1
ÿ

q“0

MA
p MB

q 1pAp “ Bqq

˛

‚

¨

˝

L´1
ÿ

p1“0

L´1
ÿ

q1“0

MA
p1M

B
q1 1pAp1 “ Bq1 q

˛

‚

fi

fl

“

L´1
ÿ

p“0

L´1
ÿ

q“0

L´1
ÿ

p1“0

L´1
ÿ

q1“0

ErMA
p MB

q MA
p1M

B
q1 s1pAp “ Bqq1pAp1 “ Bq1 q.

Observe that MA
p MB

q and MA
p1M

B
q1 are independent if |p ´ p1| ą 2pw ´ 1q, |q ´ q1| ą 2pw ´ 1q, wp X wq1 “ H, and wp1 X wq “ H, since

these four conditions guarantee that the two windows of size 2w ´ 1 centered at p and q (which determine MA
p MB

q ) do not share k-mers with the
two windows centered of size 2w ´ 1 at p1 and q1 (which determine MA

p1M
B
q1 ).

Let D bet the set of tuples pp, q, p1, q1q such that p, q, p1, q1 P r0, Lq, Ap “ Bq , Ap1 “ Bq1 and at least one of the following conditions hold:
(i) |p ´ p1| ď 2pw ´ 1q, (ii) |q ´ q1| ď 2pw ´ 1q, (iii) wp X wq1 ‰ H, or (iv) wp1 X wq ‰ H. That is, D contains all tuples pp, q, p1, q1q for
which MA

p MB
q and MA

p1M
B
q1 could be dependent, so that

ErpI
2

s ď |D| `

¨

˝

L´1
ÿ

p“0

L´1
ÿ

q“0

ErMA
p MB

q s1pAp “ Bqq

˛

‚

¨

˝

L´1
ÿ

p1“0

L´1
ÿ

q1“0

ErMA
p1M

B
q1 s1pAp1 “ Bq1 q

˛

‚“ |D| ` ErpIs2.

Then, V arppIq “ ErpI
2

s ´ ErpIs2 ď |D| and it thus suffices to derive an upper bound for |D|. To do so, we will count the number of tuples that
satisfy each of the conditions on the definition of D and add them together together to get an upper bound on |D|. For condition piq, there are I

values of pp, qq such that Ap “ Bq , and for each one, there are 4w ´ 3 possible values of p1 such that |p ´ p1| ď 2pw ´ 1q. Then, for a given
value of p1, there is at most one value of q1 that would satisfy Ap1 “ Bq1 . Therefore there are at most p4w ´ 3qI values of pp, q, p1, q1q that satisfy
condition (i), i.e. Ap “ Bq , Ap1 “ Bq1 and |p ´ p1| ď 2pw ´ 1q. By the same logic, there are at most p4w ´ 3qI values of pp, q, p1, q1q that
satisfy condition (ii), i.e. Ap “ Bq , Ap1 “ Bq1 and |q ´ q1| ď 2pw ´ 1q.

For condition (iii), again there are I values of pp, qq such that Ap “ Bq . Then, each k-mer x P wp can occur at most once in B, hence there
are at most 2w ´ 1 values of q1 such that x P wq1 . Since |wp| “ 2w ´ 1, there are at most p2w ´ 1q2 values of q1 such that wp X wq1 ‰ H.
For each value of q1, there is at most one value of p1 such that Bq1 “ Ap1 . Therefore, there are at most Ip2w ´ 1q2 values of pp, q, p1, q1q that
satisfy condition (iii), i.e. Ap “ Bq , Ap1 “ Bq1 and wp X wq1 ‰ H. By symmetric logic, the number of tuples that satisfy condition (iv) is also
Ip2w ´ 1q2.

Putting this all together, we get V arppIq ď |D| ď 2p4w ´ 3 ` p2w ´ 1q2qI ď 8w2I , which completes the proof of part piq.
We prove part piiq next. For a k-mer x P U , let Ux be the indicator random variable for the event that x P pUpA,B;wq. Let D be the set of all

px, yq pairs such that x P U , y P U , and Ux and Uy are dependent. Then,

Er pU
2

s “ E

»

–

ÿ

xPU

Ux

ÿ

yPU

Uy

fi

fl “
ÿ

xPU

ÿ

yPU

ErUxUys ď |D| `
ÿ

xPU

ÿ

yPU

ErUxsErUys “ |D| ` Er pUs2,

and V arp pUq “ Er pU
2

s ´ Er pUs2 ď |D|. It thus suffices to derive an upper bound for |D|. Let x and y belong to U . If Ux and Uy are dependent,
then at least one of the following holds:

(i) One of the sequences (i.e. either A or B) contains both x and y at a distance of at most 2pw ´ 1q.
(ii) A contains x, B contains y, and the nearby k-mers of x in A intersect with the nearby k-mers of y in B.

(iii) B contains x, A contains y, and the nearby k-mers of x in B intersect with the nearby k-mers of y in A.

We will count the possible number of px, yq pairs that satisfy each of the conditions and use their sum as an upper bound on |D|. For (i), there are 2
choices for which sequence contains x and y, at most L choices for the position of x, and at most 4w ´ 3 choices for the position of y. Hence, there
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are at most 2Lp4w ´ 3q choices for x and y that satisfy (i). For (ii), there are at most L choices for the position of x. If y satisfies the condition,
then there must exist a k-mer z which is nearby to x in A and also nearby to y in B. There are at most 4w ´ 3 choices for z, and, for each of those
choices, there are at most 4w ´ 3 locations for y. Hence, there are at most Lp4w ´ 3q2 choices for x and y that satisfy (ii). Case (iii) is symmetrical
to case (ii). In total then, |D| ď 2Lp4w ´ 3q ` 2Lp4w ´ 3q2 ď 32w2L.

With these bounds for the variances of pIpA,B;wq and pUpA,B;wq we can now prove Lemma 5.

Lemma 5.
ˇ

ˇ

ˇ
E

”

pI
pU

ı

´
Er pIs

Er pUs

ˇ

ˇ

ˇ
ď 11w2

3?
L

.

Proof. We start by introducing some convenient notation. Let c “
6
?
L, σi “

b

V arppIq and σu “

b

V arp pUq. We say that pI and pU are good if

their values lie in the range ErpIs ˘ cσi and Er pUs ˘ c σu, respectively; otherwise we say they are bad. Let pR “ pI{ pU. Note that ErR̂s “ T1 ` T2,
where

T1 “ E
”

pR | pI and pU are good
ı

PrrpI and pU are goods,

T2 “ E
”

pR | pI or pU are bad
ı

PrrpI or pU are bads.

We will bound T1 and T2 separately. Observe that by Chebyshev’s inequality Mitzenmacher and Upfal [2017], the probability that pI is bad is at most
c´2 and the same holds for pU . Hence, a union bound implies that PrrpI or pU are bads ď 2c´2. Since pI ď pU , pR ď 1, and we obtain the following
bounds for T2:

0 ď T2 ď Pr
”

pI or pU are bad
ı

ď 2c´2.

For T1, observe that

E
”

pR | pI and pU are good
ı

ď E

«

ErpIs ` cσi

Er pUs ´ c σu

ff

ď
ErpIs ` cσi

Er pUs ´ c σu
,

E
”

pR | pI and pU are good
ı

ě E

«

ErpIs ´ cσi

Er pUs ` c σu

ff

ě
ErpIs ´ cσi

Er pUs ` c σu
.

Also, since PrrpI or pU are bads ď 2c´2, we have PrrpI and pU are goods ě 1 ´ 2c´2, and so

ErpIs ´ c σi

Er pUs ` c σu
p1 ´ 2c´2q ď T1 ď

ErpIs ` c σi

Er pUs ´ c σu
.

Now, observe that a
b

ě a´x
b´x

, for 0 ă a ď b and 0 ď x ă b and ErpIs ´ c σi ď Er pUs ` c σu, since ErpIs ď Er pUs and c ě 0.

Er pRs ´
ErpIs

Er pUs
“ T1 ` T2 ´

ErpIs

Er pUs
ě T1 ´

ErpIs

Er pUs
ě

ErpIs ´ c σi

Er pUs ` c σu

`

1 ´ 2c´2
˘

´
ErpIs

Er pUs
ě

ErpIs ´ cpσi `σuq

Er pUs
p1 ´ 2c´2q ´

ErpIs

Er pUs
. (11)

Observe that for all x ą 0 and y ą 0,
?
x `

?
y ď

?
x ` y `

?
x ` y “

a

2px ` yq. Then, using Lemma 4, we get:

σi `σu ď

b

2pV arppIq ` V arp pUqq ď
?
80w2L.

Furthermore, since every w consecutive k-mers have at least one minimizer, pU ě L{w, and so

cpσi `σuq

Er pUs
ď

L1{6
?
80w2L

L{w
ď

?
80w2

3
?
L

. (12)

Plugging this bound into Equation (11) we get

Er pRs ´
ErpIs

Er pUs
ě

˜

ErpIs

Er pUs
´

?
80w2

3
?
L

¸

ˆ

1 ´
2
3
?
L

˙

´
ErpIs

Er pUs
“ ´

?
80w2

3
?
L

ˆ

1 ´
2
3
?
L

˙

´
ErpIs

Er pUs

2
3
?
L

ě ´

?
80w2

3
?
L

´
2
3
?
L

ě ´
11w2

3
?
L

.

(13)

To derive the upper bound for Er pRs ´ ErpIs{Er pUs, we first consider the case when Er pUs ´ ErpIs ă c pσi `σuq. Under this assumption,

Er pRs ´
ErpIs

Er pUs
ď 1 ´

ErpIs

Er pUs
“

Er pUs ´ ErpIs

Er pUs
ă

c pσi `σuq

Er pUs
ď

?
80w2

3
?
L

,
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where the last inequality follows from Equation (12)
Now consider the case when Er pUs ´ ErpIs ě c pσi `σuq. Using the fact that a

b
ď a`x

b`x
, for 0 ă a ď b and x ě 0, we obtain

T1 ď
ErpIs ` cσi

Er pUs ´ c σu
ď

ErpIs ` cpσi `σuq

Er pUs
ď

ErpIs

Er pUs
`

?
80w2

3
?
L

,

where the last inequality follows from Equation (12).
Putting the upper bounds on T1 and T2 together we get

Er pRs ´
ErpIs

Er pUs
“ T1 ` T2 ´

ErpIs

Er pUs
ď

?
80w2

3
?
L

` 2c´2 ď

?
80w2 ` 2

3
?
L

ď
11w2

3
?
L

.

Combined with Equation (13) this implies the result.

A.2.3 Proof of Theorem 1
To prove Theorem 1, we need to relate the bound on pJpA,B;wq given by Lemma 2 to the values of JpA,Bq. We first express JpA,Bq in terms
of configuration numbers. Let DpA,B;wq “

řw
s“0 Npv˚, 0;˚, 0; swq. Note that, except near the start of the sequences, Ai “ Bj if and only if

pi ´ w, j ´ wq are in a configuration v˚, 0;˚, 0; sw. Therefore, DpA,B;wq is approximately IpA,Bq. Formally, we can prove:

Lemma 6. If A and B are padded, then DpA,B;wq “ IpA,Bq and JpA,Bq “
DpA,B;wq

2L´DpA,B;wq
. More generally,

(i) DpA,B;wq ď IpA,Bq ď DpA,B;wq ` 2w;
(ii) DpA,B;wq

2L´DpA,B;wq
ď JpA,Bq ď

DpA,B;wq

2L´DpA,B;wq
` 4w

L
.

Proof. Observe that for i P rw,L ´ 1s and j P rw,L ´ 1s, we have Ai “ Bj if and only if pi ´ w, j ´ wq are in a configuration with
Ca,right “ Cb,right “ 0. In the case that A and B are padded, then I “ D and J “ I

2L´I
“ D

2L´D . In general, the number of pi, jq pairs for which

Ai “ Bj and either i P r0, w ´ 1s or j P r0, w ´ 1s is at most 2w. Hence, D ď I ď D ` 2w. For the J lower bound, J “ I
2L´I

ě D
2L´D .

For the J upper bound, J ď D`2w
2L´D´2w

. When D ` 2w ď L, then

JpA,Bq ď
D ` 2w ` 2w

2L ´ D ´ 2w ` 2w
“

D
2L ´ D

`
4w

2L ´ D
ď

D
2L ´ D

`
4w

L
.

When D ` 2w ą L, then

D
2L ´ D

`
4w

L
ě

L ´ 2w

L ` 2w
`

4w

L
ě

L ´ 4w

L
`

4w

L
“ 1 ě J.

We note that it is possible to derive exact expressions for IpA,B;wq and JpA,B;wq for the non-padded case as well; however, doing so is not
necessary for our purposes and would just introduce (even more) burdensome notation. Next, we need to prove two facts:

Fact 2. CpA,B;wq ď 2L
w`1

.

Proof. By Lemma 1, the definition of pI , and Fact 4, we have CpA,B;wq ď ErpIpA,B;wqs “
řL´1

p“0 ErMA
p s ď 2L

w`1
.

Fact 3. For all y ą 20 and 0 ă x ď y{2, x`2
y´x´10

´ x
y´x

ď 12
y´y

.

Proof. Note that under the given assumptions, y ´ x ě y{2 ą 0 and y ´ x ´ 10 ě y{2 ´ 10 ą 0. Therefore,

x ` 2

y ´ x ´ 10
´

x

y ´ x
“

2y ` 8x

py ´ xqpy ´ x ´ 10q
ď

2y `
8y
2

y
2

p
y
2

´ 10q
“

12

y ´ 5
.

Now, we are ready to prove Theorem 1

Theorem 1. Let w ě 2, k ě 2, and L ě 7pw ` 1q be integers. Let A and B be two duplicate-free sequences, each consisting of L k-mers. Then

there exists ε P r0, 15w2

3?
L

s such that

BpA,B,wq ´ ε ď Er pJpA,B;wqs ´ JpA,Bq ď BpA,B,wq ` ε.

Proof. We prove the upper bound first. From Lemmas 2 and 6, we know that

Er pJpA,B;wqs ´ JpA,Bq ď
CpA,B;wq

4L
w`1

´ CpA,B;wq
`

15w2

3
?
L

´
DpA,B;wq

2L ´ DpA,B;wq
“ BpA,B;wq `

15w2

3
?
L

.
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For the lower bound, we have

Er pJpA,B;wqs ´ JpA,Bq “
CpA,B;wq

4L
w`1

´ CpA,B;wq
´

11w2

3
?
L

´ JpA,Bq (Lemma 2)

ě
CpA,B;wq

4L
w`1

´ CpA,B;wq
´

11w2

3
?
L

´
D

2L ´ D
´

4w

L
(Lemma 6)

“ BpA,B;wq ´
11w2

3
?
L

´
4w

L

ě BpA,B;wq ´
11w2 ` 4w

3
?
L

ě BpA,B;wq ´
11w2 ` 2w2

3
?
L

ě BpA,B;wq ´
13w2

3
?
L

,

as claimed.

A.3 Proof of Theorem 2

Theorem 2. Let w ě 2, k ě 2, and L ě 7pw ` 1q be integers. Let A and B be two duplicate-free padded sequences, each consisting of L
k-mers. Then BpA,B;wq ă 0 unless JpA,Bq “ 0; when JpA,Bq “ 0, we have BpA,B;wq “ 0.

Proof. We omit the parametersA,B andw from the following for conciseness. Let d “ 2
w`1

. Observe that the following statements are equivalent:

B ď 0 ô
C

2dL ´ C
ď

D
2L ´ D

ô Cp2L ´ Dq ď Dp2dL ´ Cq

ô 2LC ´ DC ď 2dLD ´ DC

ô 2LC ď 2dLD

ô C ď dD

Note that for the second equivalence, we rely on the factBpA,B;wq is well defined and its denominators are not zero. In other words, 1) 2L´D ą 0

because D ď L (by definition) and 2) 2dL ´ C ą 0 because C ď dL (by Fact 2).
We now need to show that C ď dD. We have

C ď ErpIs (by Lemma 1)

“

L´1
ÿ

p“0

L´1
ÿ

q“0

1pAp “ BqqPrrMA
p “ 1,MB

q “ 1s

“

L´1
ÿ

p“0

L´1
ÿ

q“0

1pAp “ BqqPrrMA
p “ 1 | MB

q “ 1sPrrMB
q “ 1s

“

L´1
ÿ

p“0

L´1
ÿ

q“0

1pAp “ BqqPrrMA
p “ 1 | MB

q “ 1sd (14)

ď Id

“ dD (by Lemma 6)

Note that Equation (14) follows because of the fact that A and B are padded and Fact 4. Next, observe that since all the terms in Equation (14) are
positive, the only way to have equality with Id is if each term PrrMA

p “ 1 | MB
q “ 1s is 1. We claim this can only happen if there are no shared

k-mers between A and B, i.e. when JpA,Bq “ 0. Otherwise, take the leftmost shared k-mer in A. The window to its left in A will be assigned
hash values that are independent of the hash values in B; therefore, PrrMA

p “ 1 | MB
q “ 1s cannot be 1. Thus, if A and B share at least one

k-mer, we get the stronger statement that ErpIpA,B;wqs ă Id. This in turn implies that C ă dD, which propagates to imply that B ă 0.

A.4 Proof of Theorem 3

Theorem 3. Let w ě 2, k ě 2, and L ě 7pw ` 1q be integers. Let A and B be two duplicate-free, padded, sparsely-matched sequences, each

consisting of L k-mers. Then BpA,B;wq ď ´JpA,Bq 3w2´3w
8w2´2

.

Proof. This proof simply counts the configuration numbers and then applies definitions and Theorem 1. We will first count the configuration
numbers. Let us call v2, 2; 2, 2; 0w the empty configuration. Note that the terms involving the number of empty configurations cancel out in the
equation for C and hence we do not need to count them. Observe, by the condition of the theorem, that a configuration pi, jq that is non-empty
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must contain exactly one pair p P ri, i ` ws and q P rj, j ` ws such that Ap “ Bq . Therefore, to count the number of non-empty configurations,
it suffices to count, for every p P r0, L ´ 1s and q P r0, L ´ 1s such that Ap “ Bq , the types of configurations pi, jq for i P rp ´ w, ps and
j P rq´w, qs. Following a case analysis, we get one configuration of v2, 0; 2, 0; 1w, w´1 configurations of v2, 1; 2, 2; 1w, w´1 configurations of
v2, 2; 2, 1; 1w, pw´1q2 configurations of v2, 2; 2, 2; 1w, one configuration of v0, 2; 0, 2; 0w, w configurations of v1, 2; 2, 2; 0w, andw configurations
of v2, 2; 1, 2; 0w. Recall that I “ IpA,Bq is the number of shared k-mers between A and B. Summing over all I values of p, we then get the
non-zero configuration number of non-empty configurations are

Npv2, 0; 2, 0; 1wq “ I

Npv2, 1; 2, 2; 1wq “ Ipw ´ 1q

Npv2, 2; 2, 1; 1wq “ Ipw ´ 1q

Npv2, 2; 2, 2; 1wq “ Ipw ´ 1q2

Npv1, 2; 2, 2; 0wq “ Iw

Npv2, 2; 1, 2; 0wq “ Iw

Npv0, 2; 0, 2; 0wq “ I.

We then plug these into the definition ofC to get thatCpA,B;wq “ βI , whereβ “ 5w´2
4w2´1

. By Lemma 6, DpA,B;wq “ I . Let d fi 2{pw`1q.

Note that β ´ d “ 3w2´3w
´pw`1qp4w2´1q

ď 0. Using these facts, we can now derive

BpA,B;wq fi
pw ` 1qCpA,B;wq

4L ´ pw ` 1qCpA,B;wq
´

DpA,B;wq

2L ´ DpA,B;wq
“

CpA,B;wq

2dL ´ CpA,B;wq
´

I

2L ´ I
“

βI

2dL ´ βI
´

I

2L ´ I

“
p2L ´ IqβI ´ 2dLI ` βI2

p2dL ´ βIqp2L ´ Iq
“

2LβI ´ 2dLI

p2dL ´ βIqp2L ´ Iq
“ JpA,Bq

2Lβ ´ 2dL

2dL ´ βI
“ JpA,Bq

2Lpβ ´ dq

2dL ´ βI
.

Note that because β ´ d ď 0, BpA,B;wq ď 0. Then, using the fact that β ą 0 and I ą 0, we get

BpA,B;wq ď JpA,Bq
2Lpβ ´ dq

2dL
“ JpA,Bq

3w2 ´ 3w

´2p4w2 ´ 1q
.

A.5 Proof of Theorem 4

Theorem 4. Let 2 ď w ă k, g ą w ` 2k, and L “ ℓg ` k for some integer ℓ ě 1. Let A and B be two duplicate-free sequences with L k-mers
such that A and B are identical except that the nucleotides at positions k ´ 1 ` ig, for i “ 0, . . . , ℓ, are mutated. Then,

BpA,B;wq “
2ℓpℓg ` kqhpwq

pℓpg ` kq ` 2k ´ ℓhpwqqpℓpg ` kq ` 2kq
,

where hpwq “
pw`1qp1´2pH2w´Hwqq

2
and Hn “

řn
j“1

1
j

denotes the n-th Harmonic number.

Proof. Let

W psq “ t0pNpv1, 0; 1, 0; swq ` Npv1, 0; 2, 0; swq ` Npv2, 0; 1, 0; swqq

` t1pNpv2, t1, 2u; 1, 1; swq ` Npv1, 1; 2, t1, 2u; swq ` 2wNpv0, 0; 0, 0; swqq

` t1spNpv0, 1; 0, 1; swq ` Npv0, 1; 0, 2; swq ` Npv0, 2; 0, 1; swq ` Npv0, 2; 0, 2; swqq

` t2p2sNpv2, 2; 2, 2; swq ` 4wNpv2, 1; 2, 1; swq ` p6w ´ s ` p2w ´ sq2qNpv2, 0; 2, 0; swqq

` t2ps ` 2wqpNpv2, 1; 2, 2; swq ` Npv2, 2; 2, 1; swqq

so that CpA,B;wq “
řw

s“0 W psq. In our setting, the configuration counts are such that the following holds:

Fact 6.

W psq “

$

’

’

&

’

’

%

0 if s “ 0;
2ℓpg´w´kq

w`1
`

ℓpw`5q

pw`1qpw`2q
if s “ w;

ℓst1 ` ℓt2p6w ` 8w2 ´ sps ` 6w ` 1qq if 1 ď s ď w ´ 1.

From this fact, which we prove later, we get that CpA,B;wq “ dℓpg ´ kq ` ℓfpwq, where d “ 2{pw ` 1q and

fpwq “ ´
2w

w ` 1
`

w ` 5

pw ` 1qpw ` 2q
`

ÿw´1

s“1
st1 ` t2p6w ` 8w2 ´ sps ` 6w ` 1qq.
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configuration count reason for 0 configuration count reason for 0

v0, 2; 0, 2;ă ww ℓ N/A v0, 2; 0, 2;ww 0 TOO-FULL
v2, 2; 2, 2;ą 0w 0 see text v2, 1; 2, 1; sw 0 CROSS
v0, 0; 0, 0;ă ww 0 see text v0, 0; 0, 0;ww ℓpg ´ w ´ kq N/A
v1, 0; 1, 0; sw 0 VERT v2, 0; 1, 0; sw 0 VERT
v1, 0; 2, 0; sw 0 VERT v2, 0; 2, 0; 0w 0 TOO-EMPTY
v2, 0; 2, 0;ą 0w ℓ N/A v0, 1; 0, 1; sw 0 VERT
v0, 2; 0, 1; sw 0 VERT v2, 1; 1, 1; sw 0 CROSS
v2, 2; 1, 1; sw 0 CROSS v2, 1; 2, 1; sw 0 CROSS
v2, 2; 2, 1; 0w 0 TOO-EMPTY v2, 2; 2, 1; 1 ¨ ¨ ¨w ´ 1w ℓpw ´ sq N/A
v2, 2; 2, 1;ww 0 TOO-FULL v0, 1; 0, 2; sw 0 VERT
v1, 1; 2, 1; sw 0 CROSS v1, 1; 2, 2; sw 0 CROSS
v2, 1; 2, 2; 0w 0 TOO-EMPTY v2, 1; 2, 2; 1 ¨ ¨ ¨w ´ 1w ℓpw ´ sq N/A
v2, 1; 2, 2;ww 0 TOO-FULL

Table S3. Non-empty configurations appearing in the definition of C, along with their counts in the context of Theorem 4 as well as why the counts are zero,
if applicable. The reasons are explained in the proof of Fact 8.

Note that since there are no matches in the first or the last k-mers and k ě w, we have by Lemma 6 that I “ |AXB| “ DpA,B;wq “ ℓpg´kq

and so
CpA,B;wq “ dI ` ℓfpwq,

From the definition of BpA,B;wq, we then have

BpA,B;wq “
C

2dL ´ C
´

I

2L ´ I
“

I `
ℓfpwq

d

2L ´ I ´
ℓfpwq

d

´
I

2L ´ I
“

2L ℓfpwq

d

p2L ´ I ´
ℓfpwq

d
qp2L ´ Iq

.

We also have the following closed form for fpwq (which we prove later).

Fact 7. For n ě 1, let Hn “
řn

k“1
1
k

. Then, fpwq “ 1 ´ 2pH2w ´ Hwq.

From this, combined with the facts that L “ ℓg ` k and I “ ℓpg ´ kq, and letting hpwq “
pw`1qp1´2pH2w´Hwqq

2
, we get

BpA,B;wq “
2ℓpℓg ` kqhpwq

pℓpg ` kq ` 2k ´ ℓhpwqqpℓpg ` kq ` 2kq
,

as claimed.

It remains for use to provide the proofs of Facts 6 and 7. Fact 6 is a direct consequence of the following configuration counts.

Fact 8. In the setting of Theorem 4, we have

(i)Npv0, 0; 0, 0;wwq “ lpg ´ w ´ kq;
(ii)Npv0, 2; 0, 2; t0, ¨ ¨ ¨ , w ´ 1uwq “ l;

(iii)Npv2, 0; 2, 0; t1, ¨ ¨ ¨ , wuwq “ l;
(iv)Npv2, 1; 2, 2; t1, ¨ ¨ ¨ , w ´ 1uwq “ lpw ´ sq;
(v)Npv2, 2; 2, 1; t1, ¨ ¨ ¨ , w ´ 1uwq “ lpw ´ sq.

For any other configuration c that could contribute to CpA,B;wq, we have Npcq “ 0 or c “ v2, 2; 2, 2; 0w.

Proof. We will refer to v2, 2; 2, 2; 0w as the empty configuration. Table S3 lists all non-empty configurations that appear in the definition of C.
Sometimes, a configuration type is further sub-divided according to different values of s. We will show that the counts in the table are correct, which
will prove the Theorem.

The rows that whose reason is VERT have configurations that match v˚,˚; 1, 0; sw, v˚,˚; 0, 1; sw, v1, 0;˚,˚; sw, or v0, 1;˚,˚; sw. These
configurations never occur because in our setting, all the matches are parallel to each other (i.e. if Ai “ Bj and Ai1 “ Bj1 , then j ´ i “ j1 ´ i1),
while these configurations contain a 0 in one place (indicating that the matches are vertical, i.e. Ai “ Bj implies i “ j) and a 1 in another (indicated
that the matching edges are angled, i.e. Ai “ Bj implies i ‰ j). The rows whose reason is CROSS have a configuration that matches v1,˚; 1,˚; sw,
v˚, 1;˚, 1; sw, v1, 1;˚,˚; sw, or v˚,˚; 1, 1; sw. These configurations never occur because the 1s indicate conflicting angles for the matches — they
should either slant left (e.g. i ą j) or right (e.g. i ă j), but cannot do both. Note that for rows that could be categorized as both VERT and CROSS,
the reason in the Table is arbitrarily chosen from those two. The rows whose reason is TOO-FULL have a configuration that matches v˚, 2;˚,˚;ww

or v˚,˚;˚, 2;ww. These configurations can never occur because the presence of the 2 indicates that either Ai`w or Bj`w is not involved in a match,
making it impossible that Spi ` 1, j ` 1, wq “ w. The rows whose reason is TOO-EMPTY have a configuration that matches v˚,˚;˚, t0, 1u; 0w

or v˚, t0, 1u;˚,˚; 0w. These configurations can never occur because the presence of the 0 or 1 indicates that either Ai`w or Bj`w is involved in a
match, making it impossible that Spi ` 1, j ` 1, wq “ 0.
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By the definition of A and B from Theorem 4, we have alternating runs of k mismatches followed by g ´ k matches, with k mismatches at
the end. Therefore, we have ℓ ` 1 blocks of k mismatches, at i P tig, ..., ig ` k ´ 1|0 ď i ď ℓu, and we have ℓ blocks of g ´ k matches, at
i P tig ` k, ..., pi ` 1qg ´ 1|0 ď i ă ℓu. We will refer to the latter as match-blocks.

Recall that configuration windows are of length w ` 1. Because k ą w, no window can contain matches from more than one match-block.
Moreover, any configurations involving an i or j in the first match-block will occur again in each other match-block, at the same coordinates
modulo g. Thus it is enough to consider only the first match-block, and multiply the resulting counts by ℓ. We therefore restrict ourselves to the first
match-block in the following discussion, and note that the leftmost match is at position k and the rightmost match is at g ´ 1.

Let us consider the configurations that are v2, 2; 2, 2;ą 0w. In this case, Ai ‰ Bj and Ai`w ‰ Bj`w , and there is some i1 P ri`1, i`w´1s

and j1 P rj ` 1, j ` w ´ 1s such that Ai1 “ Bj1 . This match must be part of match block, and in our setting, a match block has width g ´ k. This
is more than w, making it impossible that Ai ‰ Bj and Ai`w ‰ Bj`w . Hence Npv2, 2; 2, 2;ą 0wq “ 0.

Let us consider the configurations that are v0, 0; 0, 0; sw. In these configuration, i “ j, Ai “ Bj , and Ai`w “ Bj`w . A configuration window
of width w ` 1 cannot span more than one match block, since g ą w. Therefore, Ai`δ “ Bj`δ for all 0 ď δ ď w. Hence, the number of
configurations with s ă w is 0. For s “ w, Figure S2A shows all the configurations that are v0, 0; 0, 0;ww. We have that i P rk, g ´ w ´ 1s,
resulting in g ´ w ´ k possible windows with this configuration, in one match block

Let us consider the configurations that are v0, 2; 0, 2; sw for 0 ď s ď w ´ 1. In this situation, Ai “ Bj and hence i “ j. The match
block containing this match ends before Ai`w , since Ai`w ‰ Bj`w in this configuration. Then the rightmost match, Ag´1 “ Bg´1, must be
somewhere in the window, other than at i ` w. To get s matches, g ´ 1 “ i ` s and thus i “ g ´ s ´ 1. Therefore, Npv0, 2; 0, 2; swq “ 1 for
each s P r0, w ´ 1s. Figure S2B shows how this configuration looks like. The top and bottom drawings show the two end cases, while the middle
drawing demonstrates the general case.

Let us consider the configurations that are v2, 0; 2, 0; sw for 1 ď s ď w. The case is mostly symmetric to the previous one. In this situation,
Ai`w “ Bj`w and hence i “ j. The match block containing this match begins after Ai, since Ai ‰ Bj in this configuration. The leftmost match
in the match-block, Ak , must be somewhere in the window other than at Ai. To get s matches, k “ pi`wq ´ ps´ 1q and thus i “ k ´w ` s´ 1.
Therefore Npv2, 0; 2, 0; swq “ 1 for each s P r1, ws. Figure S2C shows how this configurations looks like. The top and bottom drawings show the
two end cases, while the middle drawing demonstrates the general case.

Let us consider the configurations that are v2, 1; 2, 2; sw for 1 ď s ď w ´ 1. Figure S2D shows all the configurations. There are several
possibilities for each s. For s “ 3, the top and bottom drawings show the two end cases, while the middle drawing demonstrates the general case.
BecauseCa,right “ 1, Ai`w P tBj`1, . . . , Bj`w´1u and j ą i. SinceCa,left “ Cb,left “ 2, Ai ‰ Bj , and the leftmost match in the match-block,
Ak , must be somewhere in the window, other than at i. To get s matches, k “ pi ` wq ´ ps ´ 1q and thus i “ k ´ w ` s ´ 1. The window for B
can be positioned so that the leftmost match occurs in tj ` 1, . . . , j `w ´ su. Since this corresponds to Ak , we have k P tj ` 1, . . . , j `w ´ su,
which can be restated as pi ` wq ´ ps ´ 1q P tj ` 1, . . . , j ` w ´ su. We can in turn restate this as i P tj ´ w ` s, . . . , j ´ 1qu and thus
j P ti ` 1, . . . , i ` w ´ squ. Therefore, Npv2, 1; 2, 2; swq “ w ´ s for each s P r1, w ´ 1s.

Finally, we consider the configurations that are v2, 2; 1, 2; sw for 1 ď s ď w ´ 1. This case is symmetrical to the above case, by swapping the
roles of A and B in the definition of the configurations. Therefore, Npv2, 2; 1, 2; swq “ w ´ s for each 1 ď s ď w ´ 1.

We are now ready to prove Fact 6.

Fact 6.

W psq “

$

’

’

&

’

’

%

0 if s “ 0;
2ℓpg´w´kq

w`1
`

ℓpw`5q

pw`1qpw`2q
if s “ w;

ℓst1 ` ℓt2p6w ` 8w2 ´ sps ` 6w ` 1qq if 1 ď s ď w ´ 1.

Proof. Let us consider first the s “ 0 case. By Fact 8, the only two configurations with s “ 0 and with non zero counts are v2, 2; 2, 2; 0w and
v0, 2; 0, 2; 0w. However, both of those terms are multiplied by s in W p0q, hence we have W p0q “ 0.

Let us consider next the s “ w case. For this value of s, by Fact 8, we have Npv0, 0; 0, 0;wwq “ lpg ´ w ´ kq and Npv2, 0; 2, 0;wwq “ l; all
other configurations that may contribute to CpA,B;wq have zero counts.

At s “ w, v0, 0; 0, 0;ww has coefficient 2
w`1

and v2, 0; 2, 0;ww has coefficient w`5
pw`1qpw`2q

. Hence

W pwq “
2lpg ´ w ´ kq

w ` 1
`

lpw ` 5q

pw ` 1qpw ` 2q
.

Finally, when 1 ď s ď w ´ 1, again by Fact 8, we have

Npv0, 2; 0, 2; swq “ Npv2, 0; 2, 0; swq “ l,

Npv2, 1; 2, 2; swq “ Npv2, 2; 2, 1; swq “ lpw ´ sq,

and all other configurations do not contribute to W . Now, the coefficient of Npv0, 2; 0, 2; swq in W is st1, the coefficient of Npv2, 0; 2, 0; swq in
W is t2p6w ´ s ` p2w ´ sq2q, and the coefficient of Npv2, 1; 2, 2; swq and Npv2, 2; 2, 1; swq in W is t2ps ` 2wq. Combining this, we obtain

W psq “ ℓst1 ` ℓt2p6w ´ s ` p2w ´ sq2q ` 2ℓpw ´ sqps ` 2wqt2 “ ℓst1 ` ℓt2p6w ` 8w2 ´ sps ` 6w ` 1qq

as claimed.
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We conclude this section with the proof of Fact 7.

Fact 7. For n ě 1, let Hn “
řn

k“1
1
k

. Then, fpwq “ 1 ´ 2pH2w ´ Hwq.

Proof. Recall that fpwq fi ´ 2w
w`1

`
pw`5q

pw`1qpw`2q
`

řw´1
s“1 st1 ` t2p6w ` 8w2 ´ sps ` 6w ` 1qq. Let us rewrite fpwq as

fpwq “
´2wpw ` 2q ` w ` 5

pw ` 1qpw ` 2q
`

ÿw´1

s“1
sp2w ´ s ` 2qt2 ` t2p6w ` 8w2 ´ sps ` 6w ` 1qq

“
´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
`

ÿw´1

s“1
t2p´s2 ` sp2w ` 2q ` 6w ` 8w2 ´ sps ` 6w ` 1qq

“
´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
`

ÿw´1

s“1
t2p´2s2 ` sp´4w ` 1q ` 6w ` 8w2q

“
´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
´ 2S4 ` p´4w ` 1qS2 ` p6w ` 8w2qS1,

where S4 “
řw´1

s“1 t2s2, S2 “
řw´1

s“1 t2s, and S1 “
řw´1

s“1 t2. Let

T “ ´2S4 ` p´4w ` 1qS2 ` p6w ` 8w2qS1.

We will now reduce each of the sums.

S1 “

w´1
ÿ

s“1

t2 “

w´1
ÿ

s“1

1

p2w ´ sqp2w ´ s ` 1qp2w ´ s ` 2q
“

2w´1
ÿ

i“w`1

1

ipi ` 1qpi ` 2q
“

2w´1
ÿ

i“1

1

ipi ` 1qpi ` 2q
´

w
ÿ

i“1

1

ipi ` 1qpi ` 2q
.

We now use the fact that
řn

k“1
1

kpk`1qpk`2q
“

npn`3q

4pn`1qpn`2q
, which can be derived via partial fraction decomposition or induction. Then,

S1 “
p2w ´ 1qp2w ` 2q

4p2wqp2w ` 1q
´

wpw ` 3q

4pw ` 1qpw ` 2q
“

p2w ´ 1qpw ` 1q

4wp2w ` 1q
´

wpw ` 3q

4pw ` 1qpw ` 2q
.

Proceeding similarly for the next component, we have:

S2 “

w´1
ÿ

s“1

s

p2w ´ sqp2w ´ s ` 1qp2w ´ s ` 2q
“

2w´1
ÿ

i“w`1

2w ´ i

ipi ` 1qpi ` 2q
“ 2wS1 ´

2w´1
ÿ

i“w`1

1

pi ` 1qpi ` 2q
.

Recalling that
řn

k“1
1

pk`1qpk`2q
“ n

2pn`2q
, we get

S3 “

2w´1
ÿ

i“w`1

1

pi ` 1qpi ` 2q
“

2w´1
ÿ

i“1

1

pi ` 1qpi ` 2q
´

w
ÿ

i“1

1

pi ` 1qpi ` 2q
“

2w ´ 1

2p2w ` 1q
´

w

2pw ` 2q
.

Hence
S2 “ 2wS1 ´ S3 “ 2wS1 ´

2w ´ 1

2p2w ` 1q
`

w

2pw ` 2q
.

Finally,

S4 “

w´1
ÿ

s“1

s2

p2w ´ sqp2w ´ s ` 1qp2w ´ s ` 2q
“

2w´1
ÿ

i“w`1

p2w ´ iq2

ipi ` 1qpi ` 2q

“ 4w2
2w´1

ÿ

i“w`1

1

ipi ` 1qpi ` 2q
´ 4w

2w´1
ÿ

i“w`1

1

pi ` 1qpi ` 2q
`

2w´1
ÿ

i“w`1

i

pi ` 1qpi ` 2q

“ 4w2S1 ´ 4wS3 `

2w´1
ÿ

i“w`1

i

pi ` 1qpi ` 2q
.

Using that
řn

k“1
k

pk`1qpk`2q
“ Hn`1 ` 2

n`2
´ 2 again via partial fraction decomposition or induction, we get

S5 “

2w´1
ÿ

i“w`1

i

pi ` 1qpi ` 2q
“

2w´1
ÿ

i“1

i

pi ` 1qpi ` 2q
´

w
ÿ

i“1

i

pi ` 1qpi ` 2q
“ H2w ´ Hw`1 `

2

2w ` 1
´

2

w ` 2
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“ H2w ´ Hw ´
1

w ` 1
`

2

2w ` 1
´

2

w ` 2
“ H2w ´ Hw ´

3w ` 4

pw ` 1qpw ` 2q
`

2

2w ` 1
.

Thus,

S4 “ 4w2S1 ´ 4wS3 ` S5.

Combining all of this, we get

T “ ´2S4 ` p´4w ` 1qS2 ` p6w ` 8w2qS1

“ ´2p4w2S1 ´ 4wS3 ` S5q ` p´4w ` 1qp2wS1 ´ S3q ` p6w ` 8w2qS1

“ S1p´8w2 ` 8wq ` S3p12w ´ 1q ´ 2S5.

By using partial fraction decomposition, we can algebraically simplify each of the terms as follows:

S1p´8w2 ` 8wq “ ´8wpw ´ 1q

ˆ

p2w ´ 1qpw ` 1q

4wp2w ` 1q
´

wpw ` 3q

4pw ` 1qpw ` 2q

˙

“
24

w ` 2
´

3

2w ` 1
´

8

w ` 1
´ 3,

S3p12w ´ 1q “ p12w ´ 1q

ˆ

2w ´ 1

2p2w ` 1q
´

w

2pw ` 2q

˙

“
7

2w ` 1
´

25

w ` 2
` 6,´2S5

“ ´2

ˆ

H2w ´ Hw ´
3w ` 4

pw ` 1qpw ` 2q
`

2

2w ` 1

˙

“
4

w ` 2
´

4

2w ` 1
`

2

w ` 1
´ 2 pH2w ´ Hwq .

By plugging these expressions back into T , we get

T “
3

w ` 2
´

6

w ` 1
` 3 ´ 2 pH2w ´ Hwq “

3pw2 ` 2w ´ 1q

pw ` 1qpw ` 2q
´ 2 pH2w ´ Hwq .

Now, we plug the value of T into fpwq and it finishes the proof,

fpwq “
´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
` T “

´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
`

3pw2 ` 2w ´ 1q

pw ` 1qpw ` 2q
´ 2 pH2w ´ Hwq “ 1 ´ 2 pH2w ´ Hwq .
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Fig. S2: Some of the configurations with non-zero counts in Fact 8.
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Fig. S3: Empirical bias for related sequence pairs, with and without duplicates. We set k “ 16, w “ 200, L “ 10000, and r1 P

t.001, .005, .01, .05, .1u, with one mutation replicate. The duplicate-free sequence is the same as in Figure 4. The sequence with duplicates
was found by choosing 100 random L-k-mer sequences from E.coli and choosing from those the one with the most duplicate k-mers (it had 1,377
duplicates, or about 14%). The colored bands show the 2.5th and the 97.5th percentiles. The evenly dashed line shows the expected behavior of an
unbiased estimator, with sJ “ J .

A.6 Experimental details

In this section, we provide some experimental details to aid reproducibility. The scripts to reproduce our experiments are available on our GitHub
paper repository.

Generative models: When we generate an unrelated pair, we greedily extend each string from left to right. At each position, we choose, uniformly at
random, one of the nucleotides that would not result in a k-mer we have already seen. If we get to a point where all the possible nucleotide extensions
to a string are already present, we discard the string and start from the beginning. Though this sampling scheme is not guaranteed to terminate,
we found that it always did in our experiments. We also verified that the Jaccard of the generated pair was close to the j that was used as a target.
Under the assumptions that A and B are uniformly chosen, j should be the expected value under the generative process. Though it is not clear that
the uniformity assumption holds in our generative process, we found that the true Jaccard was indeed very close to j in practice. In the related pair
model, we also faced a possibility that after choosing to mutate a position, all the possible nucleotide substitutions would create a duplicate k-mer.
In such a case, the position was left unchanged.

Mashmap divergence experiment: We sampled 100 substrings from the E.coli reference E.Coli download link, each of length L “ 10, 000 and, for
each substring and for each r1 P t0.90, 0.95, 0.99u, generated a “read” which was the substring with r1L positions randomly picked and mutated.
We then mapped it with mashmap, and discarded any read for which mashmap did not correctly identify a unique and correct mapping location.
Mashmap was run with default parameters of k “ 16 and w “ 200.

Correction formula to remove Poisson-approximation from Mash distance Let j be the observed Jaccard. Let A and B be two sequences generated
using a simple mutation process, i.e. a substitution is created at every nucleotide with a given probability r1 Blanca et al. [2021]. The method of
moments Wasserman [2013] estimator for the sequence identity ispimom “ p1´n{Lq1{k , where n is the observed number of mutated k-mers Blanca
et al. [2021]. In the simple mutation model, the observed Jaccard j is related to n via j “ L´n

L`n
, or, equivalently, n “

Lp1´jq

1`j
Blanca et al.

[2021]. Putting this together, we get that pimom “ p1 ´
1´j
1`j

q1{k “
2j
1`j

1{k
. On the other hand, the Mash distance estimator is ´ 1

k
logp

2j
1`j

q

(Formula 1 in Jain et al. [2017]), which equivalently translates to the identity estimator pimash “ 1 ` 1
k
logp

2j
1`j

q. Combining the two, we get that
pimash “ 1 ` 1

k
logpppimomqkq. Solving for pimom, we get the final correction formula: pimom “ e

pimash´1.

Sliding read experiment: When choosing A, we avoided segments with any Ns or any duplicate k-mers. Any k-mers in B containing an N were
hashed to the maximum hash value so as to avoid them being a minimizer. Also note that minimizers were computed separately for each B; thus, it
is possible that the same k-mer might be a minimizer in one B but not a minimizer in a nearby B.

Empirical bias for related sequence pairs, allowing duplicates: The sequence chosen as the basis for the related experiment in Figure 4 did not
contain duplicates, by chance. We wanted to check the extent to which this experiment would have been affected by duplicates. We chose 100 random
sequences from E.coli and, from those, chose the one with the most duplicate k-mers. It had 1,377 duplicates, or about 14%. Figure S3 compares
the bias for this sequence to the duplicate-free one in Figure 4. There is almost no visually discernible difference between the two.
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