1 Supplementary Information

2

3 Supplementary Methods

4 DNA manipulation and genetic techniques. Oligonucleotides were synthesized by Integrated DNA 5 Technologies. Plasmid DNA was isolated using the QIAprep Spin Miniprep kit (Qiagen). 6 Chromosomal DNA was purified using the Wizard Genomic DNA Purification Kit (Promega). PCR 7 amplification was performed using KAPA HiFi polymerase (Kapa Biosystems). PCR products and 8 other DNA fragments were purified using the QIAquick PCR Purification kit or the QIAquick Gel 9 Extraction kit (Qiagen). Restriction endonucleases, T4 polynucleotide kinase, T4 ligase and T4 10 polymerase treatment were performed following the manufacturer's recommendations (New England 11 Biolabs). Nucleic acid quantification was performed using a Nano-Drop 2000 Spectrophotometer 12 (Thermo Scientific). DNA sequencing was performed using Big Dye Terminator Sequencing v3.1 Cycle Sequencing (Applied Biosystems) at the Australian Equine Genomic Research Centre 13 14 (AEGRC), University of Queensland.

15 Bioinformatic analysis. An E. coli genome database was generated by downloading up to 100 16 randomly selected sequence assemblies from each of the top 83 E. coli sequence types in the E. coli 17 EnteroBase (www.enterobase.warwick.ac.uk), a large publicly available collection on 18 Enterobacteriaceae genome sequence database [1]. This resulted in a collection of 8,247 assemblies 19 (downloaded in January 2019) that we refer to as the 83ST database. The presence of the individual 20 uclA-B-C-D genes in each genome was assessed by tblastn, using the amino acid sequence as a query, 21 and employing a cut-off at 70 % identity and 95 % coverage. The nucleotide sequence of each gene 22 in each genome was extracted using blastdbcmd and curated manually for false-positive hits. All 23 alignments were constructed using ClustalO v1.2.4 [2] with default settings. Maximum-likelihood 24 trees were produced with IQTree v1.6.8 using ModelFinder with default settings and supported by a 25 bootstrap value of 100 [3]. Trees and metadata were visualised in Evolview [4].

26 Genetic mutagenesis of bacteria. Gene disruption mutants were generated using λ -Red 27 recombinase-mediated homologous recombination as described previously [5]. Mutant strains 28 F11*ucl*, UTI89*ucl*, S77EC*ucl* and HVM1299*ucl* were generated via a previously described three-way 29 PCR procedure [6] to amplify a chloramphenicol (*cm*) resistance cassette from pKD3 with a 500-bp homology region to the *ucl* genes. UTI89*lacI-Z* was generated by amplifying the *gfp-cm* cassette with a 700-bp homology region using primers 4057 (5'- tcgtcttcatcctgctcttc) and 4058 (5'gctaaatgccgaatggttg), and the chloramphenicol resistance cassette was subsequently removed using the FLP flippase-encoding pCP20 [5]. Single-nucleotide switching of F11 and UTI to F11-P*ucl*^{T-78G} and UTI89-P*ucl*^{G-78T} was performed using pORTMAGE vectors as described previously [7].

35 Protein preparation, immunoblotting and whole-cell ELISA. Strains to be assessed were grown 36 overnight in LB broth, supplemented with the necessary antibiotics. Whole-cell lysates were prepared by centrifuging 1 ml of overnight cultures standardised to $OD_{600nm} = 1.0$. Cell pellets were 37 38 resuspended in 40 µl water and 5 µl of 2 M HCl and boiled for 10 min before being neutralised with 39 5 µl of 2 M NaOH, followed by adding 50 µl of 2×SDS loading buffer (100 mM Tris-HCl, 4 % w/v SDS, 20 % v/v glycerol, 0.2 % w/v bromophenol blue, pH 6.8). Samples were boiled for 10 min, 40 41 prior to electrophoresis; a volume of 10 µl was routinely analysed. SDS-PAGE and transfer of 42 proteins to a PVDF membrane for western-blot analysis was performed as described previously [8]. 43 Rabbit polyclonal antibody generated against UclA, UclD or UcaD was utilised as primary antibody 44 and detected with commercially purchased alkaline phosphatase conjugated anti-rabbit antibodies 45 (Sigma Aldrich). SIGMAFAST BCIP/NBT (Sigma-Aldrich) were used as the substrate for detection. 46 Western blots were scanned using the Bio-Rad GS-800 calibrated imaging densitometer.

47 To detect Ucl surface expression, cells were suspended in 100 mM sodium carbonate (pH 9.5) and 48 standardised to an OD₆₀₀ of 1. 100 µl of culture was used to coat each well of a MaxiSorp 96-well ELISA plate (Thermo Fisher 44-2404-21) overnight at 4 °C. Wells were blocked with 5 % skim milk 49 50 in PBS for 1 hour at room temperature. Antibody incubations were performed in 100 µl PBS with 51 0.05 % Tween-20 for 1 hour at room temperature. Ucl fimbriae were probed with α-UclA, while α-52 *E. coli* (Life Research B65001R) was used as a cell-loading control, and secondary antibody was α-53 rabbit IgG, AP conjugated (Sigma A3687). All wash steps were performed three times with 250 µl 54 PBS with 0.05 % Tween-20. The reaction was developed with 100 µl of substrate pNPP (Sigma 55 P7998) in the absence of light and optical density was measured at 420 nm after 30 minutes.

56 **β-galactosidase assay.** β -galactosidase assays were performed essentially as described previously 57 [9]. Briefly, strains to be assessed were grown overnight in LB broth, supplemented with the 58 necessary antibiotics. Cultures were diluted in Z buffer (60 mM Na₂HPO₄, 40 mM NaH₂PO₄, 50 mM 59 β -mercaptoethanol, 10 mM KCl, 1 mM MgSO₄, pH 7) with 0.004 % SDS and 16 % chloroform 60 added. Samples were vortexed and incubated at 28 °C to permeabilise the cells. The substrate o-61 nitrophenyl- β -D-galactopyranoside (ONPG) was added to initiate the reaction, which was 62 subsequently stopped with sodium bicarbonate. β-galactosidase activity was assessed in 63 quadruplicate for each strain, by measuring the absorbance at 420 nm. All experiments were 64 performed as three independent replicates. Statistical analysis of β-galactosidase levels between 65 F11*lacI-Z* and UTI89*lacI-Z* carrying each of the pQF50 construct was performed using an unpaired, 66 one-way ANOVA and Sidak's multiple comparison test.

67 Rapid amplification of cDNA ends (5' RACE). The transcription start site of ucl was determined 68 using 5' RACE (Version 2.0; Invitrogen) [10]. Exponentially growing cells ($OD_{600nm} = 0.6$) were 69 stabilized with two-volumes of RNAprotect Bacteria Reagent (Qiagen), prior to RNA extraction 70 using the RNeasy Mini Kit (Qiagen) and treated with rDNase I (Ambion) to remove contaminating 71 DNA. First-strand cDNA was synthesized and PCR-amplified using the following gene specific 72 primers: 6973 (5'- ctgagcactattcatacc) and 6974 (5'- gaatggcaaagggtgtcag), following the 73 manufacturer's specification. Amplified cDNA ends were sequenced to determine the transcription 74 start site.

75 Mouse gut colonization assays. Competitive gut colonization assays were carried out as previously 76 described, with slight modifications [11, 12]. Seven- to eight-week-old female Specific Pathogen 77 Free C3H/HeN mice (Charles River Labs) were first inoculated via oral gavage with 100 uL of 78 streptomycin (1000 mg/kg in water) 24 hours prior to introduction of the F11 strains. Bacteria were 79 grown statically from frozen stocks at 37°C for 24 hours in 250 ml flasks containing 20 ml LB and 80 then diluted 1:1000 into fresh LB and grown for another 24 hours. Prior to gavage, 6 mL of each 81 culture was spun down at 8,000 x g for 8 minutes and pellets were washed twice and then resuspended 82 in phosphate-buffered saline (PBS). Each mouse was inoculated with 50 µl PBS containing a total of ~5 x 10⁷ CFU, comprised of a 1:1 mix of F11::kan and F11::cm (control) or F11::kan and F11-Pucl^{T-} 83 84 ^{78G} (cm resistant). At the indicated time points post-inoculation, individual mice were briefly (3 to 10 85 min) placed into unused takeout boxes for weighing and feces collection. Freshly deposited feces 86 were recovered and directly added to 1 ml of 0.7 % NaCl, weighed, and set on ice. Fecal pellets were 87 broken up by homogenization and samples were then briefly centrifuged to pellet any large insoluble 88 debris. Supernatants were serially diluted and spread onto LB agar plates containing either 89 chloramphenicol (20 µg/ml) or kanamycin (50 µg/ml) to select for growth of the relevant bacterial 90 strains. Plating assays confirmed that the mice contained no endogenous bacteria that were resistant 91 to chloramphenicol or kanamycin prior to introduction of the ExPEC strains. Mice were housed 3 to 92 5 per cage and were allowed to eat (irradiated Teklad Global Soy Protein-Free Extruded chow) and 93 drink antibiotic-free water ad libitum. Competitive indices (CI) were calculated as the ratio of the cm

resistant over kan resistant bacteria recovered from the feces divided by the ratio of the same strainswithin the inoculum.

96 **Cloning, expression and purification of UclD^{LD} and UcaD^{LD}.** The structures of the lectin domains 97 of UclD and UcaD were predicted using Phyre (http://www.sbg.bio.ic.ac.uk/phyre2/html/) [13]. The 98 coding sequences for the *uclD and ucaD* lectin domains were amplified from *E. coli* strain F11 and 99 *P. mirabilis* PM54 clinical isolate [14] genomic DNAs. The amplicons were cloned into pET22b, 100 which encodes a C-terminal His-tag. Epoch Life Science made and confirmed by sequencing the 96 pET22b::*uclD* and pET22b::*ucaD* constructs.

102 E. coli BL21 (DE3) pLys harbouring pET22b::uclD and pET22b::ucaD were grown at 37 °C in LB 103 media supplemented with 100 µg/mL ampicillin. Cells were induced at OD_{600nm} of 0.5 with 1 mM 104 IPTG at 37 °C. Periplasmic extractions by cold osmotic shock of cells incubated overnight were carried out. UclD^{LD} and UcaD^{LD} were purified using a HiTrap nickel column (GE Healthcare). 105 106 Proteins were eluted in a gradient of 0-400 mM imidazole in a buffer containing 20 mM Tris-HCl 107 (pH 7.5) and 150 mM NaCl. Fractions containing the UclD or UcaD, as judged by SDS-PAGE, were 108 pooled and dialysed against a buffer containing 20 mM Tris-HCl (pH 7.5) and 150 mM NaCl 109 overnight at 4 °C. Size-exclusion chromatography (HiPrep 16/60 Sephacryl S-200 HR GE 110 Healthcare) in 20 mM Tris-HCl (pH 7.5) and 150 mM NaCl was used to further purify UclD and 111 UcaD, as assessed by SDS-PAGE.

112 Glycan array analysis. Glycan array analysis was carried out using methods previously described 113 [15, 16]. Briefly, 2 µg of UclD and UcaD, in a final volume of 500 µL of array PBS (PBS with 2 mM 114 MgCl₂ and 2mM CaCl₂), were pre-complexed with a mouse anti-his antibody and detected with 115 fluorescent Alexafluor555 secondary and tertiary antibodies in a molar ration of 4:2:1 for 10 mins 116 prior to application to the array. Slides were previously pre-blocked for 15 mins in array PBS with 117 0.5 % BSA. Slides were rinsed in PBS and dried by centrifugation. Protein was hybridised to the 118 array for 15 min at room temperature in the dark. After 15 min, the slide was immersed in array PBS 119 with 0.2% BSA and washed for 2 min. The slide was then placed in a 50 mL falcon tube and washed 120 in array PBS for 2 min, before rinsing in clean PBS then drying by centrifugation at 200 x g for 5 121 min. The array was scanned by a ProScan Array scanner, and the results analysed by ScanArray 122 Express software program. Binding was classified as RFU (relative fluorescence units) structure 123 reported as positive had a value above mean background (defined as mean background plus 3 standard 124 deviations), and had a P value of < 0.005.

SPR analysis. SPR analysis was carried out using a Biacore T200 system (Cytivia) as previously described [15] with minor modifications. Briefly, UclD and UcaD were immobilized onto flow cells of a CM5 sensor chip using amine coupling at 20 μ g/mL in 10 mM sodium acetate pH 4.0 and at a flow rate of 5 μ L/min for 10 minutes. Glycans were chosen based on positive glycan array results for each of the proteins with each glycan run across a dilution range starting at a maximum concentration of 100 μ M and minimum concentrations tested being 1.6 nM using single cycle kinetics. Results were

131 analysed using the Biacore T200 evaluation software.

132 Crystallization and crystal structure determination.

UclD^{LD}: UclD^{LD} crystals were produced using the hanging drop method, with drops containing 1 μ L 133 134 of protein (10 mg/mL) and 1 µL of well solution (20-25% w/v PEG 3350, 0.1 M Bis-Tris propane 135 pH 6.5, 0.2 M sodium iodide). The crystals appeared within 1-5 days. The crystals were cryoprotected 136 in glycerol (80% well solution and 20% (v/v) glycerol) before flash-cooling in liquid nitrogen. X-ray 137 diffraction data were collected from a single crystal at the Australian Synchrotron MX1 beamline, 138 using a wavelength of 0.9537 Å. Data collection was performed using Blu-Ice software [17], indexed 139 and integrated using MOSFLM and scaled with AIMLESS within the CCP4 suite [18]. Molecular 140 replacement was initially attempted using several published fimbrial adhesin structures as templates, 141 but a solution could not be obtained. Because the crystallisation condition contained sodium iodide, we determined the UclD^{LD} structure by SAD phasing using the CRANK2 [19] pipeline of the CCP4 142 143 suite and a dataset (2.85 Å resolution) collected at wavelength of 1.3776 Å, where the anomalous 144 scattering properties of iodide are still significant. Iodine atoms were located by SHELXD [20], and 145 automatic model building was performed using Buccaneer [21] and Refmac [22]. The higher 146 resolution UclD^{LD} structure was subsequently solved by molecular replacement using PHASER [23]. 147 The model was refined using Phenix [24], with iterative model building carried out between rounds 148 of refinement using Coot [25]. Structure validation was performed using MolProbity [26]. The 149 structure was refined to final R_{work}/R_{free} values of 24.8%/30.6% (Table A in S1 Text). The moderate quality of the UclD^{LD} dataset (*R*_{meas} of 27.9%, Table A in S1 Text) is a likely reason for the high *R*_{free} 150 value. The final UclD^{LD} model contains residues 21-215. Electron density was not observed for 151 152 residues 43-48, suggesting that these regions have a disordered or flexible conformation in the 153 crystals. The coordinates and structure factors have been deposited in the PDB with ID 7MZP.

154 <u>UcaD^{LD}</u>: UcaD^{LD} crystals were produced using the hanging drop method with drops containing 1 μ L 155 of protein (8-16 mg/mL) and 1 μ L of well solution (0.1 M sodium citrate buffer pH 4.5-5.5, 2-3 M

156 NaCl). The crystals appeared within 3-5 days. The crystals were cryoprotected in Paratone-N, before

flash-cooling in liquid nitrogen. X-ray diffraction data were collected from a single crystal at the 157 Australian Synchrotron MX2 beamline, using a wavelength of 0.9537 Å. Data collection was 158 159 performed using Blu-Ice software [17], indexed and integrated using MOSFLM and scaled with 160 AIMLESS within the CCP4 suite [18]. The structure was solved by molecular replacement using PHASER [23] and UclD^{LD} as the template. The model was refined using Phenix [24] and structure 161 validation was performed using MolProbity [26]. The structure was refined to final R_{work}/R_{free} values 162 163 of 16.9 %/19.2 %, respectively (Table A in S1 Text). The final UcaD^{LD} model contains residues 21-164 217. Electron density was not observed for residues 44-47, suggesting that these regions have a 165 disordered or flexible conformation in the crystals. Coordinates and structure factors have been 166 deposited in the PDB with ID 7MZO.

UcaD^{LD}:monosaccharide complexes: Pre-formed UcaD^{LD} and UclD^{LD} crystals were soaked with 167 0.1-0.2 M of the monosaccharides Fuc, Glc, Gal, GlcNAc, GalNAc or Neu5Ac for 48 hours in the 168 crystallisation solution (0.1 M sodium citrate buffer pH 4.5-5.5, 2-3 M NaCl). The crystals were 169 170 cryoprotected in Paratone-N and flash-cooled at 100 K. X-ray diffraction data were collected from single crystals on the MX2 beamline at the Australian Synchrotron, using a wavelength of 0.9537 Å. 171 172 The data-sets was processed using either MOSFLM (Gal complex), or XDS (Fuc and Glc complexes) [27] and scaled using AIMLESS in the CCP4 suite [18]. The structures were solved by molecular 173 replacement using PHASER [23] and ligand-free UcaD^{LD} as the template. The models were refined 174 using Phenix [24], and structure validations were performed using MolProbity [26]. Coordinates and 175 176 structure factors have been deposited in the PDB with IDs 7MZQ (Fuc complex), 7MZR (Glc 177 complex), and 7MZS (Gal complex).

178 Molecular docking and molecular dynamics simulations. The initial structure for MD simulations 179 was obtained by molecular docking of lacto-N-fucopentose VI with AutoDock Vina [28], as 180 implemented in the YASARA molecular modelling package (Ver. 16.46) [29]. A grid box covering 181 the entire monosaccharide-binding site and surroundings was used to place lacto-N-fucopentose VI. 182 The docked structure with the best superimposition between the fucose moiety of lacto-Nfucopentose VI and the fucose molecule observed in the UcaD^{LD}:Fuc complex was then subjected to 183 184 further optimization by a 40 ns MD simulation using the AMBER force-field implemented in the 185 YASARA software suite [29]. A representative energy-minimised snapshot from the MD trajectory 186 was used for the analyses.

188 Supplementary Figures

Fig A. The Ucl fimbrial operon is most frequently found in phylogroup B2 strains. Percentage of strains encoding *uclABCD* for each sequence type in the 83ST database. The bars are split to show the presence of specific *uclA* alleles; the least common *uclA* variants are summarised by the "other" designation (other: 12 variants observed; 33/404, ~8%); see Fig B in S1 Text. The *ucl* genes were most frequently found in ExPEC strains from ST12, ST73, ST127, ST131 and ST141 in the pathogenic B2 phylogroup (360/900; 40%), compared to strains from STs in phylogroups D (15/600; 2.5%) and F (3/500; 0.6%), and rarely found in strains from STs in other *E. coli* phylogroups.

202

Fig B. Maximum likelihood phylogeny of *uclA* variants found in the 83ST database, with the number of each *uclA* variant indicated in the bar graph. A total of 15 *uclA* allelic variants that differed by up to 27% at the nucleotide level were identified. The most common allelic variant was *uclA*-10 (212/404; 52.5%), followed by *uclA*-5 (88/404; 21.8%) and *uclA*-13 (71/363; 17.6%); other allelic variants were infrequent.

- 208
- 209

231

232 Fig D. Analysis of the ucl promoter. a) Left, schematic diagram of the ucl promoter region from F11 and UTI89 cloned in the reporter plasmid pQF50. Indicated are the TSS, -10 and -35 promoter 233 234 elements, and OxyR binding site. Right, β -galactosidase activity (measured in Miller units) for each Pucl-lacZ fusion construct in UTI89lacZ. Plasmid pQF50-Pucl^{F11}-lacZ possessed a higher β-235 galactosidase activity as compared to pQF50-Pucl^{UT189}-lacZ (p < 0.0001; one-way ANOVA with 236 Sidak's multiple comparisons test). b) Promoter region of ucl operon from F11. The transcription 237 238 start site is indicated as +1, with the predicted -10 and -35 core promoter elements indicated 239 accordingly. Bolded T with an arrow indicates the single nucleotide that differed in F11, where a G 240 is present at this position in UTI89, S77EC and HVM1299. The region from F11 and UTI89 cloned 241 into the pQF50 lacZ reporter plasmid is indicated by arrows denoting the 5' ends of primers 6571-6572. 242

start codon of the *uclA* gene and the +1 transcription start site. Bottom: sequence chromatogram.

Fig F. a) Whole-cell lysate western-blot analysis of F11^{T-78G} and UTI89^{G-78T}. Higher expression of UclA was observed in UTI89^{G-78T} mutants and lower in abundance in F11^{T-78G}, compared to that of their wild-type strains. b) Qualitative analysis of 100 cells assessed for Ucl fimbriation using α -UclA immuno-gold labelling. c) Representative UclA immunogold-labelled TEM images for F11, F11 Δ uclA and F11-Pucl^{T-78G}.

Fig G. Anti UclA whole-cell ELISA. a) Whole-cell ELISA demonstrating expression of Ucl fimbriae on wild-type F11 (wt), F11∆ucl (ucl) and F11-Pucl^{T-78G} (T-78G), as well as wild-type UTI89 (wt), UTI89 Δucl (ucl) and UTI89-Pucl^{G-78T}. Ucl fimbriae were detected using UclA-specific polyclonal antibody. b) Control whole cell ELISA of wild-type F11 (wt), F11Δucl (ucl) and F11-Pucl^{T-78G} (T-78G), as well as wild-type UTI89 (wt), UTI89 Δucl (ucl) and UTI89-Pucl^{G-78T} employing a general E. coli antibody (Life Research B65001R). The black dots show individual measurements for four technical replicates from three biological replicates (n=12); the grey bar indicates the mean. Statistical analyses were performed by one-way ANOVA with Sidak's multiple comparisons test.

275 Fig H. Binding of OxyR to the ucl promoter region (Pucl). a, Coomassie-stained SDS-PAGE of 276 OxyR-6xHis. Lane M: PageRuler Prestained Protein Ladder (Life Technologies, catalogue no. 277 26616), Lane 2: Nickel-affinity purified OxyR-6xHis. b, Schematic diagram of the uclABCD operon, indicating the transcription start site (TSS), -10 and -35 promoter region, and OxyR binding sequence 278 containing the $T^{(-78)}$ in F11 and the $G^{(-78)}$ in UTI89. Also indicated are the 261 bp Pucl PCR fragment 279 280 and the 240 bp uclC PCR fragment (negative control) used in the gel shift assay. c, Electrophoretic mobility shift assay of the Cy3-Pucl^{-78T} (top) and Cy3-Pucl^{-78G} (bottom) fragments with OxyR and 281 282 increasing concentrations of unlabelled competitor (Pucl-UL) DNA.

Fig I. Conservation of the Pucl OxyR binding site in ST127. A total of 845 genomes from ST127 strains on Enterobase were downloaded, 698 of which were positive for the Ucl fimbriae genes. The OxyR binding site was extracted from each Pucl sequence and aligned to generate the DNA logo shown at the top of the figure. Twenty-seven unique OxyR binding sites were identified, with nucleotide sequence changes shown below the consensus sequence. The number of times each unique sequence was identified in the dataset is indicated. The OxyR binding site consensus sequence was found most frequently (n=486), while the F11 T-78G SNP was also common (n=96). In total, 31% of the Pucl OxyR binding sites contained at least one SNP compared to the consensus sequence, with the F11 T-78G SNP most prevalent (14%). Sequences containing the G-78T and T-76C are indicated.

Fig J. UclA expression is increased in ECOR60. a) OxyR binding site sequences from UTI89
(consensus), F11 and ECOR60, highlighting the C-76T nucleotide sequence change in ECOR60. b)
Whole-cell lysate western-blot analysis of ECOR60, ECOR63, F11 (WT) and F11-Pucl^{T-78G}
employing a UclA-specific antibody. Higher expression of UclA was observed in ECOR60 and F11
(WT) compared to ECOR63 and F11-Pucl^{T-78G}. The promoter region of the *ucl* operon from ECOR63
and UTI89 is identical.

Fig K. Ucl fimbriae do not impact colonisation of the mouse gut in single infection experiments. Mice were inoculated wild-type F11 (tagged with a chloramphenicol resistance cassette; black circles), F11-Pucl^{T-78G} (green squares) and an F11 Δ ucl mutant (orange triangles). Each group contained 10-11 mice infected and monitored during two independent experiments. Bacterial loads were assessed over a 2-week period.

- 317
- 318
- 319

- 320
- 321

Fig L. Architecture of Ucl fimbriae demonstrated by co-immunogold labelled electron microscopy. a) Electron micrograph demonstrating immunogold labelled UclA major subunit (left; 5 nm gold particles) and UclD tip adhesin (right; 10 nm gold particles) of Ucl fimbriae. b) Cartoon model of Ucl fimbriae architecture, depicting the UclA major subunit repeating protein (green), UclD tip adhesin (orange), UclC usher (yellow) and UclB chaperone (red). Also labelled are the inner membrane (IM) and outer membrane (OM) of the cell

328

Fig M. Prevalence of the *uclABCD* genes in *Proteus* species. Genomes were assessed from the NCBI database. The analysis was performed using tblastn for UcaA, UcaB, UcaC and UcaD, with a positive result determined for blast hits with >70% identity and >80% coverage for all four proteins.

	1 10	20	30	40
Consensus	MKRIEXIXLX		GA	-NDYVPSQIX
1. UclD_EEZ6997767	MKRIFFPLF	LILLPKLAVA	G P	- DDY VP SQ I A
2. UcaD_CAR41289.1	MKRIFVILFL	LTLFPSLAVA	GA	-NDYVPSPIT
3. GafD_Q47341	MTNFYKYCLA	VFILVCCNIS	HAAVSFIGST	ENDVGPSQGS
Caraana				
Consensus	$\times N I S = = = = I L$	PXVVIGPADA	HIYPRVIGEL	XGISNQYVF-
1. UcID_EEZ6997767		PGVVIGPADA		AGT SNQYVF -
2. UCaD_CAR41289.1	VSSTHAMDNI			
5. GaiD_Q47541	90	100	110	120
Consensus		RGKFTPXLPK	IGSITYXFXQ	GNSXXSSDFD
1 LICID FE76997767		RGKETPALPK	GSUTYTEHO	
2. UcaD CAR41289.1		RGKFTPTLPK	GKITYNFRQ	GNNTQSSDFD
3. GafD_Q47341	ISGGFCVGL-	DGKVDLPV	VGSLD	GQSIYGLTEE
	130) 140	150	160
Consensus	XDXGVXGLG	IIIGMAGYWP	ATPLVPINSS	XIYIDPVXAN
1. UclD_EEZ6997767	YDIGVSGLG	I I I GMAGYWP	APPVPINSS	GIYIDPVGAN
2. UcaD_CAR41289.1	FDTGVPGLG	IIIGMAGYWP	APPVPINSS	SIYIDPVAAN
3. GafD_Q4/341			G U AM	SGN
Conconsus				
1. UCID_EE26997767				
3. GafD 047341	SWENVESGWC	VGNYVSTOGI	SVHVRPVILK	RNSSAOYSVO
	21() 220	230	240
Consensus	TXQLGXILLE	X-NRXSLNNK	XLTAPVMLNG	GRIQVQSQTC
1. UclD EEZ6997767	TRQLGTILLE	A-KRTSLNNK	GLTAPVMLNG	GRIQVQSQTC
2. UcaD_CAR41289.1	TKQLGHILLE	S-NRASLNNK	RLTAPVMLNG	GRIQVQSQTC
3. GafD_Q47341	kts igsi r m r	P Y NG S S AG S V	QT VNFSLNP	FTLNDTVTSC
	250	260	270	280
Consensus	XMXQKNYV-V	PLNTVYQSQF	TSLYKEVQGG	XXXIXLQCXD
1. UclD_EEZ6997767	TMGQKNYV-V	PUNTVYQSQF	TSLYKEIQGG	KIDIHLQCPD
2. UcaD_CAR41289.1				
5. GalD_Q47541	290			
Consensus	GIDVYATITD			
2. UcaD CAR41289.1	GIDVYATLND	ATOHGNRSDI	LTLATDSTAK	GMGLRLYKNN
3. GafD_Q47341	GVTVWATL	ATTPSNRSDI	LTLTGASTAT	GMGLRIYKNT
_ `	330) 340	350	360
Consensus	DVTAISYGXD	SPVKGNXNQW	HFSXYRGEXN	PXIXLXANYI
1. UclD_EEZ6997767	DVTAISYGED	SPVKGNGSQW	HFSDYRGEVN	PHINLRANYI
2. UcaD_CAR41289.1	EVTAISYGSD	TPNKGNQNQW	HFSNYRGEIN	PRIKLKANYI
3. GatD_Q47341		SPUKGNENQW	QLNTGT-NTS	PSVRLYVKYV
Conconclus				
1. UCID_EE2699//6/	K I ADA I IPGS	νκαι αι τι Ες νκανατιτες	YQ YQ	
			VO	

Fig N. Amino acid sequence alignment of the UclD (NCBI protein entry EEZ6997767), UcaD
(CAR41289.1) and GafD (Q47341) adhesins. Identical amino acids are shaded in black; similar
amino acids are shaded in grey. The consensus sequence is indicated.

Fig O. A) Crystal packing analysis of UcaD^{LD} (PDB: 7MZO). The molecules are shown in cartoon representation. The asymmetric unit consists of one UcaD^{LD} molecule shown in cyan, while symmetry-related molecules are colored orange. The monosaccharide binding region of the asymmetric unit is circled and highlighted in magenta. B) Comparison of the monosaccharide binding site region in 3 different crystal forms of ligand-free UcaD^{LD}. C) Comparison of the monosaccharide binding site in the UcaD^{LD}:Fuc, UcaD^{LD} and UclD^{LD} crystal structures.

350

351

357Fig P. Electron density map of the fucose binding site in the UcaD LD :Fuc complex structure.358Composite (2Fo - Fc, blue, contoured at 2σ) and difference (Fo - Fc, green/red, contoured at 3.0σ)359electron density map of the Fuc binding site after refinement. Positive difference density adjacent to360C4 suggests that a minor fraction of the Fuc molecules in the crystal adopts an alternate conformation.

Fig Q. UcaD^{LD}:Fuc interactions in the MD derived structure. Interactions between the fucose residue of lacto-N-fucopentose VI (yellow) and residues of the binding pocket of ≤ 3.6 Å are shown as dashed lines. The binding model of the fucose molecule observed in the UcaD^{LD}:Fuc crystal structure is highlighted in green stick representation, for comparison.

375 Supplementary Tables

Table A. Crystallographic data.

	UclD ^{LD}	UclD ^{LD}	UcaD ^{LD}	UcaD ^{LD}	UcaD ^{LD}	UcaD ^{LD}
	Dataset 1	Dataset 2		Galactose	Fucose	Glucose
Data collection						
Detector	ADSC	ADSC	ADSC	ADSC	Dectris	Dectris
	Quantum 210r	Quantum 210r	Ouantum 315r	Quantum 315r	Eiger	Eiger
	CCD	CCD	CCD	CCD	X 16M	X 16M
Wavelength (Å)	0.9537	1 3776	0.9537	0.9537	0.9537	0.9537
Temperature (K)	100	100	100	100	100	100
Rotation range per image (°)	0.5	0.5	0.5	0.5	0.1	0.1
Exposure time per image (s)	0.5	0.5	1	1	0.01	0.01
Snace group	$\mathbf{P} 2_1 2_1 2_1$	$P 2_1 2_1 2_1$	14	14	14	14
$a \ b \ c \ (\text{\AA})$	39.04 58.12	39.03 58.26	77 39 77 39	79 36 79 36	79 47 79 47	79 07 79 07
	175 42	175.86	70.91	70.36	70.23	70.18
$\alpha \beta \gamma (^{\circ})$	00 00 00 00	90.00.90.00		90.00.90.00	90.00.90.00	90.00 90.00
α, ρ, γ ()	90.00, 90.00,	90.00, 90.00,	90.00, 90.00,	90.00, 90.00,	90.00, 90.00,	90.00, 90.00,
Average mosaicity (°) b	0.76	0.71	0.88	0.84	0.12	0.00
Average mosalety () $P_{asolution range}(\lambda)$	58 12 2 20	0.71 87 03 2 85	54 72 1 62	56 12 1 72	30 74 1 50	20 54 1 78
Resolution range (A)	$(2 \ 27 \ 2 \ 20)^{a}$	$(3.01_{-}2.85)^{a}$	$(1.65 \cdot 1.62)^{a}$	$(1.75 1.72)^{a}$	$(1.53 \cdot 1.50)^{a}$	$(1 \ 81 \ 1 \ 78)^{a}$
Total no. of reflections	(2.27-2.20)	250840	185132	(1.75 - 1.72) 83446 (4474)	(1.55-1.50)	283806
Total no. of reflections	(12917)	(23746)	(0107)	83440 (4474)	(21842)	(12075)
No. of unique reflections	(12017) 21160 (1704)	(33/40)	(9197)	22071 (1227)	(21042) 24500 (1652)	(13973) 20701 (1127)
No. of unique reflections	21100 (1794)	9900	20388	23071 (1237)	34390 (1033)	20/91 (1157)
$C_{2} = 1$	100.0(100.0)	(1412)	(1303)	00.4	00.9	00.9
Completeness (%)	100.0 (100.0)	99.7	99.8	99.4	99.8	99.8
N 6-14: 1: 1-	70(71)	(99.6)	(99.9)	(99.7)	(95.7)	(97.0)
Multiplicity	7.0 (7.1)	26.1 (23.9)	7.0 (7.0)	3.6 (3.6)	13.8 (13.2)	15.7(12.3)
Mean $I/\sigma(I)$	5.4 (1.5)	14.1 (6.1)	11.6 (1.4)	8.4 (1.5)	18.3 (2.5)	15.6 (3.3)
Rmeas (%) °	27.9 (143.7)	19.0 (50.9)	11.9 (155.9)	15.1 (131.9)	6.6 (69.4) 1.0 (10.7)	11.5 (58.4)
Rpim (%) ^a	10.5 (53.2)	3.7 (10.2)	4.5 (58.4)	7.7 (68.7)	1.8 (18.7)	3.1 (16.2)
CC _{1/2} ⁶	0.990 (0.748)	0.997 (0.985)	0.998 (0.634)	0.990 (0.291)	0.999	0.999 (0.887)
D offer our ord					(0.895)	
Reinement	12.05.2.20		20 50 1 (2	20 (0 1 52	20 54 1 50	20 54 1 50
Resolution range (A)	43.85-2.20		38.70-1.62	39.68-1.72	39.74-1.50	39.54-1.78
R_{work} (%) ^e	24.8		16.9	17.3	16.3	16.2
$R_{\rm free}$ (%) ^f	30.6		19.2	20.3	17.6	19.7
No. of non-H atoms						
Total	2920		1709	1689	1678	1683
Non-solvent	2785		1457	148	1483	1479
Water	129		247	236	195	204
Average isotropic <i>B</i> value (Å ²)	29.1		20.8	16.6	22.0	20.0
R.m.s.d. from ideal geometry						
Bond lengths (Å)	0.002		0.009	0.009	0.008	0.008
Bond angles (°)	0.553		0.957	0.970	0.936	0.936
Ramachadran plot, residues in (%)						
Favoured regions	96.19		97.35	97.31	97.35	97.34
Additionally allowed regions	3.81		2.65	2.69	2.65	2.66
Outlier regions	0		0	0	0	0

^a The values in parentheses are for the highest-resolution shell.

^b Calculated with AIMLESS [42].

^c $Rmeas = \Sigma hkl \{N(hkl)/[N(hkl)-1]\} 1/2 \Sigma i |Ii(hkl)- \langle I(hkl) \rangle | / \Sigma hkl \Sigma i Ii(hkl), where Ii(hkl) is the intensity of the$ *i*th measurement of an equivalent reflection with indices*hkl*.

^d $Rpim = \Sigma hkl \{1/[N(hkl)-1]\} 1/2 \Sigma i |Ii(hkl)- \langle I(hkl) \rangle | \Sigma hkl \Sigma i Ii(hkl).$

 $e_{R_{work}} = \sum_{hkl} ||F_{obs}| - |F_{calc}|| / \sum_{hkl} |F_{obs}|$, where F_{obs} and F_{calc} are the observed and calculated structure factor amplitudes.

 $f R_{\text{free}}$ is equivalent to R_{work} but calculated with reflections (5-10%) omitted from the refinement process.

Table B. Polar interactions in the UcaD^{LD}: monosaccahride complexes¹.

	FUCOSE		GLUCOSE		GALACTOSE	
PROTEIN ATOM	Ligand atom	Distance (A)	Ligand atom	Distance (A)	Ligand atom	Distance (A)
N63 NE2	04	3	02	2.9	05	3.3
N63 NE2	-	-	-	-	06	2.9
N63 O	03	2.7	03	2.8	01	2.7
W124 NE1	05	3.2	05	3.1	04	2.8
W124 NE1	04	3.1	-	-	-	-
\$157 OG	-	-	02	2.8	01	2.8
G159 N	03	3	03	3.1	01	3.4
G159 N	02	2.9	04	2.9	02	2.8
HOH1 ²	02	2.6	04	2.6	02	2.6

¹Bond distances are based on the distances between nitrogen and oxygen atoms and do not include hydrogen atoms. ²The water molecule is displayed in Figure 5.

Strains or plasmids	Relevant description	Reference(s) or source
Strains		
MS528	E. coli K-12 MG1655∆fim∆flu	[30]
BL21(DE3) pLys		
F11	UPEC cystitis isolate	[30-32]
F11 <i>ucl</i>	F11 <i>uclA-D::cm</i> ; Cm ^r	This study
F11/acl-Z	F11/acl-Z::gfp	This study
F11lacl-Z-Pucl::lacZ	F11lacl-Z::gfp Pucl::lacZ	This study
F11-Pucl ^{T78G}	F11-Pucl ^{T78G}	This study
F11/acl-Z-Pucl ^{T78G} ::lacZ	F11/acl-Z::gfp Pucl ^{T78G} ::lacZ	This study
F11oxyR	F11oxyR	This study
F11-Pucl ^{T78G} oxyR	F11-Pucl ^{T78G} oxyR	This study
UTI89	UPEC cystitis isolate	[33, 34]
UTI89 <i>ucl</i>	UTI89 <i>uclA-D::cm</i> ; Cm [′]	This study
UTI89 <i>lacI-Z</i>	UTI89lacl-Z::gfp	This study
UTI89-Pucl ^{G78T}	UTI89-P <i>ucl^{G78T}</i>	This study
S77EC	Clinical ST131 isolate	[35]
S77EC∆ <i>ucl</i>	S77EC <i>uclA-D::cm</i> ; Cm ^r	This study
HVM1299	Clinical ST131 isolate	[35]
HVM1299ucl	HVM1299 <i>uclA-D::cm</i> ; Cm ^r	This study
TOP10 pSU2718::uclABCD	E. coli TOP10 + pSU2718::uclABCD (pUcl)	This study
MS528 pSU2718::uclABCD	E. coli K-12 MG1655fim,flu pSU2718::uclABCD (pUcl)	This study
P. mirabilis PM54	UTI clinical isolate	[36]
Plasmids		
pKOBEG	λ -Red recombinase expression vector	[37]
pCP20	FLP flipase expression vector	[37]
pSU2718	pACYC184-derived cloning plasmid	[38]
pQF50	Promoterless lacZ reporter plasmid	[39]
pQF50-Pucl	ucl promoter region from F11 cloned in pQF50	This study
pQF50-P <i>ucl</i>	ucl promoter region from UTI89 cloned in pQF50	This study
pSU2718 <i>::uclABCD</i> (pUcl)	uclABCD operon from F11 cloned into pSU2718	This study
pBAD/myc-HisA	Arabinose-inducible promoter, Amp ^R	[40]
pOxyR	oxyR gene from E. coli MG1655 in pBAD/myc-HisA (pMGJ1)	[41]
pOxyR-6xHis	pOxyR modified to encode OxyR containing C-terminal 6xHistag	This study
pET22b	Expression vector, T7 promoter, N-ter pelB signal sequence, C-ter	Novagen
	6xHis tag, Amp ^R	
pET22b:: <i>uclD</i>	Lectin binding domain of <i>uclD</i> from F11 cloned into pET22b	This study
pET22b:: <i>ucaD</i>	Lectin binding domain of <i>ucaD</i> from PM54 cloned into pET22b	This study

Table C: List of strains and plasmids used in this study.

Table D: List of primers used in this study.

Primer name	Sequence (5' to 3')
Mutant generation	
6310- <i>ucl</i> :cm.1	tagcaagcgtagcgtaacag
6311- <i>ucl</i> :cm.2	cacagcagaaacaaatgtagec
6312- <i>ucl</i> :cm.3	gcattggctacatttgtttctgctgtgtcctccttagttcctattcc
6313- <i>ucl</i> :cm.4	cacttccaggtgtagttgcatcagcaagtcttgagcgattgtgtagg
6314- <i>ucl</i> :cm.5	ttgetgatgeaactacacetg
6315- <i>ucl</i> :cm.6	tagtggctgcttccgtatcc
5080-oxyR.1	caatetteetegeeageeea
5078-oxyR.2	gcaggtgatggtgtcagaa
3842- <i>oxyR</i> .3	ggaataggaactaaggaggatgccaccaggtactcaagatc
3843-oxyR.4	cctacacaatcgctcaagacaaagtgttaaaacaggcggt
5079-oxyR.5	aggtcaacagcatgtatcag
5081-oxyR.6	actgtctgctctatgccaa
4057-lacIZ::cm-gfp 700bp F	tegtetteateetgetette
4058-lacIZ::cm-gfp 700bp R	gctaaatgccgaatggttg
7900_uclAprom_TtoG	$a^*t^*ggtttttgatcgtttttcccgatcgttttagcaatcatgataGgtgcaatctatcatacgctggttatcgatcggtaaaaaacattt^*t^*ggttatcgatcggtaaaaacattt*t^*ggttatcgatcggtaaaaacattt*t^*ggttatcgatcggtaaaaacattt*t^*ggttatcgatcggtaaaaacattt*t^*ggttatcgatcggtaaaaacattt*t^*ggttatcgatcggtaaaaacattt*t^*ggttatcgatcggtaaaaacattt*t$
7901_uclAprom_GtoT	$a^*t^*ggtttttgatcgtttttcccgatcgttttagcaatcatgataTgtgcaatctatcatacgctggttatcgatcggtaaaaaacattt^*t^*ggttatcgatcggtaaaaacattt*t^*ggttatcgatcggtaaaaacattt*t^*ggttatcgatcggtaaaaacattt*t$
5' RACE	
6973-PuclA-5'RACE GSP1	ctgagcactattcatacc
6974-PuclA-5'RACE GSP2	gaatggcaaagggtgtcag
Cloning	
6571-BamHI-Pucl-F	cgcgggatcccgggcatggatgttgtttat
6572-HindIII-Pucl-R	cccggaagetttccagtattgatcatttgttcagc
6568-uclABCD-F	cgcgggatccgttttgttggggatgattgc
6569-uclABCD-R	cccggtctagattattgatatgagaaagtaatagttg
11190_OxyR_cterGG6xHis_F	ggcggtcatcatcaccatcaccactgagtttaaacg
11191_OxyR_cterGG6xHis_R	aaccgcctgttttaaaactttatcg
Gel shift assay	
11206_PuclA-F2	aataggtcgctcatttcagg
11207_PuclA-F2-cy3	cy3-aataggtcgctcatttcagg
11208_PuclA-R2	cagcagaaacaaatgtagcc
11193_uclC-F	tcatgcctgatttactgtcg
11196_uclC-R2	atactgcaaatcagcettee

394 Table E. Glycan array analysis of UclD and UcaD

Glycan structure	ID	UclD	UcaD
Monosaccharides			
Fuca-sp3	1	<1	<1
Gala-sp3	2	<1	<1
Galβ-sp3	3	<1	<1
GalNAca-sp0	4	<1	<1
GalNAca-sp3	5	<1	<1
GalNAc _β -sp3	6	<1	<1
Glca-sp3	7	<1	<1
Glcβ-sp3	9	<1	<1
GlcNAcβ-sp3	10	<1	<1
$GlcN(Gc)\beta$ -sp4	14	<1	<1
HOCH2(HOCH)4CH2NH2	15	<1	<1
Mana-sp3	16	<1	<1
Manβ-sp4	18	<1	<1
ManNAcβ-sp4	19	<1	<1
Rhaα-sp3	20	<1	<1
GlcNAcB-sp4	22	<1	<1
3-O-Su-Galß-sp3	37	<1	<1
3-O-Su-GalNAcα-sp3	38	<1	<1
6-O-Su-GlcNAcβ-sp3	43	<1	<1
GlcAa-sp3	44	<1	<1
GlcAB-sp3	45	<1	<1
6-H2PO3Glcβ-sp4	46	<1	<1
6-H2PO3Manα-sp3	47	<1	<1
Neu5Aca-sp3	48	<1	<1
Neu5Aca-sp9	49	<1	<1
Neu5Gca-sp3	52	<1	<1
9-NAc-Neu5Aca-sp3	54	<1	<1
3-O-Su-GlcNAcβ-sp3	55	<1	<1
Terminal Galactose		-	-
Galα1-2Galβ-sp3	75	<1	<1
Galα1-3Galβ-sp3	76	<1	<1
Galα1-3GalNAcβ-sp3	77	<1	<1
Galal-3GalNAca-sp3	78	<1	<1
Galα1-3GlcNAcβ-sp3	80	<1	<1
Galal-4GlcNAcβ-sp3	81	<1	<1
Galal-6GlcB-sp4	83	<1	<1
Galß1-2Galß-sp3	84	<1	<1
Galß1-3GlcNaAcß-sp3	85	<1	<1
Galß1-3Galß-sn3	87	<1	<1
Galß1-3GalNAcß-sp3	88	<1	<1
Galß1-3GalNAca-sp3	89	<1	<1
Galß1-4Glcß-sn4	93	<1	<1
Galß1-4Galß-sn4	94	<1	<1
Galß1-4GlcNAcß-sp3	97	<1	<1
Galß1-6Galß-sn4	100	<1	<1
Galß1-3(6-O-Su)GlcNAcß-sp3	145	<1	<1
Galß1-4(6-O-Su)Gloß-sp?	146	<1	<1
Subt (0 0 Subter she	110	-	

Gal ^β 1-4(6-O-Su)GlcNAcβ-sp3	147	<1	<1
3-O-Su-Galβ1-3GalNAcα-sp3	150	<1	<1
6-O-Su-Galβ1-3GalNAcα-sp3	151	<1	<1
3-O-Su-Galβ1-4Glcβ-sp2	152	<1	<1
6-O-Su-Galβ1-4Glcβ-sp2	153	<1	<1
3-O-Su-Galβ1-3GlcNAcβ-sp3	155	<1	<1
3-O-Su-Galβ1-4GlcNAcβ-sp3	157	<1	<1
4-O-Su-Galβ1-4GlcNAcβ-sp3	159	<1	<1
6-O-Su-Galβ1-3GlcNAcβ-sp3	161	<1	<1
6-O-Su-Galβ1-4GlcNAcβ-sp3	163	<1	<1
3-O-Su-Galβ1-4(6-O-Su)Glcβ-sp2	176	<1	<1
3-O-Su-Galβ1-4(6-O-Su)GlcNAcβ-sp2	177	<1	<1
6-O-Su-Galβ1-4(6-O-Su)Glcβ-sp2	178	<1	<1
6-O-Su-Galβ1-3(6-O-Su)GlcNAcβ-sp2	179	<1	<1
6-O-Su-Galβ1-4(6-O-Su)GlcNAcβ-sp2	180	<1	<1
3,4-O-Su2-Galβ1-4GlcNAcβ-sp3	181	<1	<1
3,6-O-Su2-Galβ1-4GlcNAcβ-sp2	182	<1	<1
4,6-O-Su2-Galβ1-4GlcNAcβ-sp2	183	<1	<1
4,6-O-Su2-Galβ1-4GlcNAcβ-sp3	184	<1	<1
3,6-O-Su2-Galβ1-4(6-O-Su)GlcNAcβ-sp2	189	<1	<1
3.4-O-Su2-Galβ1-4GlcNAcβ-sp3	201	<1	<1
Gal\beta1-4(6-O-Su)GlcNAc\beta-sp2	203	<1	<1
$Gal\alpha 1-3Gal\beta 1-4Glc\beta-sp2$	220	<1	<1
Gala1-3Galb1-4GlcNAcb-sp3	222	<1	<1
$Gal\alpha 1$ -4 $Gal\beta 1$ -4 $Glc\beta$ -sp3	224	<1	<1
Gala1-4Galb1-4GlcNAc-sp2	225	<1	<1
Galβ1-2Galα1-4GlcNAcβ-sp4	228	<1	<1
Gal\beta1-3Gal\beta1-4GlcNAc\beta-sp4	229	<1	<1
Galβ1-4GlcNAcβ1-3GalNAcα-sp3	231	<1	5.882±1.12
Galβ1-4GlcNAcβ1-6GalNAcα-sp3	232	<1	<1
Galβ1-3(GlcNAcβ1-6)GalNAcα-sp3	254	<1	<1
Galß1-3GalNAcß1-3Gal-sp4	262	<1	4.944±0.98
Gal\beta1-4Gal\beta1-4GlcNAc-sp3	264	<1	<1
Gala1-3Galb1-4GlcNAcb1-3Galb-sp3	373	<1	<1
Galα1-4GlcNAcβ1-3Galβ1-4GlcNAcβ-sp3	375	<1	<1
Gal ^β 1-3GlcNAc ^β 1-3Gal ^β 1-4Glc ^β -sp ⁴	376	<1	<1
Galβ1-3GlcNAcβ1-3Galβ1-3GlcNAcβ-sp2	377	<1	<1
Galβ1-3GlcNAca1-3Galβ1-4GlcNAcβ-sp3	378	<1	<1
Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ-sp3	379	<1	<1
Galβ1-3GlcNAca1-6Galβ1-4GlcNAcβ-sp2	380	<1	<1
Galb1-3GlcNAcb1-6Galb1-4GlcNAcb-sp2	381	<1	<1
Gal\beta1-3GalNAc\beta1-4Gal\beta1-4Glc\beta-sp3	382	<1	<1
Gal ^β 1-4GlcNAc ^β 1-3Gal ^β 1-4Glc ^β -sp ²	383	<1	<1
Gal ^β 1-4GlcNAc ^β 1-3Gal ^β 1-4GlcNAc ^β -sp3	385	<1	<1
Galb1-4GlcNAcb1-6Galb1-4GlcNAcb-sp2	387	<1	<1
Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-sp3	388	<1	<1
Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-3)GalNAcα-sp3	488	<1	5.566±1.08
Galβ1-4GlcNAcβ1-3(Galβ1-4GlcNAcβ1-6)GalNAcα-sn3	504	<1	<1
Galß1-3GlcNAc	1A	<1	<1
Galβ1-4GlcNAc	1B	<1	<1
Galβ1-4Gal	1^{-}	<1	2.886±0.77
Galβ1-6GlcNAc	1D	<1	<1

Gal ^β 1-3GalNAc	1E	<1	<1
Gal\beta1-3GalNAc\beta1-4Gal\beta1-4Glc	1F	<1	<1
Gal ^{β1-3} GlcNAc ^{β1-3} Gal ^{β1-4} Glc	1G	<1	<1
Gal ^β 1-4GlcNAc ^β 1-3Gal ^β 1-4Glc	1H	<1	<1
Gal\beta1-4GlcNAc\beta1-6(Gal\beta1-4GlcNAc\beta1-3)Gal\beta1-4Glc	1I	<1	<1
Gal\beta1-4GlcNAc\beta1-6(Gal\beta1-3GlcNAc\beta1-3)Gal\beta1-4Glc	1J	<1	<1
Gala1-4Galβ1-4Glc	1K	<1	<1
GalNAca1-O-Ser	1L	<1	<1
Galb1-3GalNAca1-O-Ser	1M	<1	<1
Gala1-3Gal	1N	<1	<1
Gala1-3Gal ^β 1-4GlcNAc	10	<1	<1
Gala1-3Galb1-4Glc	1P	<1	<1
Gala1-3Gal\beta1-4Gal\alpha1-3Gal	2A	<1	<1
Galß1-6Gal	2B	<1	<1
GalNAc _{B1-3} Gal	2C	<1	<1
GalNAc _{β1-4} Gal	2D	<1	<1
Gala1-4Galb1-4GlcNAc	2E	<1	<1
GalNAca1-3GalB1-4Glc	2F	<1	<1
GalB1-3GlcNAcB1-3GalB1-4GlcNAcB1-6(GalB1-		-	-
3GlcNAcB1-3)GalB1-4Glc	2G	<1	<1
GalB1-3GlcNAcB1-3GalB1-4GlcNAcB1-3GalB1-4Glc	2H	<1	<1
GalB1-3GalNAcB1-3Gala1-4GalB1-4Glc	18B	<1	<1
GalB1-3GalNAcB1-3Gal	18C	<1	<1
GalB1-4Glc	181	<1	<1
Galß1-4Gal	18 <u>M</u>	<1	<1
GalB1-6Gal	18N	<1	<1
Terminal N-A cetylgalactosamine	1010	1	1
GalNAca1-3GalNAcB-sp3	101	<1	<1
GalNAca1-3GalB-sn3	102	<1	<1
GalNAcg1-3GalNAcg-sp3	103	<1	<1
GalNAcB1-3GalB-sn3	104	<1	<1
GalNAcB1-4GlcNAcB-sp3	106	<1	<1
GalNAcB1-4(6-O-Su)GlcNAcB-sp3	192	<1	<1
3-O-Su-GalNAcB1-4GlcNAcB-sn3	193	<1	<1
6-O-Su-GalNAcB1-4GlcNAcB-sn3	194	<1	<1
6-O-Su-GalNAcB1-4-(3-O-Su)GlcNAcB-sn3	195	<1	<1
$3-O-Su-GalNAc\beta1-4(3-O-Su)-GlcNAc\beta-sp3$	196	<1	<1
3 6-O-Suz-GalNAcB1-4GlcNAcB-sn3	197	<1	<1
4 6-O-Suz-GalNAcB1-4GlcNAcB-sp3	198	<1	<1
$4 6 - 0 - 5 u^2 - GalNAcB1 - 4 - (3 - 0 - Ac)GlcNAcB - sn3$	199	<1	<1
$4 - \Omega - Su - GalNAc\beta - 4GlcNAc\beta - sn 3$	200	<1	<1
$6 - 0 - 5u - GalNAc\beta 1 - 4(6 - 0 - 5u)GlcNAc\beta - sn 3$	200	<1	<1
$4 - 0 - 5u - GalNAc\beta 1 - 4GlcNAc\beta - sp 2$	202	<1	<1
GalNAcB1-4GalB1-4GlcB-sp3	238	<1	<1
$GalNAcB1_3Gala1_4GalB1_4GlcB_sp3$	380	<1	<1
GalNAcq1_O_Ser	11	<1	<1
GalNAck1_3Gal	$\frac{11}{2C}$	<1	<1
GalNAcB1_4Gal	2C 2D	<1	<1
GalNAca1-3GalB1-4Glc	2D 2E	<1 <1	~l ∠1
Terminal N_A cetylalucosamina	Δ1	~1	~1
GleNAcB1_3GalNAca_sp3	113	<1	~1
GleNAcB1_3ManB_sn4	113	<1	~1 ∠1
Stor in top 1-51 multip-5p-t	114	~1	~1

$C_{12}N_{14} \circ R_{14} + C_{12}N_{14} \circ R_{14} \circ R_{14}$	115	~1	~1
$G_{1} = G_{1} + G_{1} + G_{2} = A_{1}$	113	<u>∽1</u>	<1
GINACPI-4GICNACP-SP4	11/	<u>_1</u>	1
GINACPI-OGAINACA-sps $C_1 NA_0 R_1 = 2$	118	< <u> </u>	<1
GICNACPI-4(6-O-SU)GICNACP-SP2	149	< <u> </u>	<1
GICNACPI-4-[HOOC(CH3)CH]-3-O-GICNACP-sp4	16/	<1	<1
GICNACBI[HOOC(CH3)CH]-3-O-GICNACB-L-alanyI-D-1-	168	<1	<1
glutaminyl-L-lysine			
GICNAC _β I-2Gal _β I-3Gal _{NAcα} -sp3	246	<[<1
GlcNAcβ1-3Galβ1-3GalNAcα-sp3	247	<1	<1
GlcNAcβ1-3Galβ1-4Glcβ-sp2	248	<1	<1
GlcNAcβ1-3Galβ1-4GlcNAcβ-sp3	250	<1	<1
GlcNAcβ1-4Galβ1-4GlcNAcβ-sp2	251	<1	<1
GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ-sp4	252	<1	<1
GlcNAcβ1-6Galβ1-4GlcNAcβ-sp2	253	<1	<1
GlcNAcβ1-3(GlcNAcβ1-6)GalNAcα-sp3	255	<1	<1
GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-4GlcNAcβ-sp3	395	<1	<1
(GlcNAcβ1-4)5β-sp4	493	<1	<1
(GlcNAcβ1-4)6β-sp4	503	<1	<1
(GN-M)2-3,6-M-GN-GNβ-sp4	505	<1	<1
GlcNAc _β 1-4GlcNAc	4A	<1	<1
GlcNAc\beta1-4GlcNAc\beta1-4GlcNAc	4B	<1	<1
GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAc	4C	<1	<1
GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-			
4GlcNAc61-4GlcNAc	4D	<[<]
Bacterial cell wall muramyl discaccharide	4E	<1	<1
	41	~1	~1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc	4F	<u> </u>	~1
GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAc Mannose	4F	<u> </u>	~1
GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAc Mannose Manα1-2Manβ-sp4	4F 119	<1	<1
GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAc Mannose Manα1-2Manβ-sp4 Manα1-3Manβ-sp4	4F 119 120	<1 <1 <1	<1 <1 <1
GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAc Mannose Manα1-2Manβ-sp4 Manα1-3Manβ-sp4 Manα1-4Manβ-sp4	4F 119 120 121	<1 <1 <1 <1	<1 <1 <1 <1
GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAc Mannose Manα1-2Manβ-sp4 Manα1-3Manβ-sp4 Manα1-4Manβ-sp4 Manα1-6Manβ-sp4	4F 119 120 121 122	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man β 1-4GlcNAc β -sp4	4F 119 120 121 122 123	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man β 1-4GlcNAc β -sp4 Man α 1-2Man α -sp4	4F 119 120 121 122 123 124	<1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man β 1-4GlcNAc β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4	4F 119 120 121 122 123 124 258	<1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man β 1-4GlcNAc β -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4	4F 119 120 121 122 123 124 258 495	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man β 1-4GlcNAc β -sp4 Man α 1-2Man α -sp4 Man α 1-2(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcMac β 1-2Man	4F 119 120 121 122 123 124 258 495 5 A	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-4GlcNAc β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1 GlcNAc β 1-2Man α 1 Man α 1-3(Man α 1 Man α 1 M	4F 119 120 121 122 123 124 258 495 5A 5B	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-4GlcNAc β -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man α	4F 119 120 121 122 123 124 258 495 5A 5B 5C	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-3Man Man α 1-3Man	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-3Man Man α 1-3Man Man α 1-4Man Man α 1-4Man	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5E	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-3Man Man α 1-4Man Man α 1-6Man	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5C	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-3Man Man α 1-4Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-4Man Man α 1-6Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Manose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-4Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Fucosylated Fuc α 1-2Gal β -sp3	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H 71	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Manose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-3Man Man α 1-4Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Fucosylated Fuc α 1-2Gal β -sp3 Fuc α 1-3GlcNAc β -sp3	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H 71 72	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Man α 1-2Man β -sp4 Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Gan α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Fucosylated Fuc α 1-2Gal β -sp3 Fuc α 1-4GlcNAc β -sp3 Fuc α 1-4GlcNAc β -sp3	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H 71 72 73	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Man α 1-2Man β -sp4 Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2GlcNAc β -sp4 Man α 1-2(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Fucosylated Fuc α 1-2Gal β -sp3 Fuc α 1-2Gal β 1-3GlcNAc β -sp3 Fuc α 1-2Gal β 1-3GlcNAc β -sp3	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H 71 72 73 215	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 Man α 1-3(Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-6Man Man α 1-6Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man α 1-6(Man α 1-3)Man Fucosylated Fuc α 1-2Gal β -sp3 Fuc α 1-3GlcNAc β -sp3 Fuc α 1-2Gal β 1-3GlcNAc β -sp3 Fuc α 1-2Gal β 1-4GlcNAc β -sp3 Fuc α 1-2Gal β 1-4GlcNAc β -sp3	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H 71 72 73 215 216	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc Mannose Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1-6)Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Fucosylated Fuc α 1-2Gal β -sp3 Fuc α 1-3GlcNAc β -sp3 Fuc α 1-2Gal β 1-3GlcNAc β -sp3	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H 71 72 73 215 216 217	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β 1-4GlcNAc β Man α 1-2Man β -sp4 Man α 1-2Man β -sp4 Man α 1-3Man β -sp4 Man α 1-4Man β -sp4 Man α 1-6Man β -sp4 Man α 1-6Man β -sp4 Man α 1-2Man α -sp4 Man α 1-2Man α -sp4 Man α 1-3(Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-6)Man β -sp4 GlcNAc β 1-2Man α 1-6(GlcNAc β 1-2Man α 1-3)Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-2Man Man α 1-6(Man α 1-3)Man Man α 1-6(Man α 1-3)Man Fucosylated Fuc α 1-2Gal β -sp3 Fuc α 1-2Gal β 1-3GlcNAc β -sp3 Fuc α 1-2Gal β 1-4GlcAc β -sp3 Fuc α 1-2Gal β 1-4GlcAc β -sp3 Fuc α 1-2Gal β 1-4Glc β -sp4	4F 119 120 121 122 123 124 258 495 5A 5B 5C 5D 5E 5F 5G 5H 71 72 73 215 216 217 219	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1

Galβ1-3(Fucα1-4)GlcNAcβ-sp3	233	<1	<1
Fucα1-3(Galβ1-4)GlcNAcβ-sp3	234	<1	<1
Fucα1-2(GalNAcα1-3)Galβ-sp3	235	<1	<1
3-O-Su-Galβ1-3(Fucα1-4)GlcNAcβ-sp3	287	<1	<1
Fucα1-3(3-O-Su-Galβ1-4)GlcNAcβ-sp3	288	<1	<1
Fucα1-2(Galα1-3)Galβ1-3GlcNAcβ-sp3	359	<1	<1
Fucα1-2(Galα1-3)Galβ1-4GlcNAcβ-sp3	360	<1	<1
Fucα1-2(Galα1-3)Galβ1-3GalNAcα-sp3	362	<1	<1
Fucα1-2(Galα1-3)Galβ1-3GalNAcβ-sp3	363	<1	<1
Fucα1-3(Galα1-3Galβ1-4)GlcNAcβ-sp3	364	<1	<1
Fucα1-2(GalNAcα1-3)Galβ1-3GlcNAcβ-sp3	366	<1	<1
Fuca1-2(GalNAca1-3)Galβ1-4GlcNAcβ-sp3	368	<1	<1
Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ-sp3	371	<1	<1
Fuca1-3(Fuca1-2Galβ1-4)GlcNAcβ-sp3	372	<1	<1
Fucα1-2(GalNAcα1-3)Galβ1-3GalNAcα-sp3	392	<1	<1
Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ-sp4	479	<1	<1
Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ-sp2	480	<1	<1
Fuca1-3(Fuca1-2 (Gala1-3)Galβ1-4)GlcNAcβ-sp3	483	<1	<1
Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glcβ-sp4	496	<1	<1
Fucα1-3(Fucα1-2Galβ1-4)GlcNAcβ1-3Galβ1-4Glcβ-sp4	497	<1	<1
Lex1-6'(Lec1-3')Lac-sp4	538	<1	<1
LacNAc1-6'(Led1-3')Lac-sp4	539	<1	<1
Lex1-6'(Led1-3')Lac-sp4	541	<1	<1
LecLex1-6'(Lec1-3')Lac-sp4	542	<1	<1
Lex1-6'(Leb1-3')Lac-sp4	543	<1	<1
Fuca1-2Gal BlackAcB1-3Gal Bl-4Glc	7A	<1	1.992±0.43
Gal	7B	<1	<1
Gal\beta1-4(Fuca1-3)GlcNAc\beta1-3Gal\beta1-4Glc	7C	<1	<1
Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glc	7D	<1	<1
Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4(Fucα1-3)Glc	7E	<1	<1
Fucal-2Gal	7F	<1	<1
Fucα1-2Galβ1-4Glc	7G	<1	<1
Galβ1-4(Fucα1-3)Glc	7H	<1	<1
Gal\beta1-4(Fuc\alpha1-3)GlcNAc	7I	<1	<1
Galβ1-3(Fucα1-4)GlcNAc	7J	<1	<1
GalNAca1-3(Fuca1-2)Gal	7K	<1	<1
Fuca1-2Galb1-4(Fuca1-3)Glc	7L	<1	<1
Gal\beta1-3(Fuc\alpha1-2)Gal	7M	<1	<1
Fuca1-2Gal ^β 1-4(Fuca1-3)GlcNAc	7N	<1	<1
Fucα1-2Galβ1-3GlcNAc	7O	<1	<1
Fucα1-2Galβ1-3(Fucα1-4)GlcNAc	7P	<1	<1
SO3-3Galβ1-3(Fucα1-4)GlcNAc		<u>~1</u>	<1
SO3-3Galβ1-4(Fucα1-3)GlcNAc	8A	~ 1	
C-101 2C1-NIA -01 2C-101 4/E1 2)C1-NIA -01 2C-101	8A 8B	<1	<1
$Gaip1-3GicinAcp1-3Gaip1-4(Fuc\alpha1-3)GicinAcp1-3Gaip1-$	8A 8B	<1	<1
$Gaip1-3GicNAcp1-3Gaip1-4(Fuc\alpha1-3)GicNAcp1-3Gaip1-4(Fuc\alpha1-3)GicNAcp1-3Gaip1-$	8A 8B 8C	<1 <1 <1	<1 <1
Galp1-3GlcNAcp1-3Galp1-4(Fuc α 1-3)GlcNAcp1-3Galp1- 4Glc Galp1-4(Fuc α 1-3)GlcNAcp1-6(Galp1-3GlcNAcp1-3)Galp1-	8A 8B 8C	<1 <1 <1	<1 <1
Galp1-3GleNAcp1-3Galp1-4(Fuc α 1-3)GleNAcp1-3Galp1- Gal β 1-4(Fuc α 1-3)GleNAc β 1-6(Gal β 1-3GleNAc β 1-3)Gal β 1- 4Gle	8A 8B 8C 8D	<1 <1 <1 <1	<1 <1 <1
Galp1-3GleNAcp1-3Galp1-4(Fuc α 1-3)GleNAcp1-3Galp1- 4Gle Gal β 1-4(Fuc α 1-3)GleNAc β 1-6(Gal β 1-3GleNAc β 1-3)Gal β 1- 4Gle Gal β 1-4(Fuc α 1-3)GleNAc β 1-6(Fuc α 1-2Gal β 1-3GleNAc β 1-	8A 8B 8C 8D	<1 <1 <1 <1	<1 <1 <1
Galβ1-3GlcNAcβ1-3Galβ1-4(Fuc α 1-3)GlcNAcβ1-3)GlcNAcβ1-3)GlcNAcβ1-3)GlcNAcβ1-6(Galβ1-3GlcNAcβ1-3)Galβ1- 4Glc Galβ1-4(Fuc α 1-3)GlcNAcβ1-6(Fuc α 1-2Galβ1-3GlcNAcβ1- 3)Galβ1-4Glc	8A 8B 8C 8D 8E	<1 <1 <1 <1 <1	<1 <1 <1 <1
Gal β 1-3GlcNAc β 1-3GlcNAc β 1-6(Gal β 1-3GlcNAc β 1-3)Gal β 1- 4Glc Gal β 1-4(Fuc α 1-3)GlcNAc β 1-6(Fuc α 1-3GlcNAc β 1- 3)Gal β 1-4(Fuc α 1-3)GlcNAc β 1-6(Fuc α 1-2Gal β 1-3GlcNAc β 1- 3)Gal β 1-4Glc Gal β 1-4(Fuc α 1-3)GlcNAc β 1-6(Fuc α 1-2Gal β 1-3(Fuc α 1-	8A 8B 8C 8D 8E	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1
Galp1-3GlcNAcp1-3Galp1-4(Fuc α 1-3)GlcNAcp1-3Galp1- 4Glc Galp1-4(Fuc α 1-3)GlcNAcp1-6(Galp1-3GlcNAcp1-3)Galp1- 4Glc Galp1-4(Fuc α 1-3)GlcNAcp1-6(Fuc α 1-2Galp1-3GlcNAcp1- 3)Galp1-4Glc Galp1-4(Fuc α 1-3)GlcNAcp1-6(Fuc α 1-2Galp1-3(Fuc α 1- 4)GlcNAcp1-3)Galp1-4Glc	8A 8B 8C 8D 8E 8F	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1

Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-4Glc	8H	<1	<1
Fucα1-3Galβ1-4GlcNAcβ1-3Galβ1-4(Fucα1-3)Glc	8I	<1	<1
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3(Fuca1-2)Galb1-4Glc	8J	<1	<1
$Gal\beta 1-4 (Fuc\alpha 1-3) GlcNAc\beta 1-6 (Gal\beta 1-4 GlcNAc\beta 1-3) Gal\beta 1-$	8K	<1	<1
4Glc	01	-1	1
Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-4(Fuca1-3)GlcNAcb1-	81	<1	<1
3)Galb1-4Glc	0L	1	1
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-4GlcNAcb1-	8M	<1	<1
3)Galb1-4Glc	0111	-	-
Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-	8N	<1	<1
3GlcNAcb1-3)Galb1-4Glc			
$Fuca1-2Gal\beta1-3GlcNAc\beta1-3Gal\betab1-4(Fuca1-3)GlcNAc\beta1-$	80	<1	<1
6(Galbar{bar{bar{bar{bar{bar{bar{bar{bar{	0.7		
GalNAcb1-3(Fuca1-2)Galb1-4Glc	8P	<1	<1
Galb1-3(Fuca1-2)Galb1-4(Fuca1-3)Glc	9A	<1	<1
Gal β 1-4GicNAc β 1-6(Fuc α 1-2Gal β 1-3GicNAc β 1-3)Gal β 1-	9B	<1	<1
4Glc	100		
Gala1-3(Fuca1-2)Galp1-4Glc	18D	<1	<1
Sialylated	1.00	.4	.1
NeuSAca2-3Galβ-sp3	169	<[<1
Neu5Aca2-6Galβ-sp3	170	<1	<1
Neu5Aca2-3GalNAca-sp3	171	<1	<1
Neu5Aca2-6GalNAca-sp3	172	<1	<1
Neu5Gca2-6GalNAca-sp3	174	<1	<1
Neu5Aca2-8Neu5Aca2-sp3	186	<1	<1
Neu5Aca2-6GalNAcβ-sp3	205	<1	<1
Neu5Gca2-3Gal-sp3	206	<1	<1
Gala1-3(Neu5Aca2-6)GalNAca-sp3	289	<1	<1
Galβ1-3(Neu5Aca2-6) GalNAca-sp3	290	<1	<1
Neu5Aca2-3Galβ1-3GalNAcα-sp3	292	<1	<1
Neu5Aca2-3Galβ1-4Glcβ-sp3	293	<1	<1
Neu5Aca2-3Galβ1-4Glcβ-sp4	294	<1	<1
Neu5Aca2-6Galβ1-4Glcβ-sp2	295	<1	<1
Neu5Aca2-3Galβ1-4GlcNAcβ-sp3	298	<1	<1
Neu5Aca2-3Galβ1-3GlcNAcβ-sp3	299	<1	<1
Neu5Aca2-6Galβ1-4GlcNAcβ-sp3	300	<1	<1
Neu5Gca2-3Galβ1-4GlcNAcβ-sp3	303	<1	<1
Neu5Gca2-6Galβ1-4GlcNAcβ-sp3	304	<1	<1
9-NAc-Neu5Aca2-6Galβ1-4GlcNAcβ-sp3	306	<1	<1
Neu5Aca2-3Galβ1-4-(6-O-Su)GlcNAcβ-sp3	315	<1	<1
Neu5Aca2-3Galβ1-3-(6-O-Su)GalNAcβ-sp3	317	<1	<1
Neu5Aca2-6Galβ1-4-(6-O-Su)GlcNAcβ-sp3	318	<1	<1
Neu5Aca2-3-(6-O-Su)Galβ1-4GlcNAcβ-sp3	319	<1	1.224 ± 0.38
(Neu5Aca2-8)3-sp3	321	<1	<1
Neu5Aca2-6Gal	323	<1	<1
Neu5Aca2-6Gal	324	<1	<1
Neu5Gca2-3Galβ1-3GlcNAcβ-sp3	331	<1	<1
Neu5Aca2-3(GalNAcβ1-4)Galβ1-4Glcβ-sp2	421	<1	<1
Neu5Aca2-3Galβ1-4GlcNAcβ1-3Galβ-sp3	422	<1	<1
Fuca1-3(Neu5Aca2-3Galβ1-4)GlcNAcβ-sp3	423	<1	<1
Neu5Aca2-3Galβ1-3(Fuca1-4)GlcNAcβ-sp3	426	<1	<1
Fuca1-3(Neu5Aca2-3Galβ1-4)6-O-Su-GlcNAcβ-sp3	428	<1	<1

Fucα1-3(Neu5Acα2-3(6-O-Su)Galβ1-4)GlcNAcβ-sp3	429	<1	6.012±1.14
Neu5Aca2-3Galβ1-3(Neu5Aca2-6)GalNAca-sp3	433	<1	<1
Neu5Aca2-8Neu5Aca2-3Galβ1-4Glcβ-sp4	434	<1	<1
Neu5Aca2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ-sp2	527	<1	<1
Fucα1-3(Neu5Acα2-3 Galβ1-4)GlcNAcβ1-3Galβ-sp3	528	<1	<1
Neu5Aca2-6(Galβ1-3)GlcNAcβ1-3Galβ1-4Glcβ-sp4	529	<1	<1
GalNAcβ1-4(Neu5Acα2-8Neu5Acα2-3)Galβ1-4Glc-sp2	531	<1	<1
Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3Gal	532	<1	6.882±1.44
(Neu5Aca2-8)2Neu5Aca2-3(GalNAcβ1-4)Galβ1-4Glc-sp2	533	<1	<1
Neu5Aca2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ-sp3	534	<1	<1
Neu5Aca2-3Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ-sp4	536	<1	<1
Neu5Aca2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ-sp4	537	<1	<1
Lex1-6'(6'SLN1-3')Lac-sp4	540	<1	<1
Neu5Aca2-3Gal	10A	<1	2.437±0.58
Neu5Aca2-3Galβ1-4(Fuca1-3)GlcNAc	10B	1.211±0.38	<1
Neu5Aca2-3Galβ1-3GlcNAcβ1-3Galβ1-4Glc	10C	<1	<1
Galβ1-4(Fuca1-3)GlcNAcβ1-6(Neu5Aca2-6Galβ1-	10D	~1	<1
4GlcNAcβ1-3)Galβ1-4Glc	10D	<1	<1
Neu5Aca2-3Galb1-3(Neu5Aca2-6)GalNAc	10E	<1	<1
Neu5Aca2-6Galβ1-3GlcNAcβ1-3Galβ1-4(Fuca1-3)Glc	10H	6.445±0.84	<1
Galβ1-3GlcNAcβ1-3(Neu5Aca2-6Galβ1-4GlcNAcβ1-	101	<1	~1
6)Galβ1-4Glc	101	<1	<1
Neu5Aca2-6Galβ1-3GlcNAcβ1-3(Galβ1-4GlcNAcβ1-	101	-1	-1
6)Galβ1-4Glc	10J	<1	<1
Neu5Aca2-3Galβ1-4GlcNAc	10K	<1	<1
Neu5Aca2-6Galβ1-4GlcNAc	10L	<1	<1
Neu5Aca2-3Galβ1-3GlcNAcβ1-3Galβ1-4Glc	10M	<1	<1
Galβ1-3(Neu5Aca2-6)GlcNAcβ1-3Galβ1-4Glc	10N	<1	<1
Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4Glc	100	1.291±0.64	<1
Neu5Aca2-3Galβ1-3(Neu5Aca2-6)GlcNAcβ1-3Galβ1-4Glc	10P	<1	<1
Neu5Acα2-3Galβ1-4Glc	11A	<1	<1
Neu5Aca2-6Galβ1-4Glc	11B	<1	<1
(Neu5Aca2-8Neu5Ac)n (n < 50)	11C	<1	<1
Glucose			
Glca1-4Glcb-sp3	110	<1	<1
Glcβ1-4Glcβ-sp4	111	<1	<1
Glcβ1-6Glcβ-sp4	112	<1	<1
GlcAβ1-3GlcNAcβ-sp3	164	<1	<1
GlcAβ1-3Galβ-sp3	165	<1	<1
GlcAβ1-6Galβ-sp3	166	<1	<1
$(Glca1-4)3\beta-sp4$	240	<1	<1
(Glcα1-6)3β-sp4	241	<1	<1
$(Glca1-4)4\beta$ -sp4	390	<1	<1
(Glcα1-6)4β-sp4	391	<1	<1
(Glca1-6)5β-sp4	492	<1	<1
(Glca1-6)6β-sp4	502	<1	<1
GlcA	18I	<1	<1
6-O-(H2PO4)-Glc	18J	<1	<1
Glca1-4Glca1-4	190	<1	<1
Glca1-4Glca1-4Glca1-4	19P	<1	<1
LMW GAGs			
Neocarratetraose-41, 3-di-O-sulphate (Na+)	12A	<1	<1

Neocarratetraose-41-O-sulphate (Na+)	12B	<1	<1
Neocarrahexaose-24,41, 3, 5-tetra-O-sulphate (Na+)	12C	<1	<1
Neocarrahexaose-41, 3, 5-tri-O-sulphate (Na+)	12D	<1	<1
Neocarraoctaose-41, 3, 5, 7-tetra-O-sulphate (Na+)	12E	<1	<1
Neocarradecaose-41, 3, 5, 7, 9-penta-O-sulphate (Na+)	12F	<1	<1
ΔUA-2S-GlcNS-6S	12G	<1	<1
Δ UA-GlucNS-6S	12H	<1	<1
Δ UA-2S-GlucNS	12I	<1	<1
$\Delta UA-2S-GlcNAc-6S$	12J	<1	<1
Δ UA-GlcNAc-6S	12K	<1	<1
ΔUA-2S-GlcNAc	12L	<1	<1
∆UA-GlcNAc	12M	<1	<1
∆UA-GalNAc-4S (Delta Di-4S)	12N	<1	<1
ΔUA -GalNAc-6S (Delta Di-6S)	120	<1	<1
ΔUA -GalNAc-4S,6S (Delta Di-disE)	12P	<1	<1
$\Delta UA-2S$ -GalNAc-4S (Delta Di-disB)	13A	<1	<1
$\Delta UA-2S$ -GalNAc-6S (Delta Di-disD)	13B	<1	<1
ΔUA-2S-GalNAc-4S-6S (Delta Di-tisS)	13C	<1	<1
AUA-2S-GalNAc-6S (Delta Di-UA2S)	13D	<1	<1
AUA-GlcNAc (Delta Di-HA)	13E	<1	<1
$\Lambda UA \rightarrow 2S$ -GlcN-6S	14M	<1	<1
$\Delta UA \rightarrow GlcN-6S$	14N	<1	<1
$\Delta UA \rightarrow 2S$ -GlcN	140	<1	<1
$\Delta UA \rightarrow GlcN$	14P	<1	<1
HMW GAGs	1 11	-	-
$(GlcA\beta 1-4GlcNAc\beta 1-3)$ 8-NH2-01	625	<1	<1
$(GlcA\beta1-3GlcNAc\beta1-4)n$ (n=4)	13F	<1	<1
$(GlcA\beta1-3GlcNAc\beta1-4)n$ (n=8)	13G	<1	<1
$(GlcA\beta1-3GlcNAc\beta1-4)n$ (n=10)	13H	<1	<1
$(GlcA\beta1-3GlcNAc\beta1-4)n$ (n=12)	131	<1	<1
$(GlcA/IdoA\alpha/B1-4GlcNAca1-4)n (n=200)$	13J	<1	<1
$(GlcA/IdoAB1-3(\pm 4/6S)GalNAcB1-4)n (n<250)$	13K	<1	<1
$((\pm 2S)GlcA/IdoA\alpha/b1-3(\pm 4S)Gal/Acb1-4)n (n<250)$	13L	<1	<1
$(GlcA/IdoAB1-3(\pm 6S)Ga1NAcB1-4)n (n < 250)$	13M	<1	<1
HA - 4 10mM	13N	<1	<1
HA - 6 10mM	130	<1	<1
HA - 8 9.7mM	13P	<1	<1
HA 10 7.83mM	14A	<1	<1
HA-12.6.5mM	14B	<1	<1
HA-14 5.6mM	14C	<1	<1
HA-16 4 9mM	14D	<1	<1
HA 30000 da 2 $5mg/ml$	14E	<1	<1
HA 107000 da 2 5mg/ml	14F	<1	<1
HA 190000 da 2.5 mg/ml	14G	<1	<1
HA 220000 da 2.5 mg/ml	14H	<1	<1
HA 1600000 da 2.5 mg/ml	14I	<1	<1
Henarin sulfate 5 mg/ml	14I	<1	<1
B1-3Glucan	14K	<1	<1
Complex N-glycans	1 118	1	1
(Sia2-6A-GN-M)2-3.6-M-GN-GNB-sn4	627	<1	<1
GalB1-4GlcNAcB1-2Mana1-3(GalB1-4GlcNAcB1-2Mana1-	021	•	1.
6 Man) β 1-4GlcNAc β 1-4(Fuc α 1-6)GlcNAc	19A	<1	<1

Galβ1-4GlcNAcβ1-2(Galβ1-4GlcNAcβ1-4)Manα1-3(Galβ1-			
4GlcNAcβ1-2(Galβ1-4GlcNAcβ1-6)Manα1-6Man)β1-	19B	<1	<1
4GlcNAcβ1-4GlcNAc			
Neu5Aca2-6Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-	100	~1	~1
4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc	190	~1	~1
Neu5Aca2-6Galβ1-4GlcNAcβ1-2Mana1-3(Neu5Aca2-			
6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-	19D	<1	<1
4GlcNAc			
$Gal\beta 1-4GlcNAc\beta 1-2Man\alpha 1-3(Gal\beta 1-4GlcNAc\beta 1-2Man\alpha 1-$	10F	~1	~1
6)Manβ1-4GlcNAcβ1-4GlcNAc	1912	~ 1	~1
Neu5Aca2-6Galβ1-4GlcNAcβ1-2Mana1-3(Neu5Aca2-			
6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-	19F	<1	<1
4(Fuca1-6)GlcNAc			
Neu5Aca2-6Galβ1-4GlcNAcβ1-2(Neu5Aca2-6Galβ1-			
4GlcNAcβ1-4)Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-	19G	<1	<1
2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc			
$GlcNAc\beta1-2(GlcNAc\beta1-4)Man\alpha1-3(GlcNAc\beta1-2Man\alpha1-$	10日	<1	~1
6)GlcNAcβ1-4Manβ1-4GlcNAcβ1-4GlcNAc	1911	^1	~1

396 Red indicates binding as shown in Fig 5. Binding indicates a value of greater than 1-fold of average

397 background plus 3 standard deviations as described in the MIRAGE table (Table F).

Table F. Supplementary glycan microarray document based on MIRAGE guidelines DOI: 10.1093/glycob/cww118.

Classification	Guidelines		
1. Sample: Glyc	1. Sample: Glycan Binding Sample		
	Sample names:		
	UclD ^{LD} and UcaD ^{LD}		
Description of Sample	Origin: Produced as a recombinant protein in <i>E. coli</i> .		
	Method of preparation:		
	The preparation of UclD and UcaD are explained in the Materials and Methods section.		
Sample modifications	UclD ^{LD} and UcaD ^{LD} are His-Tagged proteins.		
Assay protocol	See Materials and Methods.		
2. Glycan Librar	у		
Glycan description for defined glycans	Glycans in this study are listed in Table E in S1 Text and as a published library in doi: 10.1371/journal.pntd.0004120.		
Glycan	N/A.		
description for			
undefined glycans			
Glycan	Glycans were prepared in one of two ways for printing:		
modifications	1. Glycans (with IDs in number/letter format; e.g. 1A, 4C, 7K) were sourced		
	commercially from Dextra Laboratories, Elicityl and Carbosythn and were		

made into glycoamines using the protocol published in Day et al 2009 (doi:
10.1371/journal.pone.0004927).
2. Glycans (with IDs in number only format) were obtained from Prof Nicolai
Bovin and were modified with spacers as per DOI: 10.1073/pnas.0407902101.
The library of these glycans was first published in DOI:
10.1016/j.molimm.2009.06.010

3. Printing Surface; e.g., Microarray Slide

Description of surface	Epoxy activated glass microarray slides.	
Manufacturer	ArrayIt SuperEpoxy 3 (SME3).	
Custom preparation of surface	N/A.	
Non-covalent Immobilisation	N/A.	
4. Arrayer (Printer)		
Description of Arrayer	SpotBot® Extreme Protein Microarray Spotter (ArrayIt, California, USA).	
Dispensing mechanism	Contact printing using 946NS6 pins with a 6 pin in a 3 columns x 2 rows configuration.	
Glycan deposition	Approximately 1.8 nl per spot is printed according to manufactures guidelines. Glycan were at 500 μM in 50:50 DMF:DMSO.	
Printing conditions	Array were printed with dehumidification at a maximum humidity of 60% relative humidity (Standard laboratory starting humidity of 75-90%) at 22°C. Glycans were left to react with the slide for at least 8 hours after the print was completed.	

5. Glycan Microarray with "Map"		
Array layout	The array consists of a single array of glycans split between 6 pins (3 columns x 2 rows) with 4500µm row and column spacing. Each pin printed a 20 columns x 16 rows with 200µm spot spacing (centre to centre) with a minimum spot size of 100µm. Each sample is printed in quadruplicate with each of the 6 print areas including at least three negative control samples (print solution only) and two positive control samples consisting of one sample of fluoroscienamine and one sample of a mixture of rabbit anti-mouse antibody labelled with Alexa 555 and Alexa 647. Positive controls provide proof of successful immobilization of the amine reagents and provides for orientation for analysis. The antibodies also can provide controls for secondary antibodies used in experiments (if applicable).	
Glycan identification and quality control	Arrays are quality controlled by a range of measures. 1. Each printed array is post print scanned to confirm deposition of the glycans on the array surface prior to neutralization of the remaining slide surface. 2. Post neutralized slides are scanned again to monitor for remaining autofluorescence. 3. Slides are assayed with fluorescently labeled lectins: WGA-Texas Red (EY Laboratories) and ConA-FITC (EY Laboratories).	
6. Detector and I	Data Processing	
Scanning hardware	ProScanArray 4 laser (488 nM, 532 nM, 595 nM, 647 nM) scanner (Perkin Elmer).	
Scanner settings	Scanning resolution: 10μM Laser channel: 532nM excitation / emission filter. PMT: 70% gain Scan powers: 100% laser power.	
Image analysis software	ScanArray Express (Perkin Elmer).	
Data processing	Data was exported as a CSV file and exported to Microsoft Excel.	
7. Glycan Microarray Data Presentation		

Data presentation	Binding data is presented in Fig 5 together with SPR data. The yes/no binding including glycan identification is shown in Table E in S1 Text.	
8. Interpretation and Conclusion from Microarray Data		
Data interpretation	We only use glycan arrays as a yes/no binding tool. Due to this we look only at binding that is unambiguously above background vs lack of binding above background. Average background + 3x standard deviation of the background of 20 sets of 4 spots of DMF:DMSO only spots is applied to determine if binding observed is significantly above background. Only spots with values equal to or greater than this value were considered as binding from data of any tested slide. These values are slide dependent.	
Conclusions	UcaD ^{LD} and UclD ^{LD} both recognize glycans but even though they are highly similar the glycans recognized are different.	

404 Supplementary Section References

405

406 Zhou Z, Alikhan NF, Mohamed K, Fan Y, Agama Study G, Achtman M. The EnteroBase 1. 407 user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and 408 Escherichia core genomic diversity. Genome research. 2020;30(1):138-52. doi: 409 10.1101/gr.251678.119. PubMed PMID: 31809257.

Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein
sequences. Protein science : a publication of the Protein Society. 2018;27(1):135-45. doi:
10.1002/pro.3290. PubMed PMID: 28884485; PubMed Central PMCID: PMC5734385.

413 3. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast
414 model selection for accurate phylogenetic estimates. Nature methods. 2017;14(6):587-9. doi:
415 10.1038/nmeth.4285. PubMed PMID: 28481363; PubMed Central PMCID: PMC5453245.

416 4. Zhang H, Gao S, Lercher MJ, Hu S, Chen WH. EvolView, an online tool for visualizing,
417 annotating and managing phylogenetic trees. Nucleic acids research. 2012;40(Web Server
418 issue):W569-72. doi: 10.1093/nar/gks576. PubMed PMID: 22695796; PubMed Central PMCID:
419 PMC3394307.

5. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli
K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of
America. 2000;97(12):6640-5. Epub 2000/06/01. doi: 10.1073/pnas.120163297. PubMed PMID:
10829079; PubMed Central PMCID: PMC18686.

424 Totsika M, Beatson SA, Sarkar S, Phan MD, Petty NK, Bachmann N, et al. Insights into a 6. 425 multidrug resistant Escherichia coli pathogen of the globally disseminated ST131 lineage: genome 426 mechanisms. PLoS analysis and virulence One. 2011;6(10):e26578. doi: 427 10.1371/journal.pone.0026578. PMID: 22053197; PubMed PubMed Central PMCID: PMCPMC3203889. 428

7. Nyerges A, Csorgo B, Nagy I, Balint B, Bihari P, Lazar V, et al. A highly precise and portable
genome engineering method allows comparison of mutational effects across bacterial species.
Proceedings of the National Academy of Sciences of the United States of America.
2016;113(9):2502-7. doi: 10.1073/pnas.1520040113. PubMed PMID: 26884157; PubMed Central
PMCID: PMCPMC4780621.

434 8. Ulett GC, Webb RI, Schembri MA. Antigen-43-mediated autoaggregation impairs motility in
435 Escherichia coli. Microbiology. 2006;152(Pt 7):2101-10. doi: 10.1099/mic.0.28607-0. PubMed
436 PMID: 16804184.

437 9. Miller JH. A short course in bacterial genetics: a laboratory manual and handbook for
438 Escherichia coli and related bacteria. Plainview, N.Y: Cold Spring Harbor Laboratory Press; 1992.

439 10. Rapid amplification of 5' complementary DNA ends (5' RACE). Nature methods.
440 2005;2(8):629-30. Epub 2005/09/09. PubMed PMID: 16145794.

441 11. Spaulding CN, Klein RD, Ruer S, Kau AL, Schreiber HL, Cusumano ZT, et al. Selective
442 depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature. 2017;546(7659):528443 32. Epub 2017/06/15. doi: 10.1038/nature22972. PubMed PMID: 28614296; PubMed Central
444 PMCID: PMCPMC5654549.

Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, et al. ContextDependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by
Extraintestinal Pathogenic Escherichia coli. Infection and immunity. 2018;86(3). doi:
10.1128/IAI.00746-17. PubMed PMID: 29311232; PubMed Central PMCID: PMC5820936.

Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the
Phyre server. Nature Protocols. 2009;4(3):363-71. doi: 10.1038/nprot.2009.2. PubMed PMID:
19247286.

452 14. Furlong EJ, Lo AW, Kurth F, Premkumar L, Totsika M, Achard MES, et al. A shape-shifting
453 redox foldase contributes to Proteus mirabilis copper resistance. Nature communications.
454 2017;8:16065. doi: 10.1038/ncomms16065. PubMed PMID: 28722010; PubMed Central PMCID:
455 PMC5524982.

456 15. Shewell LK, Day CJ, Jen FE, Haselhorst T, Atack JM, Reijneveld JF, et al. All major
457 cholesterol-dependent cytolysins use glycans as cellular receptors. Science advances.
458 2020;6(21):eaaz4926. doi: 10.1126/sciadv.aaz4926. PubMed PMID: 32494740; PubMed Central
459 PMCID: PMC7244308.

460 16. Waespy M, Gbem TT, Elenschneider L, Jeck AP, Day CJ, Hartley-Tassell L, et al.
461 Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma
462 congolense. PLoS neglected tropical diseases. 2015;9(10):e0004120. doi:
463 10.1371/journal.pntd.0004120. PubMed PMID: 26474304; PubMed Central PMCID: PMC4608562.

McPhillips TM, McPhillips SE, Chiu HJ, Cohen AE, Deacon AM, Ellis PJ, et al. Blu-Ice and
the distributed control system: software for data acquisition and instrument control at macromolecular
crystallography beamlines. J Synchrotron Radiat. 2002;9(Pt 6):401-6. Epub 2002/11/01. PubMed
PMID: 12409628.

468 18. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the
469 CCP4 suite and current developments. Acta Crystallographica Section D. 2011;67(Pt 4):235-42.
470 Epub 2011/04/05. doi: 10.1107/S0907444910045749. PubMed PMID: 21460441; PubMed Central
471 PMCID: PMC3069738.

Pannu NS, Waterreus WJ, Skubak P, Sikharulidze I, Abrahams JP, de Graaff RA. Recent
advances in the CRANK software suite for experimental phasing. Acta Crystallographica Section D.
2011;67(Pt 4):331-7. doi: 10.1107/S0907444910052224. PubMed PMID: 21460451; PubMed
Central PMCID: PMCPMC3069748.

476 20. Sheldrick GM. A short history of SHELX. Acta Crystallographica Section A. 2008;64(Pt
477 1):112-22. doi: 10.1107/S0108767307043930. PubMed PMID: 18156677.

478 21. Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains.
479 Acta Crystallographica Section D. 2006;62(Pt 9):1002-11. doi: 10.1107/S0907444906022116.
480 PubMed PMID: 16929101.

481 22. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al.
482 REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section
483 D. 2011;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. PubMed PMID: 21460454; PubMed
484 Central PMCID: PMCPMC3069751.

485 23. McCoy AJ. Solving structures of protein complexes by molecular replacement with Phaser. 2007;63(Pt 486 1):32-41. Acta Crystallographica Section D. Epub 2006/12/14. doi: 10.1107/S0907444906045975. PubMed Central PMCID: 487 PMID: 17164524; PubMed 488 PMCPMC2483468.

489 24. Adams PD, Baker D, Brunger AT, Das R, DiMaio F, Read RJ, et al. Advances, interactions,
490 and future developments in the CNS, Phenix, and Rosetta structural biology software systems. Annual
491 review of biophysics. 2013;42:265-87. doi: 10.1146/annurev-biophys-083012-130253. PubMed
492 PMID: 23451892.

493 25. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta
494 Crystallographica Section D. 2010;66(Pt 4):486-501. PubMed PMID: 20383002; PubMed Central
495 PMCID: PMC2852313.

496 26. Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. 497 validation for macromolecular all-atom structure crystallography. MolProbity: Acta 498 2010;66(Pt Crystallographica Section 1):12-21. Epub 2010/01/09. doi: D. 10.1107/S0907444909042073. PubMed PMID: 20057044; PubMed Central PMCID: PMC2803126. 499

500 27. Kabsch W. XDS. Acta Crystallographica Section D. 2010;66(Pt 2):125-32. Epub 2010/02/04.
501 doi: 10.1107/S0907444909047337. PubMed PMID: 20124692; PubMed Central PMCID:
502 PMC2815665.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading. Journal of computational chemistry.
2010;31(2):455-61. doi: 10.1002/jcc.21334. PubMed PMID: 19499576; PubMed Central PMCID:
PMC3041641.

507 29. Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with
508 YASARA NOVA--a self-parameterizing force field. Proteins. 2002;47(3):393-402. PubMed PMID:
509 11948792.

510 30. Kjaergaard K, Schembri MA, Ramos C, Molin S, Klemm P. Antigen 43 facilitates formation
511 of multispecies biofilms. Environ Microbiol. 2000;2(6):695-702. doi: 10.1046/j.1462512 2920.2000.00152.x. PubMed PMID: 11214802.

31. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, et al. The pangenome
structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic
isolates. J Bacteriol. 2008;190(20):6881-93. Epub 20080801. doi: 10.1128/JB.00619-08. PubMed
PMID: 18676672; PubMed Central PMCID: PMCPMC2566221.

517 32. Stapleton A, Moseley S, Stamm WE. Urovirulence determinants in Escherichia coli isolates
518 causing first-episode and recurrent cystitis in women. J Infect Dis. 1991;163(4):773-9. doi:
519 10.1093/infdis/163.4.773. PubMed PMID: 1672702.

520 33. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, et al. Identification of genes 521 subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics 522 approach. Proc Natl Acad Sci U S A. 2006;103(15):5977-82. Epub 20060403. doi:
523 10.1073/pnas.0600938103. PubMed PMID: 16585510; PubMed Central PMCID:
524 PMCPMC1424661.

Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli
reservoir during the acute phase of a bladder infection. Infect Immun. 2001;69(7):4572-9. doi:
10.1128/IAI.69.7.4572-4579.2001. PubMed PMID: 11402001; PubMed Central PMCID:
PMCPMC98534.

529 35. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, Forde BM, et al.
530 Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci USA.
531 2014;111(15):5694-9. doi: 10.1073/pnas.1322678111. PubMed PMID: 24706808; PubMed Central
532 PMCID: PMC3992628.

533 36. Furlong EJ, Lo AW, Kurth F, Premkumar L, Totsika M, Achard MES, et al. A shape-shifting
redox foldase contributes to Proteus mirabilis copper resistance. Nat Commun. 2017;8:16065. Epub
2017/07/20. doi: 10.1038/ncomms16065. PubMed PMID: 28722010; PubMed Central PMCID:
536 PMCPMC5524982.

537 37. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli
538 K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640-5. doi:
539 10.1073/pnas.120163297. PubMed PMID: 10829079; PubMed Central PMCID: PMCPMC18686.

Martinez E, Bartolome B, de la Cruz F. pACYC184-derived cloning vectors containing the
multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene.
1988;68(1):159-62. doi: 10.1016/0378-1119(88)90608-7. PubMed PMID: 2851489.

543 39. Farinha MA, Kropinski AM. Construction of broad-host-range plasmid vectors for easy
544 visible selection and analysis of promoters. J Bacteriol. 1990;172(6):3496-9. doi:
545 10.1128/jb.172.6.3496-3499.1990. PubMed PMID: 2111810; PubMed Central PMCID:
546 PMCPMC209165.

547 40. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level
548 expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121-30.
549 doi: 10.1128/jb.177.14.4121-4130.1995. PubMed PMID: 7608087; PubMed Central PMCID:
550 PMCPMC177145.

551 41. Schembri MA, Hjerrild L, Gjermansen M, Klemm P. Differential expression of the
552 Escherichia coli autoaggregation factor antigen 43. J Bacteriol. 2003;185(7):2236-42. Epub
553 2003/03/20. doi: 10.1128/jb.185.7.2236-2242.2003. PubMed PMID: 12644494; PubMed Central
554 PMCID: PMCPMC151503.

555 42. Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta
556 Crystallogr D Biol Crystallogr. 2013;69(Pt 7):1204-14. doi: 10.1107/S0907444913000061. PubMed
557 PMID: 23793146; PubMed Central PMCID: PMCPMC3689523.