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S.1. Gibbs sampler. To initialize the sampler normally distributed mean 0 variables, con-
strained to be positive when necessary, can be sampled for all parameters (the authors have also
found that choosing a small variance helps keep the sampler from moving in unstable directions).
Alternatively, the SVD of [Y,X] can be used to initialize [Λ,Θ], η can be set to ΛTY , and Ξ
X − Θη, and the noise variance terms can be initialized based on the residuals when using these
initial values.

Assume for notational convenience that the data have been mean-centered prior to analysis (i.e.,
that µx and µy are fixed to 0-vectors). Let OY denote the D × N matrix with the (d, i)th entry
giving the number of observations at dose d for chemical i. Throughout let {V }−a denote the set
of elements of vector V excepting the a-th entry. Assuming initial values as specified above, the
sampler proceeds as follows:

Step 1. Sample Y -specific factor loading matrix Λ and associated hyper parame-
ters.

Sample columns of Λ one at a time, letting λk denote the kth column of Λ. For k ∈ 1, . . . ,K:

– Set Y ∗k to be an D × N matrix with ith column y∗i = (yi −
∑
h6=k λhηh,i)/ηk,i. Define S∗k to

be a length-D vector with the dth entry being
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. In other words, S∗k is an

inverse variance weighted mean of Y ∗k .

– Let Ck denote the D ×D GP covariance matrix at all unique dose values, formally defined

by the kernel ck(d, d
′) = α2

ke
− (d−d′)2

2`2 . Let C∗k be analagous to Ck but with the additive inverse
variance component along the diagonal, i.e. c∗k(d, d

′) = ck(d, d
′) + 1d=d′
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– Sample λk|{λh}h6=k, Y, η, αk, `, σ2
Y ∼ N(Ck(C

∗
k)−1S∗k , Ck − Ck(C∗k)−1Ck).

Sample hyper parameters associated with Λ, including the shared {δk} that are also used by
Θ:

– Let C−αk denote the D ×D covariance matrix at all unique dose values without the function

variance term, formally defined by the kernel c−αk (d, d′) = e−
(d−d′)2

2`2 .

– Assume l ∈ L, where L is a discrete set of possible length-scale values. Sample Pr(` = l | −) =
c∗
∏K
k=1{det(C lk)}−0.5 exp {−0.5 τ−1

k λTk (C lk)
−1λk}, where C lk is defined by covariance kernel

clk(d, d
′) = e−

(d−d′)2

2l2 and c∗ =
∑
l′ 6=l Pr(` = l′ | −) is the normalizing constant.

– Sample φ ∼ Ga(
gφ+DK

2 ,
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k
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2 ).

– Define τ
(−h)
k =

∏k
t=1,t6=h δt for h = 1, . . . ,K.
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– Sample

δ1 | all ∼ Ga(a1 +K(D + S)/2, 1 +
1

2
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δh | all ∼ Ga(a2 + (K − h)(D + S)/2, 1 +
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h = 2, . . . ,K.

Finally, set τk =
∏k
h=1 δh and α2

k =
(
φτk

)−1
for k = 1, . . . ,K.

Note that the posterior over ` stems from a uniform prior over a discrete grid of possible length scale
values. The authors have found a grid size of 100 ranging over “reasonable” length-scale values (i.e.,
those not implying an effective range smaller than the difference between the closest two dose value,
or larger than the range of the data) to be sufficient in the simulation and application described
in the paper. However, for larger D or grid sizes it may be computationally preferable to use a
Metropolis Hastings step here instead.

Step 2. Sample latent variable Z corresponding to any non-continuous entries of
X.

Let EX be the S ×N matrix of expected values of X, i.e. EX = Θη + Ξν. Then, for s = 1, . . . , S
and i =, . . . , N such that xs,i is not continuous sample zs,i as follows:

– For binary xs,i, sample

zs,i | EXs,i ∼
{

N+(EXs,i, 1), if xs,i = 1

N−(EXs,i, 1), if xs,i = 0

– For count xs,i, sample

zs,i | EXs,i ∼
{

N[t−1,t)(E
X
s,i, 1), if xs,i = t

N(−∞,0](E
X
s,i, 1), if xs,i = 0.

Note categorical variables should have already been pre-transformed into multiple binary indicators
prior to running the Gibbs sampler.

Step 3. Sample X-specific toxicity-irrelevant components, including factor loadings
matrix Ξ, scores ν, and associated hyper parameters. Define D = X −Θη to be the S ×N
‘residual’ toxicity-irrelevant feature matrix.

First sample the J × N matrix ν, i.e. the matrix of X−specific toxicity-irrelevant factors, by
column:

– Define S×J matrix Ξ∗ =

[
σ−2
1 Ξ row 1

...
σ−2
S Ξ row S

]
, then set J×J matrix R∗ = (ΞTΞ∗+diag(1, . . . , 1))−1.

– For i = 1, . . . , N, sample νi | all ∼ N(R∗(Ξ∗)TDi, R
∗).

Next sample the S × J matrix Ξ, i.e. the matrix of X−specific toxicity-irrelevant factor loadings,
by row. For s = 1, . . . , S :

– Define J × J matrix R∗s = (σ−2
X,sνν

T + diag(κs,1ω1, . . . , κs,JωJ))−1.
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– Sample Ξ row s | all ∼ N(R∗sν(D row s)
T /σ2

X,s, R
∗
s).

Next sample the local and column-specific shrinkage parameters {κs,j} and {ζj}:

– For s = 1, . . . , S and j = 1, . . . , J , sample κs,j | ξs,j , ωj , gκ ∼ Ga(gκ+1
2 ,

gκ+ξ2s,jωj
2 ).

– Define ω
(−h)
j =

∏j
t=1,t6=h ζt for h = 1, . . . , J .
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s,j ]),

h = 2, . . . , J.

Finally set ωj =
∏j
h=1 ζj .

Step 4. Sample X-specific toxicity-relevant components, including factor loadings ma-
trix Θ and its associated shrinkage hyper parameters. Define D = X −Ξν to be the S ×N
toxicity-relevant feature matrix, i.e. the data matrix with the ‘residual’ toxicity-irrelevant features
removed.

First sample the S ×K matrix Θ, i.e. the matrix of X−specific toxicity-relevant factor loadings,
by row. For s = 1, . . . , S :

– Define K ×K matrix R∗s = (σ−2
X,sηη

T + diag(β−2γ−2
s,1τ1, . . . , β

−2γ−2
s,KτK))−1.

– Sample Θ row s | all ∼ N(R∗sη(D row s)
T /σ2

X,s, R
∗
s).

Next sample the global and local shrinkage parameters beta2 and {γs,k} (note that the shared
column-specific shrinkage parameter δk was already sampled in the update step for components of
Λ):

– Sample β2 | {θs,k}, {τk}, {γ2
s,k} ∼ Ga(SK+1

2 , 1
t +

∑K

k=1
τk
∑S

s=1
θ2s,k/γ

2
s,k

2 ).

– Sample γ2
s,k | θs,k, τk, β2 ∼ Ga(1, 1

bs,k
+

τkθ
2
s,k

2β2 ) for s = 1, . . . , S and k = 1, . . . ,K.

Finally sample {bs,k} and t, the hyperparameters from the horseshoe prior imposed on elements of
Θ :

– Sample t | β2 ∼ Ga(1, 1 + 1
β2 ).

– Sample bs,k | γ2
s,k ∼ Ga(1, 1 + 1

γ2
s,k

) for s = 1, . . . , S and k = 1, . . . ,K.

Step 5. Sample shared toxicity-relevant factor matrix η. Define concatenated (D+ S)×K

loadings matrix Ω =

[
Λ
Θ

]
and (D + S) × N data matrix W =

[
Y sum

X−Ξν

]
where Y sum is a D × N

matrix with entry [h, i] giving the sum across replicates of the response values for chemical i at
dose index h (or left as missing for chemical i with no observations at dose index h). Explicitly,

Y sum[h, i] =
∑R[i]
r=1 yi[r],h. Let Oh,i denote the number of observations of chemical i at dose index
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h. For example, if chemical i has two replicates observed at dose indices {1, 3, 5} and {1, 2, 5, 6},
respectively, then (assuming D = 6) Oi = [O1,i, . . . , O6,i]

′ equals [2, 1, 1, 0, 2, 1]′.

Sample the K ×N matrix η by column. For i = 1, . . . , N :

– Let U∗i = {d∗1, . . . , d∗U} be the set of U ≤ D unique dose values at which chemical i has at
least one observation (i.e., d∗u ∈ U∗i iff OYd∗u,i > 0). Use M[U∗i ] to denote the matrix with only
the relevant doses selected (across either rows or columns, depending on which is the relevant
dimension). For example, Ω[U∗i ] is the (U + S) × K matrix with the first U rows being the
subset of the original first D rows for doses in U∗i .

– Define σ2
Y,i to be a length-D vector with entry σ2

Y,i[d] =

{
σ2
Y /O

Y
d,i, if OYd,i > 0

σ2
Y , if OYd,i = 0

.

– Set Ω∗i to be the (D + S) ×K matrix with row p being the pth row of Ω times 1/σ2
Y,i[d] for

the first D rows, and the pth row of Ω times 1/σ2
X,p−D for the remaining S rows.

– Define the K ×K matrix R∗ = (ΩT
[U∗i ]Ω

∗
i[U∗i ] + diag(1, . . . , 1))−1.

– Sample ηi | all ∼ N(R∗(Ω∗i[U∗i ])
TW[U∗i ],i, R

∗).

Step 6. Sample entries of noise variance parameters ΣX and ΣY . Let EY = Λη and
EX = Θη + Ξν denote the mean of Y and X, respectively.

First sample σ2
Y , the common noise variance term for the dose response curves:

– LetD∗i denote the set of all (not necessarily unique) doses at which chemical i has observations.
E.g., D∗i could be {0, 0, 0.1, 0.1, 0.2, 0.3}.

– Define RSSY =
∑N
i=1

∑
d∈D∗i

(Yd,i − EYd,i)2 and NY =
∑N
i=1 |D∗i |.

– Sample σ2
Y | all ∼ Ga(

aσY +NY
2 ,

bσY +RSSY
2 ).

Next sample {σ2
X,s}, the feature-specific noise variance terms, for s = 1, . . . , S:

– Define RSSX,s =
∑N
i=1(Xs,i − EXs,i)2.

– Sample σ2
X,s | all ∼ Ga(

aσX+N

2 ,
bσX+RSSX,s

2 ).

Note that an informative prior on σ2
Y can utilize the variance of low-dose observations in related

assays, i.e. observations for which no activity is expected. Such a prior encourages the model to
learn structure in the curves rather than simply learning a large noise variance.

S.2. Additional simulation information and results.

S.2.1. Sampling details. In the BS3FA model, the B-FOSR, and the BAABTP model, four chains
are run with the initial 20000 samples discarded as burn-in and every 10th draw of the subsequent
20000 samples saved. For the BS3FA model the number of toxicity relevent and irrelevant factors
is set to be the true number of factors plus 5, the intention being to mimic the act of providing
a conservative ‘upper bound’ in the real data scenario. For the BAABTP model the number of
mixture components is set to 5. For LASSO, the dose levels, all chemical features, and all pairwise
interactions are included as covariates.



SUPPLEMENT TO “MODELING OF CHEMICAL STRUCTURE AND DOSE RESPONSE CURVES” 5

S.2.2. Distance performance. For distance performance, BS3FA is compared to Euclidean dis-
tance in the full feature space and in PCA space (i.e., with no supervision). The distance between
chemicals in η space is used as the truth when assessing model chemical similarity performance.
Correlation between model predicted distance and true distance is used as a scale-invariant measure
of model performance. Predicted distance is a metric defined by the latent factors in each method
(i.e., by model-predicted η for BS3FA and by the principal component scores in PCA). Coverage
is assessed for our model, B-FOSR, BAABTP, and a straw man model in which the standard de-
viation about low-dose response values is used to approximate a 95% confidence interval around
the observed training mean. Note that JIVE was not included as a competitor algorithm because
the amount of missingness introduced by omitting the observations of Y for the test data is is too
high for the algorithm (the use of the jive() function in the R package r.jive resulted in an error
message: “Unable to complete matrix, too much missing data”).

S.2.3. Inputs provided for each model. The inputs to B-FOSR are all chemical features. The inputs
to LASSO are the dose, chemical features, and all pairwise interactions therein. The features used
in the BAABTP model are PC95. The LASSO model was trained using the cv.glmnet function
from the glmnet package and predictions were made using the predict function from the resulting
object with s=‘lambda.1se’.

S.2.4. Simulated data structure with truth-model alignment. For all simulations, data on 300 ‘chem-
icals’ was created, comprised of dose-response curves and structure information. The number of
unique doses was set to D = 10, and the number of chemical features was set to S = 20. The
noise terms were set to be homoscedastic with σY = 0.2 and σX = 0.1. The true dimension of the
latent toxicity-relevant space was varied K ∈ {1, 3, 5}, as was that of the latent toxicity-irrelevant
space J ∈ {0, 5, 10, 15, 20}. In each simulated data set, 25% of the chemical dose-response curves
are hidden from the models as test data, while the remaining 75% are used as training data (note
that feature data are available for all chemicals, not just training data). At each simulation setting,
100 simulated data sets are created.

The toxicological ‘data’ were simulated so as to mimic realistic dose response curves. A smooth
factor loadings matrix Λ is created in each simulation by first smoothing the real Attagene PXR
data using a functional factor model, then randomly sampling 500 smoothed dose response curves
from this set and setting Λ to be the first K loadings from the SVD of this smooth subset of curves.
A sparse factor loadings matrix Θ is created for each simulation by creating a K×S standard normal
matrix M , then using the spEigen() function from the sparseEigen R package to compute sparse
orthogonal eigenvectors of the covariance matrix of M (i.e., setting Θ equal to spEigen(t(M) %*%

M, q=K, rho=0.2)$vectors).

S.2.5. Simulated data structure with misalignment between the model and the true data generating
process. We also perform a simulation study in which the structure assumed by BS3FA is not
the true data generating process, to mimic the (likely) scenario of a misalignment between our
assumptions and the truth. The hope is that BS3FA is still able to perform as well as competitors
under such a misalignment.

Define Srelevant to be the number of toxicity-relevant features and Sirrelevant to be the number of
toxicity-irrelevant features. Then S = Srelevant + Sirrelevant is the total number of features in X. To
assess how the model performs when the true data generating process does not match the data
generating process assumed by BS3FA, data were simulated assuming a polynomial relationship
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with dose. The misalignment simulation sets yi,d =
∑Srelevant
m=1 xi,m dm. That is, the response is a

polynomial function of dose with the parameters controlling the shape of the polynomial being
the true “toxicity-relevant” entries in xi. Thus the shape of the dose response curves does depend
on some features in xi, but not in the way assumed by BS3FA (although we note that when
Srelevant = 1 the polynomial is linear and can in fact be represented by the BS3FA model). We vary
the number of toxicity-relevant features Srelevant ∈ {1, 2, 3} and the number of toxicity-irrelevant
features Sirrelevant ∈ {0, 5, 10, 20, 30}.

For all simulations and choices of Srelevant and Sirrelevant, data on 300 ‘chemicals’ was created. The
number of unique doses was set to D = 10. The noise about the true dose response mean is assumed
to be homoscedastic with σY = 0.2. In each simulated data set, 25% of the chemical dose-response
curves are hidden from the models as test data, while the remaining 75% are used as training data
(note that feature data are available for all chemicals, not just training data). At each simulation
setting, 100 simulated data sets are created.

S.2.6. Additional results for model-truth-aligned simulation. Within a plot throughout this section,
each point shows the mean of the metric of interest from the 100 simulated data sets having the
specified settings. The lower and upper bands around this point give the 2.5 and 97.5 percentiles
of the performance values across the 100 simulations, respectively.

Figures S.1 through S.3 show visualizations of MSE, correlation, and distance coverage results for
the BS3FA model alone. It is clear that the model does best when the dimension of both η and ν
are smallest. That is, performance degrades as K and/or J increase. However, this degradation is
relatively minimal, and the model performance overall is still quite good even with large K and/or
J.
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Fig S.1: MSPE between BS3FA-predicted dose-response profile and true dose-response profile for hold-out “chemicals”.

Figure S.4 shows the coverage for the hold-out chemicals’ dose-response values. The BS3FA model
generally has close-to-nominal coverage and is robust to increasing “superfluous” information in
X, whereas the BAABTP model is harmed by its presence. This phenomenon is likely due to the
distance based kernel and the flexibility of the BAABTP model; the kernel cannot separate relevant
from irrelevant features, which leads to overfitting of the training data and poor performance on
holdout data.

Table S.1 shows the mean and SD of the test chemicals’ 95% simultaneous credible band widths for
each model across all simulations. It is preferable to have the narrowest band width subject to (at
least) nominal coverage. Combining these band width results with our coverage results, we see that
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Fig S.2: Proportion of hold-out chemicals’ (noisy) data points covered by the BS3FA 95% credible/confidence intervals.
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Fig S.3: Correlation between BS3FA-predicted distances in η space and true distance in η space.
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Fig S.4: Proportion of hold-out chemicals’ (noisy) data points covered by the 95% credible/confidence intervals for
each of the methods. Each subplot shows the result across methods for a given true shared subspace dimension K.
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BS3FA has the narrowest simultaneous bands subject to (at least) nominal coverage across values
of K and J . B-FOSR consistently over-covers and has wider simultaneous bands than BS3FA,
whereas BAABTP consistently under-covers and has narrower simultaneous bands than BS3FA.
The straw-man mean with SD estimates have bands that over- or under-cover and band widths
that are narrower or wider than BS3FA depending on K and J .

J = 0 J = 5 J = 10 J = 15 J = 20

K = 1 1.14 (0.03) 1.14 (0.03) 1.14 (0.04) 1.15 (0.04) 1.15 (0.04)
BS3FA K = 3 1.17 (0.04) 1.16 (0.04) 1.19 (0.05) 1.21 (0.06) 1.21 (0.08)

K = 5 1.18 (0.04) 1.20 (0.05) 1.22 (0.07) 1.24 (0.08) 1.26 (0.12)

K = 1 1.57 (0.07) 1.67 (0.13) 1.69 (0.15) 1.72 (0.18) 1.75 (0.21)
B-FOSR K = 3 1.65 (0.15) 1.76 (0.18) 1.87 (0.23) 1.93 (0.26) 2.07 (0.35)

K = 5 1.72 (0.22) 1.91 (0.27) 2.08 (0.32) 2.21 (0.34) 2.27 (0.38)

K = 1 0.69 (0.03) 0.68 (0.02) 0.69 (0.06) 0.80 (0.18) 0.81 (0.15)
BAABTP K = 3 0.72 (0.04) 0.70 (0.03) 0.85 (0.21) 0.91 (0.17) 0.99 (0.22)

K = 5 0.74 (0.05) 0.74 (0.04) 0.92 (0.26) 1.07 (0.25) 1.20 (0.26)

K = 1 0.78 (0.02) 0.79 (0.03) 0.80 (0.04) 0.78 (0.03) 0.79 (0.03)
Mean with SD K = 3 1.19 (0.05) 1.21 (0.08) 1.26 (0.07) 1.21 (0.07) 1.25 (0.07)

K = 5 2.75 (0.15) 2.68 (0.16) 2.73 (0.16) 2.67 (0.20) 2.68 (0.20)

Table S.1: Hold-out chemical 95% simultaneous credible band widths for each method yielding interval estimates.
Shown is the mean (SD) band width across all chemicals and simulations.

Of course, predictive ability and ability to characterize distance in η space are not the only model
capabilities of interest. Model components may be interrogated for interpretation as well. Table S.2
provides an assessment of the fit for various model components of BS3FA. The MSE for σ2

x is poor
when J is small because there is a lack of identifiability between the non-toxicity-relevant structure
component Ξν and the noise term σ2

x. Since the latent dimension J is set to an over-estimate when
running BS3FA, there is “room” in Ξν to absorb σ2

x. As J increases, the model becomes greedier
and needs to use up the Ξν component to explain non-noise variability in X not shared with Y. On
the other hand, the terms ΛΛ′, ΘΘ′, and σ2

y are all identifiable and are consistently well estimated
by our model.

Recall that a chemical is deemed active if its global Bayesian p-value is less than 0.05. Table S.3
shows the true positive rate (TPR), false positive rate (FPR), and false discovery rate (FDR) of
the B-FOSR method on the simulated data. Across all values of K and J the TPR is quite high,
and the FPR and FDR are middling. Note that the TPR, FPR, and FDR all increase with K and
seem fairly invariant to changes in J. That is, the model loses specificity when the dimension of the
latent toxicity-relevant space increases.

S.2.7. MSPE, coverage, and distance results for model-truth-misaligned simulation. Figure S.5
shows the mean squared predictive error (MSPE) for the hold-out chemicals’ dose-response mean
functions when there is misalignment between the structure assumed by the BS3FA model and
the true data generating process. In spite of this misalignment, BS3FA is able to predict similarly
to or better than the competitors. As with the well-aligned simulation, BS3FA appears robust to
increasing “superfluous” information in X.

A similar story can be seen in the coverage and distance results (Figures S.6 and S.7) for the
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J = 0 J = 5 J = 10 J = 15 J = 20

K = 1 4e-05 (3e-05) 4e-05 (2e-05) 4e-05 (2e-05) 4e-05 (2e-05) 4e-05 (2e-05)
ΛΛ′ K = 3 3e-05 (0) 5e-05 (1e-05) 7e-05 (0) 8e-05 (4e-05) 0.00011 (5e-05)

K = 5 4e-05 (2e-05) 5e-05 (2e-05) 5e-05 (0) 3e-05 (0) 8e-05 (3e-05)

K = 1 9e-05 (3e-05) 0.00011 (6e-05) 1e-04 (6e-05) 7e-05 (3e-05) 0.00015 (0.00011)
ΘΘ′ K = 3 3e-05 (0) 3e-05 (0) 4e-05 (0) 4e-05 (1e-05) 4e-05 (2e-05)

K = 5 2e-05 (0) 2e-05 (0) 1e-05 (0) 2e-05 (0) 3e-05 (1e-05)

K = 1 0.00011 (0.00015) 0.00011 (0.00017) 2e-05 (2e-05) 1e-05 (1e-05) 1e-05 (2e-05)
σ2
y K = 3 1e-05 (0) 2e-05 (0) 5e-05 (0) 3e-05 (3e-05) 3e-05 (4e-05)

K = 5 3e-05 (3e-05) 3e-05 (3e-05) 1e-05 (0) 3e-05 (1e-05) 8e-05 (7e-05)

K = 1 0.4350 (0.0373) 0.0369 (0.0052) 0.0121 (0.0014) 0.0064 (0.0002) 0.0045 (0.0003)
σ2
x K = 3 0.2065 (0.0267) 0.0257 (0.0029) 0.0103 (0.0009) 0.0064 (0.0003) 0.0051 (0.0001)

K = 5 0.1123 (0.0182) 0.0216 (0.0029) 0.0091 (0.0008) 0.0056 (0.0003) 0.0060 (0.0001)

Table S.2: MSE between the true and estimated values for each model component. These components characterize
the structured toxicity-relevant directions of variation and the noise variance in the simulated data.

J = 0 J = 5 J = 10 J = 15 J = 20

K = 1 0.82 (0.07) 0.82 (0.07) 0.81 (0.08) 0.82 (0.04) 0.76 (0.07)
TPR K = 3 1.00 (0.01) 1.00 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.02)

K = 5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

K = 1 0.13 (0.09) 0.21 (0.12) 0.21 (0.09) 0.11 (0.09) 0.18 (0.09)
FPR K = 3 0.31 (0.10) 0.38 (0.10) 0.36 (0.09) 0.38 (0.10) 0.39 (0.11)

K = 5 0.45 (0.10) 0.48 (0.13) 0.49 (0.09) 0.48 (0.09) 0.49 (0.08)

K = 1 0.13 (0.07) 0.19 (0.09) 0.20 (0.08) 0.11 (0.08) 0.18 (0.09)
FDR K = 3 0.24 (0.06) 0.28 (0.07) 0.26 (0.06) 0.27 (0.07) 0.28 (0.08)

K = 5 0.30 (0.07) 0.31 (0.07) 0.33 (0.06) 0.32 (0.06) 0.33 (0.05)

Table S.3: True positive rate (TPR), false positive rate (FPR), and false discovery rate (FDR) for the B-FOSR model
under the proposed method of assessing whether a chemical is active. A perfect classifier has a TPR of 1 and an
FPR/FDR of 0.
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Fig S.5: Mean squared predictive error (MSPE) for the hold-out chemicals’ dose-response mean functions under the
polynomial model.
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misaligned simulation as for the model-truth-aligned simulation. Namely, BS3FA has closest-to-
nominal (albeit still somewhat high) coverage, while other methods are less well calibrated. BS3FA
has very stable, high correlation between the true Euclidean distance matrix for the relevant parts
of X, and that of the model-predicted η. Direct PCA, FOSR-VS, and Euclidan distance suffer
immediately and harshly when Sirrelevant exceeds 0.

Srelevant = 1 Srelevant = 2 Srelevant = 3

0 5 10 20 30 0 5 10 20 30 0 5 10 20 30

0.85

0.90

0.95

1.00

0.90

0.95

1.00

0.85

0.90

0.95

1.00

Sirrelevant

C
ov

er
ag

e 
of

 9
5%

 c
re

di
bl

e 
in

te
rv

al

Method BS3FA B−FOSR BAABTP Mean with SD

Fig S.6: Proportion of hold-out chemicals’ (noisy) data points covered by the 95% credible/confidence intervals for
each of the methods under misalignment between the true and BS3FA-assumed structure.
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Fig S.7: Correlation between entries in the true pairwise distance matrix (i.e., the Euclidean distance between true
relevant dimensions of X) and the predicted pairwise distance matrix for holdout chemicals under misalignment
between the true and BS3FA-assumed structure.

S.3. Additional ToxCast run information.

S.3.1. Data download. A pre-cleaned R data file holding a subset of the information from the
ToxCast database was created by Dr. Matthew Wheeler and can be downloaded from https:

//1drv.ms/u/s!AoYFThhStiORt0YjFGEQDKjBa4BZ. The download, gain.Rdata, is a file contain-
ing the dose-response information for all Phase 1, Phase 2, and e1k chemicals tested across all
ToxCast assays. For this analysis, only results for the the Attagene PXR assay (i.e., the as-
say having value 135 for the variable aeid) were saved and are provided with this manuscript
as the file atg pxr data.Rdata. The full ToxCast data are available for download from https:

//www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data.
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S.3.2. Results and diagnostics. We consider K to be chosen “large enough” if the smallest value
of 1/τj is below 0.01. Similarly, we consider J to be chosen “large enough” if the smallest value of
1/ωj is below 0.01. Figure S.8 shows the ordered values 1/τj and 1/ωj for the Tox run.
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Fig S.8: Ordered variance elements driving column-specific shrinkage of the factor loadings matrices Λ and Θ (left),
and Ξ (right).

Figure S.9 shows posterior predictive plots for the maximum observed response value for select
test chemicals with the actual maximum observed response value denoted by a dashed vertical
line. The chemicals shown in the first two rows are the same hold-out chemicals as those shown in
Figure 19 and the first row of Figure 20 in the main paper; the final row shows three chemicals
having particularly high MSPE (i.e. poor predictions). Unsurprisingly, the poorer the overall fit of
the predicted dose-response profile to the data, the farther toward the boundary of the posterior
predictive distribution the observed data are. For example, the bottom left subplot, in which model
posterior predictions are all much lower than the observation, reflects the fact that this chemical
was chronically under-predicted by the model. When the predicted dose response profile seems well
aligned with the data the posterior predictive plots show minimal signs of misalignment between
the posterior and the data.

Figure S.10 shows the results for hold-out chemicals having poorly predicted dose response curves.
These poor predictions may be a sign that the Mold2 structure information doesn’t contain enough
toxicity-relevant information to fully inform the dose response curve shapes, that we do not have
enough training data, and/or that underlying model assumptions are incomplete. Further work
should explore which chemicals are poorly predicted and why.

Trace plots for the predicted dose response profiles of hold-out chemicals show good mixing (a
randomly sampled set of chemicals are shown across multiple doses in Figure S.11), as do the noise
variance terms for the data (samples of σY are shown in Figure S.12).

While there are some inconsistencies between predicted values across multiple chains at higher
doses (see Figure S.13), the general curve shapes and predicted summary quantities are consistent
across chains (see Figure S.14).
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Fig S.9: Posterior predictive plots for the maximum observed response value for select test chemicals. The true
maximum observed response value is indicated by a dashed vertical line. The posterior predictive does not appear
misaligned with the data except in the case of poorly fitting curves generally or apparent data outliers. For example,
the bottom left plot corresponds to general model under prediction of the dose response curve for that chemical.
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Fig S.10: Results for select hold-out chemicals for which the fit between predicted dose response curve and observed
data is particularly poor. Shown are predicted average dose-response curve (dashed black line), 95% simultaneous
interval for expected dose-response curve (darker grey ribbon), and 95% credible interval for observed data (lighter
grey ribbon). Data (held out in training) are solid blue points. Top: both chemicals have abnormally high response
values. While BS3FA predicts both to be activating, it does not predict the height of the activity. Middle: these
chemicals both appear non-activating, but the model predicted that these chemicals were activating. Bottom: both
chemicals appear activating, but the model predicted that these chemicals were non-activating or of low activity.
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Fig S.11: Trace plots for randomly selected hold-out chemicals’ response at multiple doses (indexed by s in column
headers).

Fig S.12: Trace plot showing samples of the noise variance term for Y .
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Fig S.13: The predicted dose response curves for hold-out chemicals having the largest divergence between predicted
mean across two chains. While the exact shape of the predicted curve differs (e.g., note how in the bottom row chain
1 predicts a slightly flatter curve with less of a U shape at the end than chain 2), small regions of multi-modality do
not concern us. Even in the “worst” behaving chemicals the general direction of effect is similar, and the chemical
profiles predicted are consistent for the large majority of chemicals.

Fig S.14: A comparison between two chains of the following chemical-specific value. From left to right: the maximum
value of the lower bound for the dose response curve; the mean square (predictive) error for training (test) chemicals;
the number of points covered by the model 95% posterior data credible interval interval. Red line denotes x = y.
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Fig S.15: A comparison between two chains of model predicted components. Left: the column of Λ having the largest
2-norm. Right: the associated column of Θ. Note that scales and signs differ across chains, but general relationships
remain consistent.

Figures S.16 through S.18 show posterior predictive histograms for randomly selected chemical
feature sets X. In general, the model posterior predictions are consistent with observed data. An
exception to this is for a small number of continuous features having heavier-than-normal tails, for
which the model posterior predicted medians are consistent with observed data but model posterior
predicted maximum absolute values are less than the true maximum absolute value. Exploring
allowing for heavier tails in the feature data is an avenue of future research.

S.4. Data structure for chemical features. The Mold2 software was downloaded from https:

//www.fda.gov/scienceresearch/bioinformaticstools/mold2/default.htm. A description of
the process for generating Mold2 descriptors using the information provided by ToxCast is provided
with this manuscript as the file workflow.txt.

S.4.1. “Identical” chemicals. Our empirical examination showed that the majority of chemicals
grouped together via having the same-Mold2-output the dose-response profiles are similar up to
noise (see some example output in Figure S.20, in which the grey/black points are chemicals having
different SMILES but identical Mold2 output). We suspect that augmenting Mold2 is potentially
useful, but not critical for the purpose of the illustrative application in the main paper.

S.4.2. Count features. The model can accommodate count data via the underlying normal assump-
tion and rounding operator described in the main paper. However, this rounding operator is more
computationally expensive than simply treating a variable as continuous, and a log transformation
in many cases will allow a count feature to well-approximate a continuous normal variable.
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Fig S.16: Posterior predictive histograms for randomly selected count chemical features showing model-predicted
draws of the number of 0s in simulated datasets (histogram) and the observed number of 0s in the real dataset
(vertical red line).
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Fig S.17: Posterior predictive histograms for randomly selected continuous chemical features showing model-predicted
draws of the median value in simulated datasets (histogram) and the observed median in the real dataset (vertical
red line).
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Fig S.18: Posterior predictive histograms for randomly selected continuous chemical features showing model-predicted
draws of the maximum absolute value in simulated datasets (histogram) and the observed maximum absolute value
in the real dataset (vertical red line).
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Fig S.19: An example of a pair of chemicals having identical Mold descriptor sets. On the left is beta-
Hexachlorocyclohexane and on the right is delta-Hexachlorocyclohexane. The chemical SMILES are:
Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@H](Cl)[C@@H](Cl)[C@@H]1Cl and
Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@H](Cl)[C@H](Cl)[C@@H]1Cl, respectively.
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Fig S.20: Example dose response profiles for pairs of chemicals having identical Mold descriptor sets (point color
differentiates chemical).
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Fig S.21: Three examples of count data in the set of Mold2 descriptors X for the included chemicals. Note that some
features seem better suited to the underlying continuous assumption used in the model (i.e., the top and bottom)
while others could be improved on via some other special specification based on expert input (i.e., the middle).
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Fig S.22: Count variables having maximum value of greater than 10 are log transformed and then treated as continuous
(i.e., scaled and centered) before their inclusion in the model. The top row shows an example of a pre-transformed
feature, and the bottom row shows that same feature after taking the log, scaling, and centering.


