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Appendix Methods 
 

Developing prediction algorithm using 2013-2016 Pennsylvania Medicaid data 
 
In this study, our primary goal was prediction, and our secondary goal was risk stratification (i.e., 

to identify subgroups of patients at similar risk of the outcome). First, we randomly and equally divided 
the 2013-2016 Pennsylvania Medicaid beneficiaries into training, testing, and validation samples based 
on the beneficiaries’ characteristics and opioid overdose distribution. We created a series of candidate 
predictors (n=284) identified from prior literature(1-24) and our previous work (Appendix p5)(25) that 
were measured at baseline (during the 3-month period before the first opioid fill) and in 3-month 
windows after initiating prescription opioids. Appendix p5 lists each of the candidate predictors related 
to health status (e.g., number of ED visits, comorbidities), patterns of opioid (e.g., total morphine 
milligram equivalent) and other relevant medication (e.g., benzodiazepines) use, regional-level factors 
linked from publicly-available sources (e.g., area deprivation index), and provider-level variables (e.g., 
specialty).(26) We used the sliding-window and multi-instance approach that was conceptually similar 
to discrete-time survival analysis methods in which covariates are processed in sequential chunks.(27, 
28) This approach better simulates continuous population screening in practical applications compared 
to time-series analysis. We simulated a system in which the entire cohort was screened every 3 months 
to accurately capture all instances of overdoses during the target prediction window. We aimed to 
answer the question: “Will the patient have an overdose event at any time point during the target 
subsequent 3-month window?”. Beneficiaries remained in the cohort once eligible, regardless of 
whether they continued to receive opioids or had an overdose, until they died or disenrolled from 
Medicaid programs. Machine learning can handle highly correlated data with repeated opioid episodes 
or outcome events per patient. We developed and tested prediction algorithms for the risk of opioid 
overdose using gradient boosting machine (GBM). We fitted the trained algorithms based on the 
training sample, refined the algorithm using the testing sample, and then applied the final algorithm to 
the validation sample to evaluate prediction performance. 

Our model reporting complies with the Transparent Reporting of Multivariable Prediction Model 
for Individual Prognosis or Diagnosis (TRIPOD) and the Standards for Reporting of Diagnostic 
Accuracy (STARD) reporting guidelines.(27, 28) According to the TRIPOD guideline, multivariable 
prediction models fall into 2 broad categories (1) diagnostic and (2) prognostic prediction models. A 
diagnostic modeling study includes multiple predictor candidates to estimate the probability that a 
certain condition or disease is present (or absent) at the moment of prediction (i.e., cross-sectional 
design). A prognostic modeling study includes multiple predictor candidates to estimate the probability 
of a particular outcome occurring in a certain period in the future (e.g., overdose in the subsequent 3 
months in our study). Our study was a prognostic modeling study (with a retrospective longitudinal 
design). We calculated the C-statistic (or the area under the receiver operating curve [ROC]) from the 
validation sample to assess discrimination (i.e., the extent to which patients predicted as high-risk 
exhibit higher overdose rates compared to those predicted as low-risk). For each probability cutoff 
point, opioid overdose was predicted for the visits with calculated probabilities above the cutoff point, 
whereas non-overdose was predicted for the visits with probabilities below the cutoff point. Based on 
their true and predicted opioid overdose status, the patients’ 90-day visits can be assigned to one of the 
four groups (i.e., true positive [TP], false positive [FP], true negative [TN], false negative [FN]) as shown 
in the classification matrix (Appendix p12-13). Given that opioid overdose events are rare outcomes 
and C-statistics do not incorporate information about the prevalence of the outcome, we further 
reported other more appropriate metrics, including sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR), 
number needed to evaluate (NNE) to identify one opioid overdose, and estimated rate of alerts to 
assess pre-implementation evaluation of our prediction algorithms (Appendix p12-13).(29) The optimal 
algorithm for a screening test depends on the pre-test probability of the outcome, the values of TPs and 
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TNs, and the costs of FP and FN. Since these factors vary from setting to setting (and some of them 
are subjective choices), no single cutoff point is suitable for every purpose. To compare performance 
across methods, we presented and assessed these prediction metrics (e.g., NNE) at the balanced 
threshold of the predicted probability that balances sensitivity and specificity as identified by the 
Youden index,(30) as well as at multiple levels of sensitivity and specificity (e.g., 90%-100%) to allow 
risk-benefit evaluations of interventions triggered by positive tests using different thresholds to define 
high risk.    

Second, based on the individual’s predicted probability of an opioid overdose event, we classified 
beneficiaries in the validation sample into decile risk subgroups using the risk score thresholds derived 
from the 2013-2016 Pennsylvania training algorithm, with the highest decile further split into three 
additional strata based on the top 1st, 2nd to 5th, and 6th to 10th percentiles to allow closer examination of 
patients at highest risk of experiencing opioid overdose. We evaluated calibration plots (the extent to 
which the predicted opioid overdose risk agreed with the observed risk) by risk subgroup. We briefly 
summarized the GBM approach in the sections below (see more details in our previously published 
work).(25) Gradient Boosting Machine (GBM; Stochastic gradient boosting or TreeNet in Salford 
SPM)(31, 32) 

GBM, a tree-structured ensemble approach, consists of a series of trees grown in a sequential order of 
successive trees to minimize the residual error. We used the Salford’s TreeNet function to supply an 
initial value specific to the chosen loss function (i.e. logistic binary) for each record in the training 
sample. The Salford’s TreeNet function is similar to the XGBoost in Python, which can handle a large 
number of features. TreeNet can handle missing values automatically. No additional feature selection 
process was used prior to the GBM modeling. We used both cross entropy (i.e., negative average log 
likelihood) and the area under the receiver operating characteristic curve (AUCROC) methods as the 
tuning criterion to determine the optimal number of trees optimal for logistic models. The Neg. AvgLL 
approach is similar to AUCROC, but emphasizes the probability interpretation of the model predictions. 
The AUCROC is a measure the overall model performance tied closely to the ability of the model to 
correctly rank records from most likely to least likely to be “1” or “0”. Both approaches yielded similar 
optimal numbers of trees, and we reported the results from the Neg. AvgLL approach because relying 
on the C-statistic (i.e., AUCROC) can be misleading for rare outcomes. Second, TreeNet sampled 25% 
of the records in the training sample randomly (4-fold cross-validation) and then computed the 
generalized residual for the records in the sample. The first tree is fitted to the data and begins with a 
very small tree as the initial model. TreeNet used the sampled records to fit a classification tree with a 
maximum of 8 terminal nodes to the generalized residuals. Third, TreeNet used the classification tree 
derived from the sampled records to update the TreeNet model based on the loss function and shrank 
the updated tree by the best learning rate (or the shrinkage rate) at 0.1 for overfitting protection. 
TreeNet repeated the steps previously described 50 to 300 times (i.e., the best number of trees to build 
= 200). Other parameters used for tuning included maximum depth of the tree (3-8), feature resample 
rate (i.e. columns) (0.7-0.9), data resample rate (i.e. rows) (0.7-0.9), L1 regularization weight (0.01-1), 
L2 regularization weight (0.01-1), minimum child weight (to prevent further partition, i.e., overfitting) 
(0.01-1), minimum loss reduction (required to make further partition) (1-50), and step size shrinkage 
[0.1-0.5]. Finally, we tested and validated the algorithms in the testing and validation samples. For 
studies like ours with a highly imbalanced classification, calibration of the probability is needed to avoid 
being over-confident about the prediction performance. To obtain the true event probability, we fit a 
logistic regression model (Y=β0+β1×predicted ½ log-odds of GBM’s predicted score) to 
transform the calibrated scores. 
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eTable 1. Diagnosis codes for identifying opioid overdose 
Conditions ICD-9 codes ICD-10 codes 

Opioid overdose 965.00, 965.01, 965.02, 965.09, 
E850.0, E850.1, E850.2, E935.0, 
E935.1, E935.2 

T40.0X1A, T40.0X2A, T40.0X3A, T40.0X4A, 
T40.1X1A, T40.1X2A, T40.1X3A, T40.1X4A, 
T40.2X1A. T40.2X2A, T40.2X3A, T40.2X4A, 
T40.3X1A, T40.3X2A, T40.3X3A, T40.3X4A, 
T40.4X1A, T40.4X2A, T40.4X3A, T40.4X4A, 
T40.601A, T40.602A, T40.603A, T40.604A, 
T40.691A, T40.692A, T40.693A, T40.694A 
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eTable 2. Other diagnosis codes used to identify the likelihood of opioid overdosea 
ICD 
type 

ICD code ICD codes description 

Other drug/substance-related overdose or substance use disorders 

ICD-9 965* Poisoning by analgesics antipyretics and anti-rheumatics 

ICD-9 966 Poisoning by anticonvulsants and anti-parkinsonism drugs 

ICD-9 967 Poisoning by sedatives and hypnotics 

ICD-9 968 Poisoning by other central nervous system depressants and anesthetics 

ICD-9 969 Poisoning by psychotropic agents 

ICD-9 970 Poisoning by central nervous system stimulants 

ICD-9 971 Poisoning by drugs primarily affecting the autonomic nervous system 

ICD-9 972 Poisoning by agents primarily affecting the cardiovascular system 

ICD-9 973 Poisoning by agents primarily affecting the gastrointestinal system 

ICD-9 975 Poisoning by agents primarily acting on the smooth and skeletal muscles and respiratory system 

ICD-9 977 Poisoning by other and unspecified drugs and medicinal substances 

ICD-9 980 Toxic effect of alcohol 

ICD-9 989 Toxic effect of other substances chiefly nonmedicinal as to source 

ICD-9 303 Alcohol dependence syndrome 

ICD-9 304 Drug dependence 

ICD-9 305 Nondependent abuse of drugs 

ICD-10 F10 Alcohol related disorders 

ICD-10 F11 Opioid related disorders 

ICD-10 F12 Cannabis related disorders 

ICD-10 F13 Sedative, hypnotic, or anxiolytic related disorders 

ICD-10 F14 Cocaine related disorders 

ICD-10 F15 Other stimulant related disorders 

ICD-10 F16 Hallucinogen related disorders 

ICD-10 F17 Nicotine dependence 

ICD-10 F18 Inhalant related disorders 

ICD-10 F19 Other psychoactive substance related disorders 

ICD-10 T39 Poisoning by, adverse effect of and underdosing of nonopioid analgesics, antipyretics and antirheumatics 

ICD-10 T40 Poisoning by, adverse effect of and underdosing of narcotics and psychodysleptics [hallucinogens] 

ICD-10 T41 Poisoning by, adverse effect of and underdosing of anesthetics and therapeutic gases 

ICD-10 T42 Poisoning by, adverse effect of and underdosing of antiepileptic, sedative- hypnotic and antiparkinsonism drugs 

ICD-10 T43 Poisoning by, adverse effect of and underdosing of psychotropic drugs, not elsewhere classified 

ICD-10 T48 Poisoning by, adverse effect of and underdosing of agents primarily acting on smooth and skeletal muscles and the 
respiratory system 

ICD-10 T51 Toxic effect of alcohol 

ICD-10 T65 Toxic effect of other and unspecified substances 

 
* Excluding codes for opioid and heroin overdose. 
a: Based on Dunn KM et al. (2010)(7) but excluding E950-959 (suicide and self-inflicted injury codes).  
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eTable 3. Summary of predictor candidates (n=284) measured in 3-month windows for predicting subsequent opioid overdosea 
Patterns of prescription 

opioid useb 
Patterns of non-opioid 

prescription use 
Beneficiaries 

sociodemographics 
Health status factors Opioid prescriber-

level variables (PA 
Medicaid only)d 

Regional-level factorse 

• Average opioid daily 
dose in MMEc 

• Cumulative MME 
• Cumulative duration 

for any opioids, 
SAO, and LAO 

• Duration of longest 
continuous use for 
any opioids, SAO, 
and LAO 

• No. fills of any 
opioids, SAO, and 
LAO  

• No. standardized 30-
day prescriptions for 
any opioids, SAO, 
and LAO 

• Cumulative duration 
of 30-day use of any 
opioids, SAO, and 
LAO 

• No. fills by opioid 
ingredient and type 
(e.g., any fentanyl, 
SAO-type fentanyl, 
LAO-type fentanyl) 

• Type of opioids by 
Schedule and 
SAO/LAO (e.g., 
SAO, Schedule I 
only) 

• No. unique opioid 
prescribers 

• No. unique 
pharmacies 

• No. early refills for 
opioids 

• Cumulative 
overlapping days of 
early refills 

• No. BZD fills 
• No. muscle relaxants 

fills 
• Cumulative 

overlapping days of 
concurrent opioid and 
BZD use 

• Cumulative 
overlapping days of 
concurrent opioid and 
muscle relaxants use 

• Cumulative 
overlapping days of 
concurrent opioid, 
BZD and muscle 
relaxants use 

• Cumulative duration 
of naltrexone 

• No. gabapentinoid fills 
• Cumulative duration 

of gabapentinoid use 
• No. antidepressants 

fills 
• Cumulative duration 

of antidepressant use 
• No. average monthly 

non-opioid 
prescriptions 

• No. naltrexone fills 
• Received methadone 

opioid agonist 
therapyf 

• Received 
buprenorphine for 
OUDf 

• Cumulative duration 
of buprenorphine for 
OUDf 
 
 

• Age 
• Sex 
• Race (White, Black, 

Other/Unknown) 
• Ethnicity (Hispanic, 

non-Hispanic, and 
Other/Unknown)g 

• County of residence 
• Zip code of 

residence 
• Type of resided 

county (metro vs. 
non-metro) 

• Type of Medicaid 
eligibility  

• Duration of Medicaid 
enrollment 

• No. outpatient visits 
• No. ED visits 
• No. inpatient visits 
• History of prescription opioid overdoses 
• History of heroin overdose 
• History of naloxone administration 
• Non-opioid drug use disorders 
• Alcohol use disorders 
• History of urine drug tests 
• History of SUD counseling 
• OUD 
• Adjustment disorders 
• Personality disorders 
• Psychoses  
• Delusional disorders 
• Schizophrenia 
• Mood disorders 
• Anxiety disorders 
• Alcohol-induced mental disorders 
• Drug-induced mental or sleep disorders 
• Other mental health disorders 
• Osteoarthritis 
• Rheumatoid arthritis 
• Back pain 
• Neck pain 
• Headache or migraine 
• Temporomandibular disorder pain 
• Abdominal pain or hernia 
• Chest pain 
• Kidney or gall bladder stones 
• Menstrual or genital reproductive pain 
• Fractures, concussion, injuries 
• Fibromyalgia 
• Internal orthopedic device implant/graft 
• Other pain conditions 
• Surgical procedures (e.g., ischemic heart 

diseases) 
• Diseases of musculoskeletal system and 

connective tissues 
• Neuropathies (excluding alcoholic, drug, 

and optic related) 
• Ischemic heart disease 
• HIV/AIDS 
• Elixhauser index and individual categories 

• Prescriber’s sex 
• Prescriber’s 

specialties 
• Average monthly 

opioid prescribing 
volume 

• Average monthly 
opioid prescribing 
dose in MME 

• Average monthly 
No. of patients 
receiving opioids 

• AHRF total health 
facilities variables 

• AHRF health professions 
variables 

• AHRF resource scarcity 
variables 

• AHRF health training 
programs variables  

• AHRF hospital 
expenditures, Medicare 
costs, VA expenditures 

• AHRF inpatient 
days/discharges variables 

• AHRF other health 
services utilization 
variables 

• AHRF census-based 
variables (e.g., medium 
household income, 
employment) 

• AHRF health insurance 
status variables 

• AHRF housing statistics 
• County health rankings 

and roadmaps  
• Area deprivation index  

County-health ranking 
variables 
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Abbreviations: AHRF: Area Health Resources Files; BZD: benzodiazepines; DUI: driving under the influence; HIV/AIDS: human immunodeficiency virus/acquired immunodeficiency syndrome; LAO: 
long-acting opioids; MME: morphine milligram equivalent; No: Number of; SAO: short-acting opioids; SUD: substance use disorders; 
a: Details for the operational definitions for each variable and corresponding diagnosis and procedure codes and National Drug Codes can be provided by request to the corresponding author. 
b: We used an “as-prescribed” approach that assumes patients taking all prescribed opioids on the schedule recommended by their clinicians.(10) Patients who received refills for the same drug at the 
same  dose and schedule while still having opioid prescriptions within three days from a prior fill were assumed to have taken the medication from the prior fill before taking medication from the second 
fill.(33)  
c: We calculated morphine milligram equivalent (MME) for each opioid prescription, defined by the quantity dispensed multiplied by the strength in milligrams, multiplied by a conversion factor.(34) For each 
person, the average daily MME during the 90-day window was calculated by summing MMEs across all opioids and dividing by the number of days supplied. 
d: Prescribers were identified by their National Provider Identifiers. Primary opioid prescribers were defined as the prescribers who dominantly prescribed the most opioid prescriptions. If patients only had 
2 opioid prescriptions, then the first prescriber was considered as the primary prescriber. 
e: AHRF variables (https://data.hrsa.gov/topics/health-workforce/ahrf), area deprivation index (https://www.hipxchange.org/ADI), and county-health ranking variables 
(http://www.countyhealthrankings.org/explore-health-rankings/use-data) are publicly available and downloadable 
g: Arizona Medicaid data did not have a separate ethnicity variable from race, we create the ethnicity variable and classified beneficiaries as Hispanic when it was indicated in the race category or death 
certificates as Hispanic; otherwise, we classified the remaining Arizona Medicaid beneficiaries as non-Hispanic. 

https://data.hrsa.gov/topics/health-workforce/ahrf
https://www.hipxchange.org/ADI
http://www.countyhealthrankings.org/explore-health-rankings/use-data
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eTable 4. Prediction performance measures for predicting opioid overdose (fatal/nonfatal) varying sensitivity and 
specificity using gradient boosting machine (GBM): 2013-2016 and 2017-2018 Pennsylvania (PA) Medicaid data 
and Arizona (AZ) Medicaid claims 

Methods  Score 
threshol
d (range 
0-100)a 

Predicted 
overdose 

(%) 

Sensitivity (%) Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

F1  
(%) 

F2  
(%) 

PLR NNE 

2013-2016 
PA data 

                  

Sensitivity                   
    100% 7.93 99.70 100.00 0.30 0.19 100.00 0.0039 0.0096 1.00 516 
    99% 15.82 88.56 99.02 11.46 0.22 99.98 0.0043 0.0107 1.12 463 
    98% 18.91 78.83 98.02 21.20 0.24 99.98 0.0048 0.0119 1.24 417 
    97% 21.14 71.48 97.01 28.57 0.26 99.98 0.0052 0.0130 1.36 382 
    96% 22.91 66.08 96.00 33.98 0.28 99.98 0.0056 0.0139 1.45 357 
    95% 24.73 60.94 95.03 39.12 0.30 99.98 0.0060 0.0149 1.56 332 
    94% 26.17 56.89 94.02 43.18 0.32 99.97 0.0064 0.0157 1.65 313 
    93% 27.55 53.27 93.01 46.80 0.34 99.97 0.0067 0.0166 1.75 297 
    92% 28.43 51.09 92.00 48.99 0.35 99.97 0.0069 0.0171 1.80 288 
    91% 29.58 48.27 91.03 51.81 0.36 99.97 0.0073 0.0179 1.89 275 
    90% 30.52 46.12 90.02 53.96 0.38 99.96 0.0075 0.0185 1.96 265 
    85% 35.91 35.48 85.02 64.61 0.46 99.96 0.0092 0.0226 2.40 216 
    80% 41.12 27.93 80.01 7.17 0.55 99.95 0.0110 0.0269 2.88 181 
    75% 46.97 21.49 75.01 78.62 0.67 99.94 0.0134 0.0325 3.51 148 
Balanced 
thresholdb 46.79 21.65 75.27 78.46 0.67 99.94 0.0133 0.0324 3.49 149 
Specificity           
    90% 65.20 10.09 59.16 90.00 1.13 99.91 0.0222 0.0526 5.92 88 
    91% 67.96 9.09 56.47 91.00 1.20 99.91 0.0235 0.0553 6.27 83 
    92% 71.45 8.09 52.92 92.00 1.26 99.90 0.0247 0.0577 6.61 79 
    93% 75.96 7.08 49.36 93.00 1.35 99.89 0.0262 0.0607 7.05 74 
    94% 83.05 6.07 44.71 94.00 1.42 99.89 0.0275 0.0630 7.45 70 
    95% 96.70 5.07 38.97 95.00 1.49 99.88 0.0286 0.0644 7.79 67 
    96% 97.45 4.06 34.05 96.00 1.62 99.87 0.0309 0.0681 8.51 62 
    97% 97.84 3.05 28.01 97.00 1.77 99.86 0.0334 0.0708 9.34 56 
    98% 98.13 2.04 20.40 98.00 1.94 99.84 0.0353 0.0701 10.20 52 
    99% 98.40 1.02 11.96 99.00 2.26 99.83 0.0381 0.0644 11.97 44 
    100% 99.48 0.00 0.00 100.00 0.00 99.81 N/A N/A 0.00 inf 
Maximized 
PPV 99.17 0.00 0.06 100.00 5.26 99.81 0.0012 0.0007 28.72 19 

2017-2018 
PA data 

                  

Sensitivity                   
    100% 8.22 99.76 100.00 0.24 0.17 100.00 0.0033 0.0083 1.00 602 
    99% 15.98 90.64 99.01 9.37 0.18 99.98 0.0036 0.0090 1.09 552 
    98% 18.78 83.14 98.02 16.89 0.20 99.98 0.0039 0.0097 1.18 512 
    97% 20.88 76.89 97.03 23.14 0.21 99.98 0.0042 0.0104 1.26 478 
    96% 23.08 70.57 96.01 29.47 0.23 99.98 0.0045 0.0112 1.36 443 
    95% 24.45 66.71 95.02 33.34 0.24 99.98 0.0047 0.0117 1.43 423 
    94% 25.88 62.65 94.03 37.40 0.25 99.97 0.0050 0.0123 1.50 402 
    93% 27.11 59.23 93.01 40.82 0.26 99.97 0.0052 0.0129 1.57 384 
    92% 28.22 56.22 92.02 43.84 0.27 99.97 0.0054 0.0134 1.64 369 
    91% 29.36 53.30 91.03 46.77 0.28 99.97 0.0056 0.0140 1.71 353 
    90% 30.34 50.88 90.01 49.18 0.29 99.97 0.0058 0.0145 1.77 341 
    85% 35.56 39.74 85.03 60.34 0.35 99.96 0.0071 0.0174 2.14 282 
    80% 41.06 30.39 80.01 69.70 0.44 99.95 0.0087 0.0214 2.64 229 
    75% 45.35 24.54 75.03 75.54 0.51 99.95 0.0101 0.0247 3.07 197 
Balanced 
thresholda 49.30 20.19 71.37 79.89 0.59 99.94 0.0116 0.0284 3.55 171 

Specificity           
    90% 63.90 10.08 56.50 90.00 0.93 99.92 0.0183 0.0436 5.65 108 
    91% 66.54 9.07 53.86 91.01 0.98 99.92 0.0193 0.0459 5.99 102 
    92% 69.70 8.07 51.06 92.00 1.05 99.91 0.0206 0.0485 6.38 95 
    93% 74.09 7.07 48.05 93.00 1.13 99.91 0.0220 0.0515 6.87 89 
    94% 81.35 6.06 43.83 94.01 1.20 99.90 0.0234 0.0541 7.31 83 
    95% 95.55 5.06 39.12 95.00 1.28 99.89 0.0248 0.0567 7.83 78 
    96% 96.49 4.05 35.72 96.00 1.46 99.89 0.0281 0.0628 8.93 68 
    97% 97.02 3.05 30.67 97.00 1.67 99.88 0.0317 0.0686 10.23 60 
    98% 97.43 2.04 24.70 98.00 2.01 99.87 0.0372 0.0758 12.35 50 
    99% 97.86 1.02 14.51 99.00 2.36 99.86 0.0405 0.0714 14.53 42 
    100% 99.27 0.00 0.00 100.00 0.00 99.83 N/A N/A 0.00 inf 
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Maximized 
PPV 99.00 0.00 0.16 100.00 6.10 99.83 0.0032 0.0020 39.10 16 

2015-2017 
AZ data 

                  

Sensitivity           
    100% 6.87 99.65 100.00 0.35 0.09 100.00 0.0017 0.0043 1.00 1170 
    99% 10.89 93.13 99.03 6.88 0.09 99.99 0.0018 0.0045 1.06 1105 
    98% 12.24 88.11 98.02 11.90 0.09 99.99 0.0019 0.0047 1.11 1056 
    97% 13.16 83.92 97.01 16.09 0.10 99.98 0.0020 0.0049 1.16 1016 
    96% 13.82 80.23 96.04 19.79 0.10 99.98 0.0020 0.0051 1.20 981 
    95% 14.94 74.24 95.03 25.77 0.11 99.98 0.0022 0.0054 1.28 918 
    94% 15.59 70.51 94.01 29.51 0.11 99.98 0.0023 0.0056 1.33 881 
    93% 16.43 65.77 93.00 34.25 0.12 99.98 0.0024 0.0060 1.41 831 
    92% 17.06 62.57 92.03 37.45 0.13 99.98 0.0025 0.0062 1.47 799 
    91% 17.61 59.68 91.02 40.35 0.13 99.98 0.0026 0.0065 1.53 770 
    90% 18.16 57.03 90.01 42.99 0.13 99.98 0.0027 0.0067 1.58 744 
    85% 20.76 45.27 85.04 54.76 0.16 99.98 0.0032 0.0079 1.88 625 
    80% 23.40 35.72 80.02 64.32 0.19 99.97 0.0038 0.0094 2.24 524 
    75% 27.22 26.46 75.05 73.58 0.24 99.97 0.0048 0.0119 2.84 414 
Balanced 
thresholda 34.78 16.06 67.17 83.99 0.36 99.97 0.0071 0.0174 4.19 281 
Specificity           
    90% 43.06 10.04 58.56 90.00 0.50 99.96 0.0098 0.0240 5.86 201 
    91% 45.17 9.04 56.58 91.00 0.53 99.96 0.0106 0.0257 6.29 188 
    92% 47.65 8.04 54.19 92.00 0.57 99.96 0.0114 0.0275 6.78 174 
    93% 50.63 7.03 51.52 93.01 0.62 99.96 0.0123 0.0297 7.37 160 
    94% 54.22 6.04 48.39 94.00 0.68 99.95 0.0135 0.0323 8.07 146 
    95% 58.98 5.02 44.84 95.01 0.76 99.95 0.0149 0.0356 8.99 132 
    96% 65.86 4.02 39.46 96.01 0.83 99.95 0.0163 0.0385 9.88 120 
    97% 93.70 3.02 29.70 97.00 0.84 99.94 0.0163 0.0376 9.90 120 
    98% 96.03 2.02 23.16 98.00 0.98 99.93 0.0188 0.0418 11.58 102 
    99% 96.92 1.01 13.77 99.00 1.16 99.93 0.0214 0.0434 13.77 86 
    100% 99.05 0.00 0.05 100.00 100.00 99.91 0.0009 0.0006 inf 1 
Maximized 
PPV 99.05 0.00 0.05 100.00 100.00 99.91 0.0009 0.0006 inf 1 

Abbreviations: AZ: Arizona; GBM: gradient boosting machine; INF: infinity; N/A: not able to calculated; NNE: number needed to evaluate; NPV: negative predictive values; 
PA: Pennsylvania; PLR: positive likelihood ratio; PPV: positive predictive values; RF: random forest. 
a: Scores were calculated by predicted probability multiplied by 100. Score threshold refers to the score used to classify or predict individuals with opioid overdose (i.e., ≥ the 
threshold) vs. non-overdose (i.e., <threshold) 
b: Balanced threshold was calculated by the Youden Index to achieve balanced sensitivity and specificity. 
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eFigure 1. Sample size flow chart of the study cohorts 
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eFigure 2. Study design diagram 

 
Each patient had at least one pair eligible data (i.e., predictors measured in the 3 months with outcomes measured in the subsequent 3 months) during the study period. An index 
date was defined as the first opioid fill during our study period. We followed patients starting every 3 months after the index date until they were censored because of death or 
disenrollment. We measured predictor candidates and opioid overdose episodes for the 3-month periods. This sliding-window and multi-instance approach simulates continuous 
population screening in a practical application (i.e., simulating a system in which the entire cohort was screened every 3 months, and the system’s task was to accurately capture all 
instances of overdoses at any time in the target prediction window).  
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eFigure 3. C-statistics for predicting opioid overdose using gradient boosting machine (GBM), 
random forests, and least absolute shrinkage and selection operator (LASSO): 2013-2016 
internal validation Pennsylvania Medicaid episode-level data  

 
Abbreviations: AUC: area under the curves; AZ: Arizona; PA: Pennsylvania; ROC: receiver operating 
characteristic
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eFigure 4. Classification matrix and definition of prediction performance metrics 

 
Prediction metrics Definition 

Sensitivity (Se) or recall (Rc) The proportion of correctly predicted positive individuals with opioid overdose (i.e., predicted overdose) 
divided by all individuals with actual overdose.  

Specificity (Sp) The proportion of correctly predicted negative individuals (i.e., predicted non-overdose) divided by all 
observations with actual non-overdose. 

Positive predictive value 
(PPV) or precision (Pr) 

The proportion of actual opioid overdose cases divided by all individuals predicted as opioid overdose. 
PPV is influenced by the prevalence of the outcome of interest. 

Negative predictive value 
(NPV) 

The proportion of actual non-overdose cases divided by all observations predicted as non-overdose. 
When the outcome is rare, NPV is typically high.  

Positive likelihood ratio (PLR) The probability that a person with an actual incident opioid overdose is predicted as opioid overdose, 
divided by the probability of a person who did not have an actual incident opioid overdose is predicted as 
opioid overdose. The larger the PLR (>1), the better the prediction performance of an algorithm.  

Negative likelihood ratio 
(NLR) 

The probability that a person with an actual incident opioid overdose is predicted as non-overdose, 
divided by the probability that a person who did not have an actual opioid overdose is predicted as non-
overdose. The smaller the NLR (i.e., closer to 0), the better the prediction performance.  

Overall misclassification rate The proportion of incorrectly predicted observations (i.e., false positives and false negatives of opioid 
overdose) divided by the total number of observations.  

F1 score The weighted average of precision (or PPV) and recall (or sensitivity). F1 takes both false positives and 
false negatives into account, and it is usually more useful than the overall misclassification rate under an 
uneven class distribution (e.g., non-overdose individuals comprised the majority of the cohort).(35) An 
F1 closer to 1 is desirable.  

F2 score The F2 score is the weighted harmonic mean of the precision and recall. Unlike the F1 score, which 
gives equal weight to precision and recall, the F2 score gives more weight to recall (penalizing the model 
more for false negatives then false positives).(36) An F2 closer to 1 is desirable. 

C-statistic  The area under the receiver operating characteristics curve (ROC) curve, which is a plot of sensitivity vs. 
(1-specificity) for all potential cut-off probability thresholds for an algorithm. Comparisons of C-statistics 
based on imbalanced data or rare outcomes can be misleading because C-statistics do not incorporate 
information about the prevalence or pre-test probability of the outcome.(29)  

Precision-recall curves A precision-recall curve of precision (or PPV; y-axis) vs. recall (sensitivity; x-axis). The curve closer to 
the upper right corner (corresponding to 100% precision and 100% recall) has better performance.  
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Number needed to evaluate 
(NNE) 

The NNE is the number of patients necessary to evaluate or screen to detect one outcome (i.e., 
overdose), similar to the number needed to treat in clinical trials. A PPV of 10% is equivalent to an NNE 
of 10. 

Estimated rate of alerts Provides the estimated number of alerts per number of patients screened or evaluated over a period of 
time—for example, per 100 patient over 30 days or 3 months. Too many alerts may lead to alert fatigue; 
too few may lead to unfamiliarity with the clinical response. 
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eFigure 5. Performance matrix for predicting opioid overdose using gradient boosting machine (GBM): 2013-2016 internal validation Pennsylvania Medicaid (blue), and 
2017-2018 external validation Pennsylvania (orange), and 2015-2017 Arizona Medicaid (green) data: sensitivity analyses using patient-level data  
A.   B.  

C. s s ffd  D.  
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To ensure the GBM algorithm derived from the episode-level data (i.e., beneficiaries may have multiple 3-month periods until 
occurrence of a censored event including disenrollment or death) can perform well using patient-level data, we iteratively and randomly 
selected patient-level data (i.e., selecting one 3-month period for each beneficiary) to validate our GBM model. The above figure shows 
four prediction performance matrices using an example of patient-level data from the internal and external validation samples (2013-
2016 PA internal validation data: 213,231 beneficiaries with 212,888 non-overdose patients and 343 overdose patients; 2017-2018 PA 
external validation data: 318,585 beneficiaries with 317,673 non-overdose patients and 912 overdose patients; 2015-2017 AZ external 
validation data: 391,959 beneficiaries with 391,617 non-overdose patients and 342 overdose patients). eFigure 4A shows the areas 
under the ROC curves (or C-statistics); eFigure 4B shows the precision-recall curves (precision=PPV and recall=sensitivity) - precision 
recall curves that are closer to the upper right corner or above the other method have improved performance; eFigure 4C shows the 
number needed to evaluate by different cutoffs of sensitivity; and eFigure 4D shows alerts per 100 patients by different cutoffs of 
sensitivity. 
Abbreviations: AUC: area under the curves; AZ: Arizona; PA: Pennsylvania; ROC: receiver operating characteristics.
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eFigure 6. Opioid overdose episodes identified by risk subgroup in the 2016-2017 internal-validation 
Pennsylvania, 2017-2018 external validation Pennsylvania, and 2015-2017 external validation Arizona Medicaid 
data using gradient boosting machine (GBM): Using risk score thresholds identified from each validation sample 

A. 2013-2016 Internal-Validation Pennsylvania Data 

 
B. 2017-2018 External-Validation Pennsylvania Data 

 
 
 
 
 
 
 
C. 2015-2017 External-Validation Arizona Data 
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a: Based on the individual’s predicted probability of an opioid overdose (fatal/nonfatal) event, we classified beneficiaries in the validation 
samples into risk subgroups. As an alternate risk stratification method, we conducted secondary analyses using the decile risk score 
thresholds derived from each validation data set (i.e., thresholds varied by validation data) to stratify beneficiaries into 12 risk 
subgroups (decile groups, with the highest risk decile further split into 3 additional strata based on the top 1, 2nd to 5th, and 6th to 10th 
percentiles to allow closer examination of patients at highest risk of experiencing overdose). The thresholds of the risk scores derived 
from the 2013-2016 Pennsylvania internal-validation sample to identify a beneficiary’s risk subgroup are as follows: top 1st percentile 
(≥98.4); 2nd-5th percentile (85.0 ≤risk score <98.4); 6th-10th percentile (63.6 ≤risk score <85.0); decile 2 (47.8 ≤risk score <63.6); decile 3 
(38.7 ≤risk score <47.8); decile 4 (32.5 ≤risk score <38.7);  decile 5 (27.8 ≤risk score <32.5); decile 6 (23.9 ≤risk score <27.8); decile 7 
(20.4 ≤risk score <23.9); decile 8 (17.3 ≤risk score <20.4); decile 9 (14.1 ≤risk score <17.3); decile 10 (14.1 <risk score). The thresholds 
of the risk scores derived from the 2017-2018 Pennsylvania external-validation sample to identify a beneficiary’s risk subgroup are as 
follows: top 1st percentile (≥ 97.8); 2nd-5th percentile (94.9 ≤risk score <97.8); 6th-10th percentile (94.9≤ risk score <64.0); decile 2 (49.9 
≤risk score <64.0); decile 3 (41.7 ≤risk score <49.9); decile 4 (35.7 ≤risk score <41.7);  decile 5 (30.9 ≤risk score <35.7); decile 6 (26.8 
≤risk score <30.9); decile 7 (23.0 ≤risk score <26.8); decile 8 (19.4 ≤risk score <23.0); decile 9 (15.5 ≤risk score <19.4); decile 10 (15.5 
<risk score). The thresholds of the risk scores derived from the 2015-2017 Arizona external-validation sample to identify a beneficiary’s 
risk subgroup are as follows: top 1st percentile (≥ 97.4); 2nd-5th percentile (62.8 ≤risk score <97.4); 6th-10th percentile (48.0≤ risk score 
<62.8); decile 2 (35.6 ≤risk score <48.0); decile 3 (29.3 ≤risk score <35.6); decile 4 (25.1 ≤risk score <29.3); decile 5 (22.0 ≤risk score 
<25.1); decile 6 (19.4 ≤risk score <22.0); decile 7 (17.2 ≤risk score <19.4); decile 8 (15.0 ≤risk score <17.2); decile 9 (12.7 ≤risk score 
<15.0); decile 10 (12.7 <risk score). 
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eFigure 7. Calibration plots for the 2016-2017 internal-validation Pennsylvania, 2017-2018 external validation 
Pennsylvania, and 2015-2017 external validation Arizona Medicaid data using gradient boosting machine (GBM)  

A1. 2013-2016 Internal-Validation Pennsylvania Data (for 20 population bins of equal size) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑒𝑒−8.68+4.61×𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1 + 𝑒𝑒−8.68+4.61×𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 

B. 2017-2018 External-Validation Pennsylvania Data (20 bins)  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑒𝑒−8.21+4.63×𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1 + 𝑒𝑒−8.21+4.63×𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 

 
 
 

C. 2015-2017 External-Validation Arizona Data (20 bins) 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑒𝑒−8.68+4.23×𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1 + 𝑒𝑒−8.68+4.23×𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
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eFigure 8. Top 25 important predictors for opioid overdose in 2013-2016 Pennsylvania Medicaid data 
selected by gradient boosting machinea 

 

aRather than p values or coefficients, the GBM reports the importance of predictor variables included in a model. 
Importance is a measure of each variable’s cumulative contribution toward reducing square error, or heterogeneity within 
the subset, after the data set is sequentially split based on that variable. Thus, it reflects a variable’s impact on the 
predictor. Absolute importance is then scaled to give relative importance, with a maximum importance of 100. Among 117 
important predictors identified from GBM, the top 10 important predictors included having a diagnosis of OUD, total 
number of ED visits, race, gender, age, having a diagnosis of drug abuse in the Elixhauser index, total numbers of 
benzodiazepine fills (e.g., >3), total number of gabapentinoid fills, cumulative days of supply of gabapentinoid use (e.g., 
>35 days), and total MME. 
Abbreviations: ED: emergency department; GBM: gradient boosting machine; MME: morphine milligram equivalent; 
OUD: opioid use disorder. 
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eFigure 9. Performance matrix for predicting fatal opioid overdose using gradient boosting machine (GBM): 2015-2017 Arizona external validation 
Medicaid data 
A.    

B.  

 

C. s s ffd  D.  

 

Figure 9. Legend:  
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eFigure 9 shows four prediction performance matrices in the 2015-2017 Arizona external validation samples (391,959 beneficiaries with 2,550,725 non-overdose 
episodes and 486 overdose episodes). eFigure 9A shows the areas under the ROC curves (or C-statistics); eFigure 9B shows the precision-recall curves 
(precision=PPV and recall=sensitivity): precision recall curves that are closer to the upper right corner or are above another method have improved performance; 
eFigure 9C shows the number needed to evaluate by different cutoffs of sensitivity; and eFigure 9D shows alerts per 100 patients by different cutoffs of 
sensitivity. 
Abbreviations: AUC: area under the curves; AZ: Arizona; PA: Pennsylvania; ROC: receiver operating characteristics. 
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Appendix A. Compliance to the 2015 Standards for Reporting of Diagnostic Accuracy 
(STARD) Checklist 

 Section & Topic No Item Reported on 
page # 

 TITLE OR 
ABSTRACT 

   

  1 Identification as a study of diagnostic accuracy using at least one measure of accuracy 
(such as sensitivity, specificity, predictive values, or AUC) 

4-5 

 ABSTRACT 2 Structured summary of study design, methods, results, and conclusions  
(for specific guidance, see STARD for Abstracts) 

4-5 

 INTRODUCTION    
  3 Scientific and clinical background, including the intended use and clinical role of the 

index test 
6 

  4 Study objectives and hypotheses 6 
 METHODS    
 Study design 5 Whether data collection was planned before the index test and reference standard  

were performed (prospective study) or after (retrospective study) 
7 

 Participants 6 Eligibility criteria  8-9 
  7 On what basis potentially eligible participants were identified  

(such as symptoms, results from previous tests, inclusion in registry) 
7-8 

  8 Where and when potentially eligible participants were identified (setting, location and 
dates) 

7-8 

  9 Whether participants formed a consecutive, random or convenience series 7 
 Test methods 10a Index test, in sufficient detail to allow replication 9-11; Appendix 

Methods 
  10b Reference standard, in sufficient detail to allow replication 9; eTable 2 
  11 Rationale for choosing the reference standard (if alternatives exist) N/A 
  12a Definition of and rationale for test positivity cut-offs or result categories  

of the index test, distinguishing pre-specified from exploratory 
13-14; eTable 
3 

  12b Definition of and rationale for test positivity cut-offs or result categories  
of the reference standard, distinguishing pre-specified from exploratory 

9; eTable 2 

  13a Whether clinical information and reference standard results were available  
to the performers/readers of the index test 

9; eTable 2 

  13b Whether clinical information and index test results were available  
to the assessors of the reference standard 

8-9 

 Analysis 14 Methods for estimating or comparing measures of diagnostic accuracy 10 
  15 How indeterminate index test or reference standard results were handled 10 
  16 How missing data on the index test and reference standard were handled N/A 
  17 Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from 

exploratory 
12 

  18 Intended sample size and how it was determined 8  
 RESULTS    
 Participants 19 Flow of participants, using a diagram eFigures 1-2 
  20 Baseline demographic and clinical characteristics of participants 13; Table 1 
  21a Distribution of severity of disease in those with the target condition 13; Table 1 
  21b Distribution of alternative diagnoses in those without the target condition N/A 
  22 Time interval and any clinical interventions between index test and reference standard N/A 
 Test results 23 Cross tabulation of the index test results (or their distribution)  

by the results of the reference standard 
13 

  24 Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals) eTable 4 
  25 Any adverse events from performing the index test or the reference standard N/A 
 DISCUSSION    
  26 Study limitations, including sources of potential bias, statistical uncertainty, and 

generalisability 
17-18 

  27 Implications for practice, including the intended use and clinical role of the index test 17 



 

 

 OTHER 
INFORMATION 

   

  28 Registration number and name of registry N/A 
  29 Where the full study protocol can be accessed N/A 
  30 Sources of funding and other support; role of funders 19 
     



 

 

 
 
Appendix B. Compliance to the 2015 Transparent Reporting of a Multivariable Prediction Model for Individual 
Prognosis Or Diagnosis (TRIPOD) Checklist 
Section/Topic Item  Checklist Item Page 
Title and abstract 

Title 1 D;V Identify the study as developing and/or validating a multivariable prediction model, 
the target population, and the outcome to be predicted.  1 

Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions. 4-5 

Introduction 

Background and 
objectives 

3a D;V 
Explain the medical context (including whether diagnostic or prognostic) and 
rationale for developing or validating the multivariable prediction model, including 
references to existing models. 

6 

3b D;V Specify the objectives, including whether the study describes the development or 
validation of the model or both. 6 

Methods 

Source of data 
4a D;V 

Describe the study design or source of data (e.g., randomized trial, cohort, or 
registry data), separately for the development and validation data sets, if 
applicable. 

7 

4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if 
applicable, end of follow-up.  7 

Participants 
5a D;V Specify key elements of the study setting (e.g., primary care, secondary care, 

general population) including number and location of centres. 7 

5b D;V Describe eligibility criteria for participants.  8-9 
5c D;V Give details of treatments received, if relevant.  8-9 

Outcome 6a D;V Clearly define the outcome that is predicted by the prediction model, including 
how and when assessed.  8-9 

6b D;V Report any actions to blind assessment of the outcome to be predicted.  NA 

Predictors 
7a D;V Clearly define all predictors used in developing or validating the multivariable 

prediction model, including how and when they were measured. 9 

7b D;V Report any actions to blind assessment of predictors for the outcome and other 
predictors.  NA 

Sample size 8 D;V Explain how the study size was arrived at. eFigure 1 

Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single 
imputation, multiple imputation) with details of any imputation method.  

Appendix 
Methods 

Statistical analysis 
methods 

10a D Describe how predictors were handled in the analyses.  
9-10; 
Appendix 
Methods 

10b D Specify type of model, all model-building procedures (including any predictor 
selection), and method for internal validation. 

9-11; 
Appendix 
Methods 

10c V For validation, describe how the predictions were calculated.  
10-11; 
Appendix 
Methods 

10d D;V Specify all measures used to assess model performance and, if relevant, to 
compare multiple models.  10; eFigure3 

10e V Describe any model updating (e.g., recalibration) arising from the validation, if 
done. 12 

Risk groups 11 D;V Provide details on how risk groups were created, if done.  11 
Development vs. 
validation 12 V For validation, identify any differences from the development data in setting, 

eligibility criteria, outcome, and predictors.  
10-11; Table 
1 

  



 

 

Results 

Participants 

13a D;V 
Describe the flow of participants through the study, including the number of 
participants with and without the outcome and, if applicable, a summary of the 
follow-up time. A diagram may be helpful.  

9; eFigure 1 

13b D;V 
Describe the characteristics of the participants (basic demographics, clinical 
features, available predictors), including the number of participants with missing 
data for predictors and outcome.  

13; Table 1 

13c V For validation, show a comparison with the development data of the distribution of 
important variables (demographics, predictors and outcome).  Table 1 

Model 
development  

14a D Specify the number of participants and outcome events in each analysis.  13; Table 1 

14b D If done, report the unadjusted association between each candidate predictor and 
outcome. N/A 

Model 
specification 

15a D 
Present the full prediction model to allow predictions for individuals (i.e., all 
regression coefficients, and model intercept or baseline survival at a given time 
point). 

Consult 
investigators  

15b D Explain how to the use the prediction model. Appendix 
Methods 

Model 
performance 16 D;V Report performance measures (with CIs) for the prediction model. 13-14; 

eTable 3 

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, 
model performance). 9; eFigure 2 

Discussion 
Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few 

events per predictor, missing data).  17-18 

Interpretation 
19a V For validation, discuss the results with reference to performance in the 

development data, and any other validation data.  17 

19b D;V Give an overall interpretation of the results, considering objectives, limitations, 
results from similar studies, and other relevant evidence.  17-18 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future 
research.  17 

Other information 
Supplementary 
information 21 D;V Provide information about the availability of supplementary resources, such as 

study protocol, Web calculator, and data sets.  
Online 
supplement 

Funding 22 D;V Give the source of funding and the role of the funders for the present study.  19 
NA: not applicable 
*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a 
prediction model are denoted by V, and items relating to both are denoted D;V.  We recommend using the TRIPOD 
Checklist in conjunction with the TRIPOD Explanation and Elaboration document. 
 
 


