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Supplementary Methods
In this analysis, we consider a base case asymptomatic app user infected on day 0 who tests positive and
self-isolates from day d. The relative probability that a base case individual is detected on day d depends on
the likelihood that they test positive upon taking a test. We define T (d) as the probability density function
of the time at which a base case is detected. We obtain this using a test probability profile for lateral flow
tests for asymptomatic testing1, assuming that detected cases are sampled according to their probability of
testing positive that day. By considering the expected number of primary cases that are infected by a base case
individual, the expected number of secondary cases that result from those primary cases, and by varying the
probability p that notified primary cases are active app users who adhere to their notification and consequently
self-isolate, we can understand the reduction in transmission that results from different levels of active app use
for different notification windows.

The expected number of infections resulting from an infected individual depends on an individual’s infectivity
profile through time since becoming infected, as well as on the time periods when an individual is not isolating.
We make the simplifying assumption that, assuming an individual is not isolating, their contact rate is constant
through time. We let R denote the expected number of secondary infections from a symptomatic individual in
a completely unvaccinated population, assuming that a symptomatic individual mixes within the population
with no interventions placed upon them for the entirety of their infectious period. While R is a function of
an individual’s contact rate, we find that R∗ under different length notification windows is a linear function
of R. Consequently, the relative effectiveness of different notification windows is independent of R, i.e. is
independent of the contact rate assumed. Letting f(t) be the probability density function of an infected
individual’s infectivity profile through time, we set f = Γ(5.62, 0.98), corresponding to a previously derived
infectivity profile obtained using data from known infector–infectee pairs2. We let F (d) represent the cumulative
density function of the infectivity profile i.e. F (d) =

∫ d

0 f(t)dt.

We assume that a proportion V of the population are vaccinated, while U = 1 − V remain unvaccinated.
We assume that vaccination reduces an individual’s susceptibility to infection; only a fraction of c1 high-risk
contacts who are vaccinated will become infected. We also assume that vaccination reduces an individual’s
transmissibility upon infection by a factor c2. We set c1 = 0.37, and c2 = 0.37 in line with contemporary
estimates of SARS-CoV-2 vaccine efficacy3,4, and set V = 0.7, in line with the proportion of the eligible
population to have received two doses of vaccine in the UK on the 2nd August 20215. Accordingly, the expected
number of secondary infections from a symptomatic individual with no interventions placed upon them for the
entirety of their infectious period is given by (U + c1V )R. In line with guidance to contacted individuals as of
August 2021, we assumed that vaccinated primary cases do not have to isolate upon notification. We assume
the likelihood of displaying symptoms and distribution of time to symptom onset is unimpacted by vaccination,
though in reality these may be affected.
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Assuming the base case individual tests positive and inputs their result to their app, all contacts of the base
case from time d − w to d are notified of possible exposure, where w denotes the notification window length
(in days). Our analysis focuses on the cases w = 5 and w = 2, the notification window lengths used in the UK
prior to and after the 2nd August 2021 respectively6. Adhering notified individuals isolate for inotif days upon
being notified, counted from the time of last contact. We assume that the time of last contact between the
base case and primary case individual was the time the primary case individual was infected by the base case.
Notified individuals are expected to isolate for 10 full days from the day of last contact7. Under this rule, the
average isolation period would be expected to be 10.5 days, assuming it is equally likely that the time of last
contact is any time of the day. Accordingly, we approximate this by setting inotif = 10.5.

We let l denote the delay between the base case taking a test and receiving a result. We assume the base case
takes a lateral flow test (LFT) and set l = 0. In Supplementary Note 1, we consider an instance where the base
case individual takes a PCR test, assuming l = 2.

The period an infected individual isolates for will depend on whether they develop symptoms. We assume
that a proportion A of primary cases are asymptomatic. Here we set A = 0.3, in line with estimates of the
proportion of SARS-CoV-2 infections that are asymptomatic reported in a meta-analysis8. We assume the same
infectivity profile for symptomatic and asymptomatic individuals, but assume that asymptomatic individuals
are relatively less infectious by a factor α, 0 < α ≤ 1. We used α = 0.5, in line with previous modelling studies,
though estimates obtained from empirical studies vary substantially9. Upon symptom onset, we assume that
individuals test positive and isolate for a period of isympt days. In the UK, symptomatic individuals are
expected to isolate for 10 full days from symptom onset10. We approximate isolating for 10 full days by setting
isympt = 10.5. Letting s(t) be the probability density function of the time to symptom onset from day of
infection for symptomatic individuals, we set s(t) = Γ(5.807, 0.948)11. We make the assumption that s(t)
and f(t) are independent functions of time - while this is a simplifying assumption, it is one common in the
literature12,13.

A proportion p of the primary cases are assumed to be active app users. Active app users are defined as
individuals who both a) have and use the app and b) adhere to isolation upon notification. In our analyses we
vary p from 0 to 1.

Below, we consider the expected number of primary cases and secondary cases in turn.

Primary cases

If a base case takes a test on day d and isolates accordingly from day d, then the expected number of infections
from the base case prior to isolation is given by:

NP (d) = αR(U + c1V )× F (d) (1)

The expected number of infections from a typical base case prior to isolation is given by integrating over the day
a base case takes a test, and accounting for the relative probability an individual tests positive that day:

NP =
∫ ∞

0
T (t)NP (t)dt = αR(U + c1V )×

∫ ∞

0
T (t)F (t)dt (2)

Secondary cases

Secondary cases infected by unvaccinated primary cases can occur in three different ways, dependent on whether
the primary case is infected within the notification window, and whether the primary case is an active app user.
In contrast, as vaccinated primary cases are not required to isolate upon notification, the expected number
of secondary cases from a vaccinated primary case is not affected by the time at which the primary case was
infected. Hence there are four instances to consider, which are considered in turn below:

1. Secondary cases resulting from unvaccinated primary cases infected before the notification
window

All unvaccinated primary cases infected by the base case from day 0 to day d − w are not notified of
exposure. Asymptomatic individuals remain infectious throughout their infectious period, while symp-
tomatic individuals remain infectious until symptom onset before isolating for isympt days. For a base
case detected on day d, the expected number of secondary infections in this instance is given by:
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NS1(d) =αRU × F (d− w)×R(U + c1V )G (3)

where G = Aα + (1−A)
∫ ∞

0
[F (τ) + (1− F (τ + isympt)] s(τ)dτ (4)

The expected number of secondary infections in this instance from a typical base case is given by:

NS1 =
∫ ∞

0
T (t)NS1(t)dt =αRU ×R(U + c1V )G×

∫ ∞

0
T (t)F (t− w)dt (5)

2. Secondary cases resulting from unvaccinated primary cases infected within the notification
window, but are not active app users

A proportion (1 − p) of unvaccinated cases are not active app users, and therefore either do not receive
a notification, or do not adhere to isolation upon notification. Asymptomatic individuals who are not
active app users remain infectious throughout their infectious period, while symptomatic individuals who
are not active app users remain infectious until symptom onset, then isolate for isympt days. Hence, for
a base case detected on day d, the expected number of secondary infections in this instance is given by:

NS2(d) = αRU × [F (d)− F (d− w)]× (1− p)R(U + c1V )×G (6)

The expected number of secondary infections in this instance from a typical base case is given by:

NS2 =
∫ ∞

0
T (t)NS2(t)dt = αRU × (1− p)R(U + c1V )G×

∫ ∞

0
T (t)[F (t)− F (t− w)]dt (7)

3. Secondary cases resulting from unvaccinated primary cases infected within the notification
window who are active app users

A proportion Up of primary cases infected from day d−w to d are unvaccinated active app users. These
primary cases are notified of possible exposure and adhere to isolation upon notification. They remain
infectious until day d + l, and could be anywhere from day l to day w + l of their infectious period. In
this instance, there are four subcases:

Subcase a (NS3a(d)): Asymptomatic individuals isolate from day d + l, and stop isolating inotif full days
from their last day of contact with the base case.

NS3a(d) = αRU × pAαR(U + c1V )
∫ d

d−w

[F (d + l − t) + (1− F (inotif ))]f(t)dt (8)

Subcase b (NS3b(d)): Symptomatic individuals who exhibit symptoms before day d + l, i.e. before their
notification. These individuals are assumed to isolate for isympt full days from symptom onset, with this
isolation period not extended by their subsequent close contact notification.

NS3b(d) = αRU × p(1−A)R(U + c1V )
∫ d

d−w

f(t)
(∫ d−t+l

0
[F (τ) + (1− F (τ + isympt))]s(τ)dτ

)
dt (9)

Subcase c (NS3c(d)): Symptomatic individuals infected on day t who exhibit symptoms after day d + l
but before day t + inotif , i.e. while they are isolating from their notification. These individuals isolate
from d + l until isympt days after the onset of their symptoms.

NS3c(d) = αRU × p(1−A)R(U + c1V )
∫ d

d−w

f(t)
(∫ inotif

d−t+l

[F (d + l − t) + (1− F (τ + isympt))]s(τ)dτ

)
dt

(10)

Subcase d (NS3d(d)): Symptomatic individuals infected on day t who exhibit symptoms after t + inotif ,
i.e. after they have finished isolation from their notification. These individuals isolate from d + l until
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t + inotif , and then leave isolation before isolating once again upon symptom onset, for isympt days from
symptom onset.

NS3d(d) = αRU × p(1 − A)R(U + c1V )
∫ d

d−w

f(t)

(∫ ∞

inotif

[F (d + l − t) + (F (τ) − F (inotif )) + (1 − F (τ + isympt))]s(τ)dτ

)
dt

(11)

Together, we obtain

NS3(d) =NS3a(d) + NS3b(d) + NS3c(d) + NS3d(d) = αRU × pR(U + c1V )H(d, w) (12)

where H(d, w) =Aα

(∫ d

d−w

[F (d + l − t) + (1 − F (inotif ))]f(t)dt

)
(13)

+ (1 − A)
{∫ d

d−w

f(t)
[(∫ d−t+l

0
[F (τ) + (1 − F (τ + isympt))]s(τ)dτ

)
+
(∫ inotif

d−t+l

[F (d + l − t) + (1 − F (τ + isympt))]s(τ)dτ

)
+

(∫ ∞

inotif

[F (d + l − t) + (F (τ) − F (inotif )) + (1 − F (τ + isympt))]s(τ)dτ

)]
dt

}

The expected number of secondary infections in this instance from a typical base case is given by:

NS3 =
∫ ∞

0
T (t)NS3(t)dt = αRU × pR(U + c1V )

∫ ∞

0
T (t)H(t, w)dt (14)

4. Secondary cases resulting from vaccinated primary cases.

Vaccinated primary cases are not expected to isolate upon notification, irrespective of whether they are
active app users or not, and irrespective of when they were infected. Asymptomatic vaccinated individuals
remain infectious throughout their infectious period, while symptomatic vaccinated individuals remain
infectious until symptom onset, then isolate for isympt days. Hence, for a base case detected on day d,
the expected number of secondary infections in this instance is given by:

NS4(d) = αRc1V × F (d)×Rc2(U + c1V )×G (15)

The expected number of secondary infections in this instance from a typical base case is given by:

NS4 =
∫ ∞

0
T (t)NS4(t)dt = αRc1V ×Rc2(U + c1V )G×

∫ ∞

0
T (t)F (t)dt (16)

Calculating effective R

The effective reproduction number, R∗ is calculated as the ratio between the expected number of secondary
cases and the expected number of primary cases:

R∗ =NS1 + NS2 + NS3 + NS4

NP
(17)

=R

(
U

∫∞
0 T (t) ([(1− p)F (t) + pF (t− w)]G + pH(t, w)) dt∫∞

0 T (t)F (t)dt
+ c1c2V G

)
(18)

Determining level of adherence required for a 5-day window to remain optimal

Let pw denote the proportion of the population who are active users when the app implements a w-day window,
and let R∗(w) denote the effective reproduction number given a notification window of w. Letting p5 = ϵp2,
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0 ≤ ϵ ≤ 1, we observe that the value of ϵ required for a 5-day window to be optimal (when R∗(5) < R∗(2)) is
independent of p2:

∫ ∞

0
T (t) ([(1 − ϵp2)F (t) + ϵp2F (t − 5)]G + ϵp2H(t, 5)) dt <

∫ ∞

0
T (t) ([(1 − p2)F (t) + p2F (t − 2)]G + p2H(t, 2)) dt

(19)

⇐⇒ −ϵp2

∫ ∞

0
T (t)(G[F (t) − F (t − 5)] − H(t, 5)dt < − p2

∫ ∞

0
T (t)(G[F (t) − F (t − 2)] − H(t, 2)dt (20)

⇐⇒ ϵ

∫ ∞

0
T (t) (G[F (t) − F (t − 5)] − H(t, 5)) dt >

∫ ∞

0
T (t) (G[F (t) − F (t − 2)] − H(t, 2)) dt (21)

For a given window w, R∗(w) decreases as pw increases if and only if
∫∞

0 T (t) (G[F (t)− F (t− w)]−H(t, w)) dt >
0. Otherwise, R∗(w) increases with increasing active app use. These instances are not considered here, as
the intended control measure increases transmission. Given that R∗(w) decreases as active app use increases,
a 5-day window is optimal given that ϵ satisfies:

ϵ >

∫∞
0 T (t)(G[F (t)− F (t− 2)]−H(t, 2))dt∫∞
0 T (t)(G[F (t)− F (t− 5)]−H(t, 5))dt

(22)

A numerical simulation of the model

The model described above can also be simulated directly. This may be useful to account for factors that are
not easy to incorporate within the analytic framework. We introduce the notation Ri and fi to denote the
baseline R parameter for each individual i, and fi (Fi) denote the probability density function (cumulative
density function) of the infectivity profile for each individual i. Further, let us subdivide primary cases by
symptomatic status and vaccination status:

• NP 1: Primary cases who are asymptomatic and unvaccinated

• NP 2: Primary cases who are symptomatic and unvaccinated

• NP 3: Primary cases who are asymptomatic and vaccinated

• NP 4: Primary cases who are symptomatic and vaccinated

such that NP = NP 1 + NP 2 + NP 3 + NP 4. Finally, let NP and NS denote vectors containing the number of
primary cases from each simulated base case and the number of secondary cases from each simulated base case
respectively. Pseudocode of the algorithm to numerically simulate the model is given in Algorithm 1.
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Algorithm 1 Numerical simulation of the model
1: for i ∈ {1, ..., N} do
2: d ∼ detection time distribution
3: NP 1 ∼ Poisson(aRi ×AU × Fi(d))
4: NP 2 ∼ Poisson(aRi × (1−A)U × Fi(d))
5: NP 3 ∼ Poisson(aRi ×AV c1 × Fi(d))
6: NP 4 ∼ Poisson(aRi × (1−A)V c1 × Fi(d))
7: NP ← NP 1 + NP 2 + NP 3 + NP 4
8: NP (i)← NP

9: NS1 = NS2 = NS3 = NS4 = 0
10: if NP 1 > 0 then
11: for j ∈ {1, ..., NP 1} do
12: t ∼ i’s infectivity profile until day d
13: if (d− t) ≤ w and random number < p then
14: NS3 ← NS3 + Poisson(aRj × (U + c1V )× (Fj(d + l − t) + (1− Fj(inotif ))))
15: else if random number ≥ p then
16: NS2 ← NS2 + Poisson(aRj × (U + c1V ))
17: else
18: NS1 ← NS1 + Poisson(aRj × (U + c1V ))
19: end if
20: end for
21: end if
22: if NP 2 > 0 then
23: for j ∈ {1, ..., NP 2} do
24: t ∼ i’s infectivity profile until day d
25: τ ∼ time to symptom onset distribution
26: if (d− t) ≤ w and random number < p then
27: if τ < d + l − t then
28: NS3 ← NS3 + Poisson(Rj × (U + c1V )× (Fj(τ) + (1− Fj(τ + isympt))))
29: else if τ < inotif then
30: NS3 ← NS3 + Poisson(Rj × (U + c1V )× (Fj(d + l − t) + (1− Fj(τ + isympt))))
31: else
32: NS3 ← NS3 + Poisson(Rj × (U + c1V )× (Fj(d + l− t) + (Fj(τ)−Fj(inotif )) + (1−Fj(τ +

isympt))))
33: end if
34: else if random number ≥ p then
35: NS2 ← NS2 + Poisson(Rj × (U + c1V )× (Fj(τ) + (1− Fj(τ + isympt))))
36: else
37: NS1 ← NS1 + Poisson(Rj × (U + c1V )× (Fj(τ) + (1− Fj(τ + isympt))))
38: end if
39: end for
40: end if
41: if NP 3 > 0 then
42: for j ∈ {1, ..., NP 3} do
43: NS4 ← NS4 + Poisson(c2 × aRj × (U + c1V ))
44: end for
45: end if
46: if NP 4 > 0 then
47: for j ∈ {1, ..., NP 4} do
48: τ ∼ time to symptom onset distribution
49: NS4 ← NS4 + Poisson(c2 ×Rj × (U + c1V )× (Fj(τ) + (1− Fj(τ + isympt))))
50: end for
51: end if
52: NS ← NS1 + NS2 + NS3 + NS4
53: NS(i)← NS

54: end for
return NP , NS
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Supplementary Note 1 Assuming the base case seeks a PCR test
This section considers a scenario where base cases are detected through a PCR test, rather than through an
LFT. While LFTs can produce a result in 30 minutes, PCR tests must be processed in a laboratory. Accordingly,
there is a delay in individuals receiving a result, with consequential delays in their potential infectious contacts
being notified. Here, we assume a delay of two days. In Supplementary Figure 1, we observe qualitatively similar
results regarding the impact of notification window length and active app use to those obtained assuming no
delay.
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Supplementary Figure 1: Impact of the notification window length and active app use on transmis-
sion, assuming the base case is detected through a PCR test. (a) The relative probability of the base
case testing positive on a given day in their infectiousness profile, obtained by normalising the median (black,
solid line) test probability profiles of PCR tests for asymptomatic testing1. Normalised 95% credible interval
test probability profiles (upper - red, dashed line; lower - blue, dot-dashed) are used to obtain shaded regions
for (b) and (c). (b) The percentage reduction in R∗ with respect to increasing length of the notification window
w, under the assumption that all notified individuals adhere to isolation upon notification. (c) The relationship
between probability of adherence and percentage reduction in R∗ for 5-day notification windows (blue solid
line, circle markers) and 2-day notification windows (orange dotted line, cross markers). (d) Difference in the
percentage reduction in R∗ that results from a 5-day notification window compared to a 2-day notification
window. The proportion of primary cases assumed to be active app users for a 2-day window is shown on the
x-axis, and the relative level of active app use assumed for a 5-day window (compared to the level of active
app use for a 2-day window) is shown on the y-axis. Purple (green) regions correspond to where 5-day (2-day)
notification windows lead to a larger reduction in R∗.
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R∗ is reduced by a lower extent in this instance for two reasons. Firstly, there is a delay between the base case
taking a test and primary cases who they have infected being notified. Because of this, primary case infectious
individuals can have a longer period to make contacts with others, with the potential for onward transmission
of infection, before isolating. Secondly, owing to the greater sensitivity of PCR tests, individuals are more
likely to be detected late in their infectious period. For late detected individuals, the majority of primary cases
would be expected to have been infected prior to the notification window. Consequently, in this instance the
transmission reduction from app-based notifications is considerably lower, with 2-day and 5-day notification
windows resulting in a 13% and 19% reduction in transmission assuming an entire population of active app
users respectively.

The results in Figure 2 and Supplementary Figure 1 are predicated on the assumption that a base case individual
tests positive to an LFT or a PCR respectively. However, LFTs are less sensitive than PCR tests14. Because of
this, our results should not be taken as a quantification of the relative merits of LFT and PCR testing. Rather,
our results should be interpreted as: if an individual is detected by an LFT and can input their result into the
app immediately, contact tracing will lead to a greater reduction in transmission than if they were detected by
a PCR and must wait until the PCR result has returned. It is important to note that detection via PCR tests
still contributes positively to contact tracing, particularly if PCR tests detect individuals who test negative to
an LFT.
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Supplementary Note 2 Assuming the base case takes a test upon
symptom onset

This section considers a scenario where base cases are symptomatic and detected upon symptom onset, rather
than being an asymptomatic and detected via an LFT (Main analysis) or via a PCR test (Supplementary Note
1). Using the incubation period distribution from the main analysis11 as the time-detection distribution for
symptomatic individuals (Supplementary Figure 2a), symptomatic individuals are more likely to be detected
earlier in their infectiousness profile than an asymptomatic individual taking a test on a random day in their
infectious period. Consequently, the reduction in R∗ from detecting a symptomatic base at symptom onset
is larger than the reduction in R∗ from an asymptomatic base case, for both LFTs and PCR tests, at all
notification window lengths (Supplementary Figure 2b). In all cases, there is limited further reductions to R∗

for notification windows longer than five days.
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Supplementary Figure 2: Impact of the notification window length on transmission, assuming a
symptomatic base case. (a) The relative probability of the base case testing positive on a given day in
their infectiousness profile. For symptomatic base cases, we use the incubation period distribution11 (green,
dot-dashed line) as the test probability profile of both LFTs and PCR tests, while for asymptomatic the profiles
for LFTs (black, solid line) and PCR tests (purple, dashed line) are obtained by normalising the median (black,
solid line) test probability profiles of LFT tests for asymptomatic testing1. (b) The percentage reduction in
R∗ with respect to increasing length of the notification window w, under the assumption that all notified
individuals adhere to isolation upon notification: for an asymptomatic base case detected via an LFT (black,
solid line); for an asymptomatic base case detected via a PCR test (purple, dashed line); for a symptomatic
base case detected via an LFT (dark green, dotted line); and for a symptomatic base case detected via a PCR
test (light green, dot-dashed line).
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Supplementary Note 3 Exploring the impact of the day of base case
detection

Assuming that not all individuals are active app users, the reduction in transmission from the app depends upon:
the day in which a base case individual is detected, d; on the number of their contacts notified (determined
by the length of notification window, w); and on the proportion p of the population who are active app users,
who adhere to self-isolation upon notification (Supplementary Figures 3a and 3b). For p < 0.1, neither of the
considered notification window lengths reduces R∗ by more than 10%. There is no difference in the reduction
in R∗ when d < 2 because all infectious contacts are captured by both notification windows. However, a 2-day
notification window can be considerably less effective when base case individuals are detected at a later stage of
their infection (Supplementary Figure 3c). The greatest difference in R∗ occurs when the base case is detected
between 7 and 8 days into their infectiousness profile, with the difference in R∗ increasing with probability of
adherence.

However, assuming that fewer individuals are likely to be active app users for a 5-day window than for a 2-day
window, a 2-day window can become optimal for some regions of (d, p) space (Supplementary Figures 3d to 3f).
Assuming that active app use given a 5-day notification window is 80%, 60%, and 40% of the active app use
given a 2-day notification window, a 2-day notification window is optimal when d < 4.8 days, d < 6.1 days and
d < 7.9 days respectively, with the greatest differences occurring when assuming a high level of active app use
and very early detection of the base case individual.

Assuming the base case individual tests positive on day d from a one-off test (Supplementary Figure 4a), and
assuming a proportion p of primary cases are active app users, the relative level of active app use required
given a 5-day window to be optimal is independent of p (Supplementary Figure 4b, solid black line). If the
base case tests positive early in their infectiousness profile, high relative levels of active app use are required
for a 5-day notification window to be beneficial, while if a base case is detected late, a 5-day window may
remain optimal despite the lower level of active app use. Because of this, it becomes increasingly important
to identify asymptomatic cases early in their infection profiles for shorter notification windows. In our main
analyses, we consider a base case individual who tests positive on a random day in their infectiousness profile.
Here, we consider an alternative situation where the base case individual takes regular tests every r days. The
probability an individual tests positive on a given day d when d < r can be obtained directly from a test
probability profile, while the probability an individual tests positive on day d when d > r is the probability
that individual tests positive on day d and did not test positive on subsequent test days, which can be inferred
from a test probability profile. Individuals are more likely to be identified early in their infectious period if they
engage in regular mass testing (Supplementary Figure 4a). Consequently, the required level of active app use
given a 5-day window for that strategy to remain optimal increases. As an example, assuming a base case takes
a LFT every seven days, a 2-day window is optimal given that active app use with a 5-day window is at least
62% of the level of active app use given a 2-day window (Supplementary Figure 4b, purple square); assuming
a base case takes a lateral flow test every three days, a 5-day window is optimal given that active app use is at
least 70% of the level of active app use given a 2-day window (Supplementary Figure 4b, pink diamond).
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(a) 2-day notification window (b) 5-day notification window

(c) Equal active app use (d) 80% relative active app use given a 5-day window

(e) 60% relative active app use given a 5-day window (f) 40% relative active app use given a 5-day window

Supplementary Figure 3: Impact of the detection time of the base case and active app use on
transmission reduction. (a & b) The percentage reduction in R∗ that results from a 2-day and 5-day
notification window, respectively. Darker shading corresponds to greater percentage reductions in R∗. (c-f)
The difference in the percentage reduction in R∗ that results from a 5-day and 2-day notification window,
respectively, assuming that: (c) the proportion of the population who are active app users given w = 2 is equal
to the proportion of the population who are active app users given w = 5, (d-f) the proportion of the population
who are active app users given w = 5 is (d) 80%, (e) 60%, and (f) 40% of the proportion of the population who
are active app users given w = 2.
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Supplementary Figure 4: Impact of regular testing on the level of active app use required for a
5-day window to be optimal: (a) The relative probability of a base case testing positive on a given day
in their infectiousness profile, assuming they take a one-off test (black, solid line), assuming they take a test
every seven days (dark red, dashed line), and assuming they take a test every three days (pink, dotted line).
(b) The percentage active app use relative to the level of active app use given a 2-day window required for a
5-day notification window to result in a lower R∗ when: the base case is detected on day d (black solid line);
the base case takes a test every d days (grey dashed line). We highlight two examples: assuming a base case
takes a lateral flow test every seven days, a 5-day window is optimal given that active app use is at least 62%
of the level of active app use given a 2-day window (purple square); assuming a base case takes a lateral flow
test every three days, a 5-day window is optimal given that active app use is at least 70% of the level of active
app use given a 2-day window (pink diamond).
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Supplementary Note 4 Exploring the impact of vaccine effective-
ness

While vaccination may reduce both susceptibility to infection (c1) as well as transmissibility upon infection
(c2), in the Supplementary Methods we observe that R∗ is only impacted by their product, c1× c2. We refer to
(1−c1×c2) as a vaccine’s effectiveness. Here, we explore the impact of vaccine effectiveness on the effectiveness of
app-based notifications at 2-day and 5-day windows at reducing R∗. Under our baseline assumptions c1 = 0.37,
c2 = 0.37 we obtain a vaccine effectiveness of ≈ 86%. In Supplementary Figure 5, we observe higher levels of
vaccine effectiveness result in larger reductions in R∗, because vaccinated individuals are not required to isolate
upon notification. Hence, if vaccines are less effective, such individuals would be expected to infect a higher
number of secondary cases.

(a)
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Supplementary Figure 5: Impact of vaccine effectiveness on transmission reduction. The percentage
reduction in R∗ with respect to vaccine effectiveness, defined as the product of the vaccine’s impact on sus-
ceptibility (c1) and transmissibility (c2), for a 2-day window (orange dotted line, cross markers) and a 5-day
window (blue solid line, circle markers), under the assumption that 70% of the population are fully vaccinated.
Normalised 95% credible interval test probability profiles1, used as the distribution of detection times of base
cases, were used to obtain shaded regions.
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Supplementary Note 5 Exploring the impact of heterogeneity
While our results are based on one infectiousness profile, this can be interpreted as the ‘average’ infectiousness
profile of individuals within the population, and hence the method captures heterogeneity between individuals,
as long as the generation time distribution of the population at large matches this infectiousness profile. Through
numerical simulation, we demonstrate this for two types of heterogeneity.

Firstly, to consider the impact of heterogeneous contact rates between individuals, and the potential for some
individuals to be superspreaders, we explored the impact of allowing the expected number of onward cases from
base cases and primary cases to differ between individuals, while keeping the infectiousness profile of individuals
through time the same for each individual. Specifically for each individual i, we draw a heterogeneity parameter
hi ∼ LogNormal(0, 1.1). Ri values were obtained by multiplying R by hi, which is then rescaled to not increase
the mean value of Ri over the population, i.e. we took Ri = hi

R
E(hi) . We chose this distribution to satisfy 80%

of primary cases resulting from contact with 20% of base cases (Supplementary Figure 6a), broadly in line with
studies of SARS-CoV-2 superspreading events from contact tracing data15,16. However, this distribution was
chosen as an illustrative example rather than a precise distribution of contact rates or superspreading for SARS-
CoV-2, and we emphasise that we would expect our results to hold irrespective of this choice of distribution.
Despite the heterogeneity in contact rates, stochastic simulations closely match the results obtained from the
analytic model (Supplementary Figures 6b and 6c).

Secondly, we explored the impact of heterogeneity in infectious periods - individuals were assumed to have a con-
stant level of infectiousness throughout their period of infection, and infectious periods were drawn to match the
infectiousness profile at a population level. We achieved this by drawing a parameter ki ∼ Unif(0, maxx f(x)).
The individual’s infectious period is then taken to be the values of t such that f(t) − k > 0. Specifically, in

order to satisfy
∑N

i=1
fi(t)

N ≈ f(t), for each individual i we set fi(t) to be:

fi(t) =
{

maxx f(x), if f(t)− k > 0
0, otherwise

(23)

Supplementary Figures 7a and 7b demonstrate the sampling method and construction of infectious periods.
This method is an illustrative example, chosen to satisfy the infectiousness profile at the population level. It
should not be taken as an accurate distribution of infectiousness periods or times to onset of infectiousness.
For example, by construction, the earlier a sampled infectious individual becomes infectious, the longer they
remain infectious, which would not be a feature desired in a realistic model. For those wanting to accurately
model heterogeneity in infectious periods, one would have to model both a time from exposure to infectiousness
distribution and an infectious period distribution, for example by using the approach outlined by Hart et
al.2. Again, we see that despite the heterogeneity in infectious periods between individuals (Supplementary
Figure 7c), stochastic simulations closely match results from the analytic model (Supplementary Figures 7d
and 7e).
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Supplementary Figure 6: Exploring the impact of heterogeneity in infectiousness between individ-
uals. (a) A histogram of the relative infectiousness, hi, of simulated individuals, in bins of width 0.5, with
the y-axis plotted on a log scale, with hi ∼ LogNormal(0, 1.1)/E(hi). (d) The percentage reduction in R∗ for
different length notification window w, relative to a scenario in which a notification app is not used, assuming
all individuals are active app users, obtained from the analytic model (grey solid line) and via simulation of
individuals with heterogeneous infectious periods (black markers). (c) The relationship between the proportion
of primary cases who are active app users and percentage reduction in R∗ from the analytic model for a 5-day
window (blue solid line) and 2-day window (orange dotted line), and from simulation of individuals with hetero-
geneous infectious periods for a 5-day window (black circle markers) and 2-day windows (black cross markers).
Values plotted for simulations are mean values from numerical simulation of 200,000 base cases.
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Supplementary Figure 7: Exploring the impact of heterogeneity in infectious periods. (a) illustrates
the sampling method used to obtain simulated infectious periods - a random point k ∈ (0, max f(x)) along the
y-axis is drawn, with the infectious period taken as the values of t satisfying f(t)− k > 0. (b) Across infected
individuals, a depiction of them having equal infectiousness (whilst infected) but variable infectious periods.
(c) Duration of infectiousness of simulated individuals, in bins of width 0.5 days. (d) The percentage reduction
in R∗ for different length notification window w and assuming all individuals are active app users, relative to
a scenario in which a notification app is not used. Obtained from the analytic model (grey solid line) and via
simulation of individuals with heterogeneous infectious periods (purple markers). (e) The relationship between
the proportion of primary cases who are active app users and percentage reduction in R∗ from the analytic model
for a 5-day window (blue solid line) and 2-day window (orange dotted line), and from simulation of individuals
with heterogeneous infectious periods for a 5-day window (purple circle markers) and 2-day windows (purple
cross markers). Values plotted for simulations are mean values from numerical simulation of 200,000 base cases.
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