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1 Supplementary Methods

As discussed in the main text, phenotypic heterogeneity among Mendelian disease cases is common. Al-
though this within-disease variation is well recognized, the precise contributing factors (genetic variants,
environmental exposures, etc) remain difficult to identify [1]. This is likely due to the limited sample sizes
available when studying Mendelian disorders, and researchers have adopted several strategies to overcome
this shortcoming, including the generation of pooled cohorts [2, 3], genetic analyses in model systems [4, 5],
and the statistical integration of orthogonal datasets [6]. Here, we outline a new approach for detecting
genetic modifiers of Mendelian disease severity that directly addresses the issue of limited sample size. It
does so by expanding the set of available subjects to include individuals that have similar phenotypes but
not necessarily the Mendelian disease itself.

Crucially, the success of this approach relies on two assumptions. First, a spectrum of cryptic phenotypic
variation must exist within the population such that the Mendelian disease cases tend to cluster towards the
most severely affected extreme. However, there should also be many other patients in the population with
similar phenotypes, which are instead driven by other genetic/environmental factors. Second, our method
assumes that the modifiers of disease severity are constant across the different etiologies. If both of these
assumptions are valid, then the effects of Mendelian disease modifiers should be apparent in a larger subset
of patients, resulting in increased power to detect associations.

The remainder of this text is structured as follows. In Section 1.1, we describe in detail the datasets
used in our analyses. Section 1.2 outlines our approach to automatically detecting rare disease diagnoses
and their associated symptoms within structured medical data. Finally, Section 1.3 describes our methods
for estimating cryptic spectrums of phenotypic severity from observed symptoms. The remainder of the
Methods are covered in the primary text. Supplementary Figures and Tables are included at the end of this
document.

1.1 Clinical Datasets

This section describes our processing of the clinical datasets used for latent phenotype inference and the
subsequent genetic analyses (UCSF De-Identified Clinical Data Warehouse: UCSF-CDW; UK Biobank:
UKBB). Neither dataset can be shared directly with third parties, as both have specific requirements against
open data sharing outside of their usual application processes. Information regarding third party access to
the UCSF De-Identified Clinical Data Warehouse can be found through UCSF Data Resources1, and the
application process for access to the UK Biobank is outlined on their website2.

1https://data.ucsf.edu/cdrp/research
2https://www.ukbiobank.ac.uk/register-apply/
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1.1.1 UCSF De-Identified Clinical Data Warehouse

We performed all initial phenotypic analyses and modeling using the University of California San Francisco
De-Identified Clinical DataWarehouse (UCSF-CDW)3, a database of structured electronic health information
that is made available to UCSF researchers free-of-charge. The data was captured for use as flat text files on
May 31st, 2019 and not updated thereafter. Following capture, patient demographic data (age in decades,
sex, ethnicity, multiracial identifier, language, mortality status, marital status, and smoking status) was
aligned to the medical encounter diagnoses documented in the form of International Classification of Disease,
Tenth Revision, Clinical Modification (ICD10-CM) codes [7]. This generated demographic and diagnostic
information for 1,204,212 de-identified patients who have received their healthcare within the UCSF system
since 2012 (along with some migrated legacy data dating back to 1988).

To further simplify the clinical information, we constructed a binary vector for every patient indicating
whether or not they had ever been diagnosed with each ICD10-CM code (stored in a sparse format, see
ClinicalDataset module in vlpi package on https://github.com/daverblair/vlpi for details). Note,
this at-least-one binarization of diagnostic information was chosen to maximize the sensitivity of the encod-
ings at the expense of specificity. Although this approach may not be ideal when conducting single-trait
association studies [8, 9, 10], the majority of our analyses instead rely on capturing the correlation structure
observed among multiple diagnostic codes and should therefore be robust against isolated false positives.

After parsing the diagnostic codes into binary vectors, we removed several classes of ICD10-CM codes
from the dataset. First, we removed all codes that represent diagnoses related to external causes (ICD10-CM
Chapters 19 and 20), factors affecting health status (Chapter 19), and diagnoses related to pregnancy/the
perinatal period, which appeared to be inconsistently used across mother and child (Chapter 15 and Chapter
16-P09). We then removed all ICD10-CM codes identifying each rare disease of interest (see Supplemen-

taryDataFile 1.txt for mappings; further details provided below), storing these diagnoses as binary vectors
(again using at-least-one binarization) for use in downstream analyses. Additionally, we found that ICD10-
CM codes within the same hierarchical level as a rare disease of interest were often highly predictive of said
disease even when intending to document a fairly distinct clinical entity. This suggests such codes can serve
as noisy but unintentional proxies for rare disease diagnoses, which would bias some of our downstream anal-
yses. Therefore, they were removed from the dataset as well. Finally, we removed all ICD10-CM codes with
a frequency less than 10−5, as such codes offered little information at the expense of much dataset/analytical
complexity. This processing generated a binary array (present/absent) of 10, 483 diagnostic terms assigned
to ≈ 1.2 million patients (subsequently denoted UCSF-ICD10-CM ).

We further processed UCSF-ICD10-CM in two ways. First, we transformed the ICD10-CM codes into
HPO terms using a customized mapping, whose construction is outlined in detail below (resulting dataset
denoted UCSF-HPO). Second, we translated the ICD10-CM codes into the ICD10 terminology utilized by
the UK Biobank4, taking advantage of the fact that the UK Biobank encoding is a less granular subset
of the ICD10-CM encoding (see ICD10TranslationMap in vlpi.ICDUtilities for details concerning the
implementation of said mapping). This dataset will subsequently be referred to as UCSF-ICD10-UKBB.
These processed datasets contained 1, 674 and 4, 933 diagnostic terms respectively. The UCSF-ICD10-UKBB
dataset was also translated into HPO terms, resulting in a dataset with 1, 423 features (denoted UCSF-HPO-
UKBB).

The UCSF dataset was used for statistical model inference and evaluation. Therefore, it was a priori
divided into two subsets: a training dataset and a testing dataset. We wanted to ensure that the testing
dataset contained positive cases for each rare disease included in our analysis, so distinct training and
testing datasets were generated for each disorder. The subsets were constructed by randomly subsampling
75% of the data for training and 25% for testing while maintaining an equal ratio of rare disease cases in
each. All inference and preliminary analyses were performed using the training dataset, while the testing
dataset was only used to perform our final evaluations of the cryptic phenotypes (see below). Training and
testing datasets were generated using the ClinicalDatasetSampler class available within the vlpi software
package: https://github.com/daverblair/vlpi.

3https://myresearch.ucsf.edu/de-identified-clinical-data-warehouse
4Data-Coding 19: https://biobank.ndph.ox.ac.uk/showcase/coding.cgi?id=19
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1.1.2 UK Biobank

The bulk UK Biobank (UKBB) dataset was downloaded on Jan 22nd, 2020 using the software provided
by the organization5. Following download, the raw data file was parsed, isolating demographic variables of
interest and collapsing main/secondary inpatient summary diagnoses into a single data value6 . This parsed
dataset was then loaded into a vlpi.data.ClinicalDataset class. Finally, the ICD10 codes in the raw
dataset were filtered by removing:

1. Codes identifying a rare disease of interest (see SupplementaryDataFile 1.txt for precise mappings)

2. Codes from the disallowed set described above

3. Codes not contained within the translated UCSF dataset (i.e. UCSF-ICD10-UKBB)

This resulted in a version of the UK Biobank dataset (denoted UKBB-ICD10 ) whose diagnostic codes had
a 1:1 mapping to those available within UCSF-ICD10-UKBB (4, 933 diagnostic terms). This dataset was
also translated into HPO terms (denoted UKBB-HPO), yielding a sparse, binary array with 1, 423 features.
Because this dataset was used for phenotype model inference, training (random 75%) and testing (random
25%) subsets were also constructed for each Mendelian disease (see above).

The processing described above was applied to the full UKBB dataset. However, subsets of the full
dataset were used for the genetic analyses based on recommended best practices [11, 12]. First, the full
dataset (i.e. all individuals with imputed genotype data after removing withdrawn subjects) was further
filtered by removing subjects with:

1. Self-reported/genetic sex mismatch

2. Sex-chromosome aneuploidy

3. Heterozygosity/missingness outliers

4. Genotype call rate < 97%

5. Kinship outlier status

This reduced the full dataset from 487, 297 to 485, 014 subjects (denoted UKBB-ICD10-Full in the remainder
of the text). Next, two additional subsets of the data were constructed. The first included only Caucasian-
identifying individuals whose ethnicity matched that inferred by Principal Component Analysis of the genetic
relationship matrix (UKBB-Caucasian; 406, 968 subjects), and the second subset removed all 3rd degree or
closer relatives from the previous (UKBB-Unrelated ; 342, 796 subjects).

1.2 Aligning Rare Diseases and Their Symptoms to Structured Medical Data

In order to analyze rare disease phenotypes at the population scale, we needed to automatically identify
the presence/absence of their associated symptoms within individual medical records. Based on previous
work [13, 14, 15, 16], we integrated multiple biomedical ontologies/terminologies (see below for details) to
map diseases and their symptoms to structured medical data (i.e. diagnostic billing codes). The details
concerning this integration process are provided below.

1.2.1 Selection of Rare Diseases for Cryptic Phenotype Analysis

We selected the set of rare diseases used for latent phenotype analysis using a combination of ontology inte-
gration and manual curation. First, we used the Human Disease Ontology7 [17] to obtain mappings between
the Online Mendelian Inheritance in Man (OMIM) database [18] and the ICD terminologies. Building on
previous work [19], we then manually curated the OMIM-to-ICD10-CM alignments, selecting (and group-
ing if necessary) ICD10-CM codes that reliably mapped to a single or relatively homogenous set of OMIM

5See https://biobank.ctsu.ox.ac.uk/crystal/exinfo.cgi?src=accessing_data_guide for details regarding data access.
6See https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=2002 for details regarding diagnostic information available

within the UKBB
7http://www.obofoundry.org/ontology/doid.html—
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diseases. By integrating this manually curated set with the diseases annotated by the Human Phenotype
Ontology8 (HPO), we generated a raw list of 166 rare disease phenotypes aligned to both the ICD10-CM
and HPO terminologies.

From this set of 166 rare diseases, we further filtered them according to:

1. Their prevalence within the UCSF-CDW

2. Their number of annotated HPO terms

More specifically, we included all diseases for downstream analyses that had a population prevalence of at
least 5× 10−5. In addition, we limited our analyses to those diseases with at least 5 annotated HPO terms,
as our model for latent phenotype inference showed instability for diseases annotated with less HPO terms
(see below). The final set of included diseases (along with modes of inheritance, prevalence and assigned
ICD10/ICD10-CM codes) is provided as SupplementaryDataFile 1.txt.

1.2.2 Alignment of the Human Phenotype Ontology to the ICD10-CM Terminology

We aligned the Human Phenotype Ontology9 (HPO) [20] to the ICD10-CM terminology [7] in an automated
fashion using multiple sources of data. First, we downloaded the HPO-to-ICD10 and HPO-to-ICD9 mappings
(obtained through lexical matching using the LOOM tool [21]) from the National Center for Biomedical
Ontology’s BioPortal10 [22]. We added to these strict lexical matches by integrating the mappings obtained
from two other ontologies: the UMLS Metathesaurus11 [23] and the SNOMED-CT-to-ICD10 mappings
obtained from the US Edition of SNOMED12 [24]. To further expand the final set of HPO-to-ICD10-CM
matches, we also downloaded an ICD9-to-ICD10 map from the National Bureau for Economics Research13,
enabling us to generate HPO-to-ICD10-CM mappings transitively through the ICD9 encoding. Finally,
similar to [25], we used a partial logical expansion strategy to increase the coverage of our HPO-to-ICD10-
CM mappings. More specifically, for cases in which an HPO term had no ICD10 annotations, we aligned it
with the ICD10 annotations of its parent as long as the following criteria were met:

1. A child term has only a single parent term

2. The parent term only has a single child term

Overall, the integration of these different datasets plus post-processing enabled the successful alignment of
3, 166 HPO terms (total number of terms in the HPO version downloaded on 8/8/2019: 14, 707) and yielded
4, 922 HPO-to-ICD10 alignments. We further the filtered this list of aligned HPO terms by:

1. Removing terms that were aligned to the ICD10-CM code for a rare disease of interest

2. Removing terms aligned to a disallowed ICD-10-CM code

3. Collapsing two or more HPO terms that aligned to the same ICD-10-CM code (or a strict subset codes)

This reduced the number of unique HPO terms (or combinations of terms) to 1, 674. The final HPO-to-
ICD10-CM alignments used in this study are provided in SupplementaryDataFile 2.txt.

We used the phenotype annotations available through the HPO website14 to assign symptoms (in the
form of HPO terms) to the rare diseases of interest (see Supplementary Figure 1 to see a global overview of
the symptom-to-disease mappings). Although we did not manually review the assignments, we did evaluate
their performance on a simple rare disease diagnosis prediction task. More specifically, ElasticNet classifiers
(implemented in sklearn [26]) for rare disease diagnoses were constructed in the UCSF training datasets
using three sets of features: annotated HPO terms, all HPO terms, and the full ICD10 codebook. The

8https://hpo.jax.org/app/download/ontology
9https://hpo.jax.org/app/download/ontology

10https://bioportal.bioontology.org/
11https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
12File: tls Icd10cmHumanReadableMap US1000124 20190301.tsv; https://www.nlm.nih.gov/healthit/snomedct/us_

edition.html
13https://www.nber.org/data/icd9-icd-10-cm-and-pcs-crosswalk-general-equivalence-mapping.html
14https://hpo.jax.org/app/download/annotation
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classifiers built using the annotated HPO terms performed substantially better than random (assessed using
the average precision score [27]) for nearly all of the included disorders (Supplementary Figure 2a). Moreover,
although the classifiers constructed using the full ICD10/HPO codebooks performed systematically better on
average (Supplementary Figure 2b), the models constructed using the annotated HPO terms were statistically
indistinguishable (based on overlapping 95% confidence intervals) from those constructed using the complete
ICD10 codebook (which includes >10,000 features) for 39 of 50 disorders (78%, see Supplementary Table 1).

Certain infectious
 and parasitic diseases

Diseases of the blood
 and blood-forming organs

Endocrine, nutritional
 and metabolic diseases

Mental, Behavioral and
 Neurodevelopmental disorders

Diseases of the
 nervous system

Diseases of the
 circulatory system
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 musculoskeletal system
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Rare Disease Categories-to-HPO Symptoms
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Abnormality of prenatal development or birth
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Supplementary Figure 1: A Sankey diagram depicting the alignments between 166 rare, Mendelian diseases
(left side) and their HPO-term encoded symptoms (right side). On the left, the Mendelian diseases were
grouped according to their parent ICD10-CM chapters such that each colored bar indicates a distinct grouping
of disorders, and the height of the bar indicates the total number of diseases in each group. Similarly, on
the right side, the HPO symptoms were grouped according to their most general ancestor in the ontology.
Annotations between the groups of diseases and symptoms are represented as curved lines of various thickness,
with the width of each line proportional to the total number of annotations linking the two groups.

1.3 Cryptic Phenotype Analysis

Our approach to identifying modifiers of Mendelian disease severity relies on the detection of a quantitative
but latent (or cryptic) spectrum of variation that drives the observed symptoms of the disorder (i.e. its
morbidity or expressivity). However, there are no guarantees that such a spectrum exists. Therefore,
we utilized a two-stage process to identify Mendelian diseases that may benefit from this spectrum-based
approach. First, we performed statistical inference to estimate the latent phenotypes underlying a set of
observed symptoms (see Supplementary Figure 5, left side) in two distinct datasets (UCSF and UKBB).
Then, we performed extensive evaluations of the inferred phenotypes to ensure that they: 1) captured the
severity of the Mendelian disease of interest, and 2) were consistent across datasets. Cryptic Phenotype
Analysis (CPA) refers to the complete two-stage process.

1.3.1 A Generative Model for Disease Symptoms

Consider the set of K symptoms that are associated with some Mendelian disease of interest. We assume
that all of symptoms are binary (present/absent) and permanent (i.e. once diagnosed, they do not resolve).
Let Si,j denote the status of the jth symptom in the ith subject such that Si,j = 1 indicates that the patient
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Performance Across Terminologiesa b

Supplementary Figure 2: Classifiers to predict rare disease diagnoses in the UCSF dataset were constructed
from three different terminologies: annotated HPO terms, all HPO terms, and all ICD10-CM codes. (a):
The average precision score (evaluated in the testing subset) for the three different classifiers is compared
across all 50 rare diseases included in the study. The average precision score is normalized by the prevalence
of each diagnosis, which approximates the average precision score of a random classifier [28]. For reference,
the prevalence of each diagnosis is plotted to the right (red line denotes the mean prevalence across all dis-
eases). All classifiers were constructed using the LogisticRegression function implemented in sklearn[26],
invoking the elasticnet penalty and the following hyper-parameter settings: max iter=500, tol=0.001,
solver=‘saga’, C=1.0, and l1 ratio=0.5. (b): Boxplots comparing the average precision score distribu-
tions across the 3 different terminologies for the 50 diseases included in this study. The boxes themselves
represents the interquartile range for the performance statistics, and the central horizontal lines represent
the medians. The notches in the boxplots provide a bootstrapped estimate for the 95% confidence interval
of the median (1,000 re-samples). The whiskers indicate the range for the observed values.
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Supplementary Table 1: Disease diagnosis classifier performance: annotated HPO vs. ICD10-CM.

Name
Annotated Avg. Precision

(95% CI)
ICD10 Avg. Precision

(95% CI)

Achondroplasia 0.0057 (0.00041,0.046) 0.034 (0.0028,0.14)
Fabry Disease 0.0035 (8.9e-05,0.033) 0.00024 (9.6e-05,0.00089)
Gaucher Disease 0.0063 (0.00071,0.029) 0.15 (0.0047,0.35)
Chronic Granulomatous Disease 0.041 (0.0077,0.11) 0.11 (0.04,0.21)
Complement Deficiency 0.0086 (0.0029,0.029) 0.034 (0.0038,0.096)
Hypogammaglobulinemia 0.1 (0.0055,0.27) 0.2 (0.045,0.4)
Cystic Fibrosis 0.28 (0.21,0.36) 0.47 (0.4,0.55)
Non-Neuropathic Heredofamilial Amyloidosis 0.00032 (0.00013,0.0008) 0.0096 (0.0012,0.046)
Homocystinuria 0.00047 (0.00028,0.00094) 0.0036 (0.00088,0.019)
MTHFR Deficiency 0.0026 (0.0018,0.0051) 0.014 (0.003,0.038)
Acute Intermittent Porphyria 0.00058 (0.00013,0.0025) 0.00048 (0.00013,0.0023)
Wilsons disease 0.11 (0.0046,0.26) 0.034 (0.007,0.13)
Hemochromatosis 0.0038 (0.0016,0.012) 0.017 (0.0086,0.038)
Hereditary Vitamin D-dependent Rickets 0.0005 (0.00011,0.0034) 0.24 (0.072,0.43)
Familial Hypophosphatemia 0.0064 (0.00086,0.038) 0.12 (0.035,0.27)
Alpha-1-antitrypsin Deficiency 0.011 (0.0044,0.029) 0.021 (0.008,0.053)
Constitutional Red Blood Cell Aplasia 0.04 (0.015,0.095) 0.13 (0.044,0.31)
Phenylketonuria 0.00025 (0.00014,0.00044) 0.00025 (0.00015,0.00053)
Ocular Albinism 0.012 (0.0019,0.052) 0.04 (0.0021,0.19)
Oculocutaneous Albinism 0.045 (0.0055,0.16) 0.11 (0.0099,0.28)
Genetic Torsion Dystonia 0.021 (0.005,0.075) 0.061 (0.024,0.15)
Primary Erythermalgia 0.00043 (0.00026,0.00078) 0.023 (0.0051,0.084)
Fragile X Syndrome 0.0013 (0.00029,0.0048) 0.0029 (0.00039,0.022)
G6PD Deficiency 0.002 (0.00074,0.011) 0.0014 (0.00065,0.0034)
Hereditary factor IX deficiency 0.01 (0.0008,0.064) 0.051 (0.013,0.15)
von Willebrand Disease 0.012 (0.0054,0.03) 0.048 (0.024,0.088)
Prothrombin Deficiency 0.0017 (0.0003,0.012) 0.0019 (0.00084,0.0043)
Hereditary Hemorrhagic Telangiectasia 0.47 (0.37,0.56) 0.53 (0.44,0.62)
Muscular Dystrophy 0.077 (0.032,0.15) 0.14 (0.061,0.23)
Myotonic Muscular Dystrophy 0.00067 (0.00016,0.0041) 0.003 (0.00023,0.023)
Hereditary Motor and Sensory Neuropathy 0.04 (0.026,0.065) 0.051 (0.031,0.089)
Huntington Disease 0.2 (0.087,0.33) 0.32 (0.19,0.46)
Congenital Adrenal Hyperplasia 0.0082 (0.0023,0.021) 0.15 (0.067,0.25)
Familial Dysautonomia 0.039 (0.0083,0.097) 0.092 (0.036,0.19)
Marfan Syndrome 0.14 (0.08,0.22) 0.22 (0.14,0.3)
Alport Syndrome 0.064 (0.028,0.14) 0.41 (0.26,0.55)
MEN1 0.15 (0.049,0.31) 0.39 (0.19,0.61)
MEN2A 0.056 (0.01,0.18) 0.15 (0.033,0.32)
Neurofibromatosis 0.27 (0.21,0.33) 0.33 (0.27,0.39)
Tuberous Sclerosis 0.1 (0.042,0.18) 0.39 (0.28,0.5)
Multiple Congenital Exostoses 0.00051 (0.00021,0.0024) 0.31 (0.16,0.47)
Rett Syndrome 0.062 (0.01,0.17) 0.19 (0.042,0.36)
22q Deletion Syndrome 0.098 (0.058,0.18) 0.19 (0.12,0.28)
Polycystic Kidney Disease 0.07 (0.051,0.099) 0.27 (0.23,0.32)
Osteogenesis Imperfecta 0.027 (0.00097,0.081) 0.022 (0.0035,0.084)
SCID 0.031 (0.0044,0.14) 0.11 (0.01,0.3)
Sickle Cell Anemia 0.013 (0.0061,0.031) 0.11 (0.071,0.16)
Klippel-Feil Syndrome 0.0036 (0.0006,0.02) 0.051 (0.0081,0.13)
Periodic Fever Syndromes 0.0027 (0.0014,0.0061) 0.16 (0.087,0.27)
Congenital dyserythropoietic anemia 0.0097 (0.0028,0.034) 0.048 (0.01,0.15)
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has received this diagnosis. Furthermore, let S denote an N ×K-dimensional matrix of symptom diagnoses
such that the ith row of the matrix (denoted Si) contains the diagnoses for subject i, and let Z denote
an N × L matrix of latent phenotype values, where each column of the matrix represents the magnitude
(i.e. severity) of a distinct latent phenotype. We assume that the binary symptom matrix is generated
stochastically from the latent phenotypes according to:

P (S|Z, θ) = f(Z; θ),

where f(Z; θ) is a function (defined by the parameters θ) that maps the latent phenotypes onto a matrix of
symptom probabilities (i.e. f(Z; θ) ∈ [0, 1]N×K). We construct a joint model for S and Z by specifying a
generative probability distribution for the latent phenotypes themselves:

P (S,Z|θ) = P (S|Z, θ)× P (Z|ϕ), (1)

where ϕ is the set of parameters defining the prior distribution for the latent phenotypes.
To fully define the joint model, we must precisely specify the symptom risk function (f(Z; θ)) and

the prior distribution for Z (P (Z|ϕ)). Starting with the latter, we desire a phenotype model that produces
continuous random variables, is computationally tractable, and assumes that the L distinct latent phenotypes
are independent of one another. This last assumption is important because it aids in identifiability. Our goal
is to isolate latent phenotypes that best explain the symptom variability observed within each Mendelian
disease. If our model happens to decompose a set of symptoms into multiple phenotypes, then we want
them to be independent of one another in order maximize our chances of isolating a single latent component
capable of explaining this variability. Therefore, in the current study, we used the isotropic standard gaussian
as the prior distribution for the latent phenotypes:

Z ∼ N (0, I) (2)

where I is the L×L-dimensional identity matrix. Note, there is no advantage to relaxing the constant variance
assumption implicit in this construction; the symptom risk function can always systematically re-scale the
latent phenotype values to allow for non-constant variance across the different dimensions.

With respect to the function f(Z; θ), we modeled symptom risks using the following generalized linear
model:

f(Z; θ) ∝ exp
[
BT + ZW

]
(3)

where B denotes a K-dimensional vector of symptom-specific offset terms and W represents an L × K-
dimensional matrix of latent phenotype component weights (i.e. θ = {B,W}). To simplify the interpretation
of the inferred latent phenotypes, we restricted the values of W to be non-negative such that wl,k ≥ 0,∀l, k.
This restriction was in invoked for two reasons. First, it ensured that all of the symptoms annotated to
a Mendelian disease were positively correlated, which should be generally be true by definition. Second,
it aided in the interpretation of the inferred latent phenotypes, as it ensured that individuals with large,
positive latent phenotype values had the highest risk of being diagnosed with multiple, rare disease symptoms
(i.e. the greatest morbidity). Note, more complicated symptom risk functions are possible (ex: multi-layered
non-linear neural network), but in our preliminary analyses, such functions were associated with substantially
increased complexity while adding little in terms of expressivity. Further research is required to determine
if and/or when more complicated risk functions are necessary to capture the correlation structure among
disease symptoms.

1.3.2 A Variational Approach to Model Inference

Ultimately, we are interested in producing estimates for the latent phenotype matrix (denoted Ẑ) given
some observed symptom matrix (denoted S = s). This idea of summarizing an observed dataset with a
lower-dimensional matrix of latent variables is also known as matrix factorization (or factor analysis), and
there are multiple examples of its successful application to a diverse set of problems in computation biology
and genetics [29, 30, 31, 32]. Although many general-purpose matrix factorization algorithms have been de-
veloped, most were designed for continuously-distributed observed data and/or do not impose independence
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assumptions among the latent variables. Therefore, we developed an approximate, variational Bayesian in-
ference algorithm that is specific to the model outlined in Equation 1 using an approach that has become
popular within the machine learning community due to its scalability and overall performance [33, 34].

More specifically, our goal was to infer a posterior distribution over Z given the observed symptom matrix
S = s and the parameters θ (i.e. P (Z|s, θ)). To do so, we first defined the likelihood of the observed data
for our model:

P (s|Z, θ) =
N∏
i=1

K∏
j=1

[
f(Z; θ)i,j

]si,j × [
1− f(Z; θ)i,j

]1−si,j
,

where f(Z; θ)i,j denotes element-(i, j) of the matrix produced by the symptom risk function. The joint
likelihood for the data and the latent phenotypes is:

P (s,Z|θ) = P (s|Z, θ)× P (Z),

and to specify the desired posterior distribution, we need to compute the following marginal likelihood (also
called the model evidence):

P (s|θ) =
∫
P (s,Z|θ)dZ.

Because this integral is analytically intractable, we produced a lower bound approximation to the model
evidence (denoted ELBO) by invoking Jensen’s Inequality:

logP (s|θ) ≥
∫
q(Z|s, ψ) log

[
P (s,Z|θ)
q(Z|s, ψ)

]
= Eq(Z|s,ψ)

[
P (s|Z, θ)

]
+KL

[
q(Z|s, ψ)||p(Z)

]
≡ Lθ,ψ (4)

where q(Z|s, ψ) denotes an approximate posterior distribution over Z defined by the parameter set ψ, EG
[
F
]

denotes the expectation of F with respect to G, andKL
[
F ||G

]
denotes the Kullback-Leibler (KL)-divergence

from G to F . By optimizing this lower bound with respect θ and ψ, we obtain an estimate of the model
marginal likelihood (i.e. the evidence) while simultaneously learning an approximate posterior distribu-
tion over the latent phenotypes. Further details regarding the general variational approximation and its
application to statistical models can be found in [35].

In order for the lower bound defined in Equation 4 to be practically useful, we need specify the approx-
imate posterior distribution q(Z|s, ψ). One approach to defining this function is to invoke the mean field
approximation, which restricts the joint posterior distribution over the latent variables to be conditionally
independent given a set of variational parameters (i.e. q(Z|s, ψ) =

∏
i q(Zi|si, ψi)). Although the optimal

solution for q(Z|s, ψ) under the mean field approximation can sometimes be derived analytically [35], this
is not true for the model defined in Equation 1. Therefore, we used the approach outlined in [33, 34] and
directly set q(Zi|s, ψ) to have a specific functional form: a multi-layered non-linear neural network15.

There are several advantages to this approach. First, instead of optimizing a unique set of variational
parameters for each observed datapoint (as is the case for the mean field approximation), the posterior
distribution for every datapoint arises from a deterministic function that relies on the same set of parameters.
This is known as amortized inference [34], and it enables variational inference algorithms to scale to very
large datasets. Second, optimization problems involving non-linear neural networks have become common in
the machine learning community [36], and multiple, highly-flexible software libraries now exist that enable
the rapid development of scalable optimization algorithms for non-linear neural networks [37] and complex
probability models [38].

1.3.3 Model Inference in Practice

As discussed above, model inference using the variational approach proceeds by finding the parameter values
(denoted θ̂ and ψ̂) that maximize the lower bound specified in Equation 4. When a neural network is

15Specifically, we utilized a neural network with 2 hidden layers each containing 64 Rectified Linear Units (ReLU) to allow for
non-linearities. Details concerning the implementation can be found in the source code: https://github.com/daverblair/vlpi.
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chosen as the approximate posterior distribution, this objective function is generally maximized using some
version of stochastic gradient descent, an iterative algorithm that scales well to large datasets and complex
models [36]. Although theoretically guaranteed to converge to a local optimum under certain conditions, the
performance of stochastic gradient descent can vary widely across datasets, models, and implementations
[36].

To mitigate some of this variability, we aimed to design an inference algorithm that was flexible and
enabled excellent any-time performance, as we wanted to rapidly deploy our statistical model to many
different sets of disease symptoms without having to individually tune the algorithm’s hyper-parameters. In
our implementation, we utilized an adaptive gradient descent method that includes a penalty term to avoid
overfitting16 (AdamW, see [39]). With respect to the learning rate of the algorithm, we initially started with
a very small value, which was increased towards a large, maximum learning rate prior to decreasing the rate
down to a small value once again (one-cycle learning rate scheduler). This particular approach has been
shown to enable fast and accurate training of complex neural networks [40], and we found this to be true for
our model as well.

In some cases, however, we found that different runs of the optimization algorithm could yield sub-
stantially different results, particularly with respect to the symptom risk function parameters (θ). This
observation appeared to be driven by convergence to local modes in the objective function, likely exacer-
bated by the stochastic nature of the inference algorithm. To avoid local modes that tended to result in
simpler but sub-optimal models, we utilized the annealing approach described in [41] to slowly incorpo-
rate the KL-divergence term into the lower bound specified in Equation 4. We found that this annealing
approach substantially improved the consistency of the inferred models across different initializations (see
below). Finally, by default, we monitored for algorithm convergence by computing the (untempered) ELBO
on a held-out sample of data (termed the validation dataset). Unless otherwise noted, we withheld 20% of
the training dataset for validation. Note, this validation dataset is distinct from the testing dataset, which
was only used in the final stage of our cryptic phenotype analysis (see below). The inference algorithm
outlined above was implemented using the Pyro Probabilistic Programming Language [38] and PyTorch
[37]. Additional details regarding the algorithm, including default hyper-parameters (which were used unless
otherwise noted), can here can be found on Github: https://github.com/daverblair/vlpi.

1.3.4 Assessing Model Convergence

The inference algorithm described above was designed in order maximize inferential consistency without
having to tune a unique set of hyper-parameters for each symptom dataset. That said, inconsistent inference
results were still possible, especially given the stochastic nature of the algorithm coupled with the multi-
modality of the objective function. Therefore, we wanted to ensure that the model inference results were
consistent and robust across multiple model fitting attempts.

To do so, we fit the latent phenotype model to the symptom sets corresponding to each rare disease using
20 different trials of our stochastic inference algorithm. Each trial used the same set of algorithmic hyper-
parameters (maximum learning rate: 0.02, mini-batch size: 5000, max. epochs: 2000, convergence error
tol.: 10−6). To systematically compare models across different inference runs, we developed two statistics
to assess their similarity. First, we defined a simple measurement that compares the quality of the model
fits within our training dataset. More specifically, we computed the per-datum model perplexity for every
subject according to:

P(si|θq, ψq) =−
∫
q(Zi|si, ψq) log

[
P (si,Zi|θq)
q(Zi|s, ψq)

]
dZi (5)

≥− logP (si|θq),

where the superscript q is used to indicate that these parameters define the model obtained from the qth
trial. In practice, the integral in Equation 5 cannot be computed analytically, so we computed P(si|θ, ψ)

16Penalty term set to 10−4 by default.
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using a stochastic (Monte Carlo) approximation:

P(si|θ, ψ) ≈ −
M∑
j=1

[
logP (si,Z

j
i |θ)− log q(Zji |si, ψ)

]
,

where Zj denotes the jth of M random samples obtained from approximate posterior defined by q(Z|s, ψ).
By default, we set M = 10; we experimented with larger values of M but found no obvious improvement
in performance. To compare the quality of two models, we simply computed the following paired perplexity
statistic:

P(θq, ψq||θr, ψr) =

N∑
i=1

[
P (si|θq, ψq)− P (si|θr, ψr)

]
,

where P(θq, ψq||θr, ψr) > 0 indicates that qth model has systematically higher perplexity (i.e. results in
a poorer fit) than the rth model. Practically speaking, there was a fair amount noise associated with this
statistic, so we used bootstrapped resampling [42] to estimate a 95% confidence interval. The top-performing
model was selected as the inference trial that resulted in the lowest perplexity after accounting for sampling
error (i.e. the 95% CI excluded 0 after multiple testing correction); ties were broken arbitrarily.

The previously described statistic allowed us to select a top performing model while also determining if
multiple models were recovered that were of similar quality. However, it does not directly address the issue
of multimodality, as we could theoretically recover models of similar quality but with different parameter
estimates. To assess parameter similarity, we took advantage of the fact that our linear symptom risk
function is simply a matrix of component weights (W), and therefore, models that converged to similar
modes in the objective function should have similar risk functions. To assess risk function similarity, we
developed a statistic based on the coefficient of determination (R2). First, we aligned the risk matrices from
the qth and rth model (denoted Wq and Wr) by solving the orthogonal procrustes problem [43], which is
necessary because the models have rotational invariance. Then, we computed the similarity between two
symptom risk functions as follows. Let R2(X,Y) denote the coefficient of determination between the two
vectors X and Y. The similarity between two symptom risk matrices was computed according to:

R(Wq,Wr) =

L∑
l=1

R2(Wq
l ,W

r
l )

wl
(6)

where the subscript l indexes the latent components and wl is a weighting parameter defined as:

wl =
||Wq

l || × ||Wr
l ||∑L

l=1 ||W
q
l || × ||Wr

l ||
.

The weighting parameters are necessary in order to decrease the contribution from shadow components
(latent phenotypes whose component weights in the symptom risk function are essentially 0, see below for
details), which can lead to an irrelevant degradation in the statistic.

In practice, after identifying the top performing model based on the per-datum perplexity, we then
computed the pairwise R2 statistic across all 20 trials (see Supplementary Figure 3a-3c for examples).
Models were deemed to be adequately consistent if there was a cluster of at least 3 trials (including the top-
performer) with an average R2 measurement ≥ 0.8. For some diseases (ex: Alpha-1-antitrypsin Defiency,
see Supplementary Figure 3a), the algorithm was incredibly consistent and returned nearly identical models
across all of the trials. For other diseases (ex: Hereditary Hemorrhagic Telangiectasia, see Supplementary
Figure 3b), there was less overall consistency but many of the inferred models were nearly identical. In
a handful of cases, the algorithm clearly detected multiple, disparate modes across trials but still met our
consistency criteria (ex: von Willenbrand Disease, Supplementary Figure 3c). Overall, the symptom sets for
42 of the 50 diseases (85%) included in our analyses met the consistency criteria within the UCSF dataset
using our baseline algorithmic hyper-parameters

For the remaining diseases, manual review revealed that many of them were aligned to a large number
of symptoms that were loosely or even entirely unassociated with the disease based on clinical knowledge.
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We hypothesized that the inclusion of large numbers of unrelated symptoms was detrimental to inference,
as it forced the model to try to account for an unnecessarily complex correlation structure (see below and
Supplementary Figure 4). Therefore, we manually curated the symptoms aligned to the 8 diseases that failed
our consistency tests and re-ran our inference algorithms. This resulted in the convergence of an additional
4 diseases. However, the symptom sets for 4 diseases still failed to converge (ex: Marfan Syndrome, see
Supplementary Figure 3d and 3e for fitting results using the initial and revised symptom sets, respectively).
In these cases, we attempted to improve convergence by increasing the maximum learning rate (0.05) and the
maximum number of training epochs (4000). On simulated data, we found that such changes to the hyper-
parameters often improved the consistency of the model fits by allowing training to occur over a greater
number of epochs. In the case of our actual symptom datasets, these changes enabled 1 of the 4 remaining
diseases to meet our convergence criteria within the UCSF dataset (Marfan Syndrome, see Supplementary
Figure 3d-f).

Note, this same procedure was used to assess model convergence in the UKBB. However, only 38 of the
50 phenotype models converged in this dataset. The discrepancy in convergence is likely multifactorial, and
possible causes include the UKBB’s smaller sample size, lower number of available features, and differences
in demographics/acquisition.

1.3.5 Estimating Effective Rank

Similar to algorithmic hyper-parameters, the selection of model hyper-parameters (model parameters not
optimized during learning) can also impact inference results. With respect to the model defined in Equation
1, there is actually only a single hyper-parameter 17, which is the number of latent phenotypes included
into the model (denoted L). A simple approach to selecting the number of latent phenotypes would be
to set L = 1 and isolate a single latent phenotype for each set of rare disease symptoms. In fact, the
Phenotype Risk Score defined in [15] exactly corresponds to a particular solution of the Non-Negative Matrix
Factorization problem [45] in which the data matrix (in this case, a log-prevalence-transformed symptom
matrix) is decomposed into only a single latent factor18, which may explain some of its success. However,
many sets of symptoms are unlikely to be explained by a single latent phenotype, particularly those that
cross multiple organ systems. For example, Hereditary Hemorrhagic Telangiectasia (HHT) is a rare, vascular
dysplasia characterized by the development of arteriovenous malformations and telangiectasias throughout
the body. Due to a propensity for these malformations to rupture, individuals with the disorder are at
increased risk for a variety of related symptoms including epistaxis and GI hemorrhage. However, these
same symptoms are observed in patients with, for example, portal hypertension and coagulopathy secondary
to cirrhotic liver disease [46]. Therefore, attributing all of the correlation structure among the symptoms of
HHT to a single underlying latent phenotype could result in noisy and/or biased inferences.

Somewhat surprisingly, the optimization algorithm outlined above is able to automatically select the
appropriate number of latent phenotypes by dropping unnecessary latent components from the symptom
risk function (somewhat akin to automatic relevance determination). In other words, when the lth latent
phenotype does not add useful information to the model, then the elements of the lth row of latent phenotype
loading matrix (W) converge to 0 . This automated elimination of unnecessary latent phenotypes is likely
the product of two features of the model and inference algorithm: the KL-divergence term in the loss function
and the penalty parameter in the adaptive gradient estimator [39]. In practice, however, the rows of W that
map to unnecessary latent phenotypes may converge slowly to zero, and it can be challenging to determine
whether a latent phenotype is truly unnecessary by simply visually examining W. Therefore, we developed
a formal approach for detecting and removing unnecessary latent phenotypes by estimating an effective rank
for our inferred latent phenotype models.

Briefly, let SLog-Odds denote the log-odds matrix for the observed symptom data after producing estimates

17Although this is technically true for the model specified in Equation 1, the neural network defining our approximate posterior
distribution also has a set of associated hyper-parameters: the number of nodes per hidden layer and the number of layers.
In practice, we found that inference results were robust to different choices for these hyper-parameters as long as the neural
network was reasonably expressive.

18This is only true when using the KL-divergence loss function and the multiplicative update rules. Details regarding the
equivalence are not shown here but can be found in [45].
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Supplementary Figure 3: Illustrations of our model convergence analysis in the UCSF dataset. In each
panel, the heatmap represents the R2 statistic computed across the different model inference trials. The
top-performing trial (according to perplexity) is highlighted in red on the left side of each panel, while the
cluster containing the top-performing trial is highlighted in red on the right. The pairwise R2 statistics were
clustered with the agglomerative method implemented in sklearn [44] using the average linkage criterion
and a cluster threshold of 0.8. (a-c): These panels depict the results for three example diseases that met
our convergence criteria using the baseline set of algorithmic hyper-parameters. (d-e): These panels depict
the convergence results for Marfan Syndrome, which was fit using the baseline set of hyper-parameters (d),
the baseline set after pruning unrelated symptoms (e), and our modified set of algorithmic hyper-parameters
(f, see text). The models for Marfan Syndrome met our convergence criteria after pruning symptoms and
modifying hyper-parameters (f).
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of the model parameters (denoted θ̂) and latent phenotypes Ẑ:

SLog-Odds = ẐŴ

where Ŵ arises directly from the optimization of the lower bound specified in Equation 4 and Ẑ =
Eq(Z|s,ψ)

[
Z
]
. To estimate the effective rank of the model, we first compute the singular value decompo-

sition [47] of the symptom log-odds matrix such that:

SLog-Odds = UDVT ,

where U and V denote the left (N × K-dimensional) and right (K × K-dimensional) singular vectors
respectively and D is a K × K-dimensional diagonal matrix of singular values. Importantly, the relative
fraction of the variance explained by each of the K singular vectors is given by the following simple equation
[47]:

ηk =
d2k∑K
k=1 d

2
k

,

where d is the diagonal of the singular value matrix. We define a model’s effect rank (denoted Leff) as the
number of singular vectors of the symptom log-odds matrix that account for at least ρ× 100% of the total
variance:

Leff =

K∑
k=1

δ(ηk ≥ ρ),

where δ(X) returns 1 is X is true and 0 otherwise. For our cryptic phenotype models, we set ρ = 10−6.
On simulated data, we found that Leff provided an accurate estimate of the number of latent phenotypes
underlying a set of observed symptoms.

With respect to the actual diseases, the number of inferred latent phenotypes Leff was found to be
correlated with the number of HPO-annotated symptoms (see Supplementary Figure 4). This isn’t entirely
surprising, as larger sets of symptoms have a greater chance of capturing multiple pathological processes.
This relationship is important to keep in mind when applying latent phenotype models to datasets with
large numbers of symptoms, as it can be challenging to consistently infer models with very complex latent
phenotypic structures.

1.3.6 Cryptic Phenotype Identification

Although they generally provide better fits to complex symptom datasets, there are downsides to inferring
latent phenotype models with multiple components. With respect to our particular application, we are
interested in estimating rare disease morbidity using a single, quantitative latent phenotype inferred from
some observed symptom data. When multiple latent phenotypes are inferred, a single latent component
must be selected as the top candidate. In some cases, this can be done by simply examining the symptom
risk function: the component weights corresponding to the latent phenotype that best captures rare disease
morbidity generally align with clinical knowledge of symptom frequency. To automate this process, we took
advantage of the fact that the rare diseases in our target set (see SupplementaryDataFile 1.text) were
aligned to specific ICD10 codes. These codes, although likely noisy, can serve as proxies for rare disease
diagnoses in the population. Therefore, to assign rare diseases to the appropriate cryptic phenotype, we
simply identified the latent component in the inferred model that was most predictive of rare disease diagnoses
in our training dataset. In other words, the cryptic phenotype was identified as the latent component that
generated symptom frequencies (i.e morbidity) that were the most consistent with observed clinical diagnoses.

We produced estimates of the latent phenotypes using the approximate posterior distribution obtained
during model inference: Ẑ = Eq(Z|s,ψ)

[
Z
]
. Following estimation, we sorted the latent phenotypes according

to the magnitude of their component symptom weight vectors (i.e. ||Wl|| for the lth latent phenotype),
and we used the top Leff latent phenotypes as classifiers to predict rare disease diagnoses in our training
dataset. The performance of the latent phenotypes at this task was assessed using the average precision score
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Supplementary Figure 4: For the rare diseases included in this study, the effective rank of the top performing
latent phenotype model is plotted against the total number of annotated symptoms (N=38 diseases, which
includes those with cryptic phenotype models that converged in the UCSF and UKBB datasets; see main
Figure 1c). The fraction of variance threshold for determining the effective rank was set to 10−6. The lines
in the panels represent the expected value of the effective rank given the number of annotated symptoms,
which was generated using an ordinary least squares model fit to the raw data. The shaded regions indicate
the bootstrapped 95% confidence intervals for the expected effective rank (computed using 1,000 re-samples).
(a): UCSF Models. (b) UKBB Models.

implemented in sklearn [27]. Importantly, the average precision score is a summary statistic of the precision-
recall curve, which generally maintains utility even in the setting of extremely unbalanced datasets (unlike
the receiver operating characteristic curve). This approach was used to identify the cryptic phenotypes for
actual rare diseases with excellent results (see Main Figures 2 and 3).

1.3.7 Cryptic Phenotype Evaluation

As discussed in the introduction of this text, not all rare, Mendelian diseases necessarily map to a spectrum
of cryptic phenotypic variation, and a variety of artifacts can potentially arise during latent phenotype
inference. To mitigate such issues, we took several steps to ensure the cryptic phenotypes inferred using
our approach were replicable and consistent. First, cryptic phenotypes were independently inferred in two
unique datasets of very different provenance (UCSF and the UKBB). Note, the UKBB is a smaller dataset
that is likely depleted for severely ill patients (due to the nature of its recruitment). Therefore, fewer
models were successfully inferred in this dataset, and when inference did succeed, the models may be of
lower quality. Second, the cryptic phenotypes inferred for each disease were systemically compared across
diagnosed cases and controls. If a cryptic phenotype indeed captures Mendelian disease severity, then
it should be systematically higher among diagnosed cases. This relationship was assessed by computing
bootstrapped estimates of the mean cryptic phenotypes among diagnosed cases and controls [42] with P -
values computed from the re-sampling statistics. Note, this is only possible for diseases with available ICD10
diagnostic codes. Such information is available for all of the diseases in the UCSF dataset (by design), but
some diseases are missing diagnostic codes in the UKBB dataset (see Supplementary Data File 1). When
this data is missing, then increased severity among Mendelian disease cases was only assessed in the UCSF
dataset. Of the 38 diseases that converged in both datasets, the cryptic phenotypes for 31 were significantly
elevated among the diagnosed cases in the UCSF dataset (after correcting for multiple testing).

Now, the above analysis only indicates that independent cryptic phenotypes can be inferred in both
datasets, but it does assess whether the results are consistent. To ensure replicability and consistency, we
applied the cryptic phenotype models inferred in the UKBB dataset to the UCSF dataset. Note, it is not
straightforward to perform the inverse analysis (replicate UCSF models in the UKBB), as the UKBB is
missing many of the ICD10-CM codes that are utilized by the UCSF models. After applying the UKBB
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models to the UCSF data, we assessed replicability and consistency in three ways. First, we ensured that
the same latent component was identified as the cryptic phenotype in both datasets (true for 24 out of 31
diseases). Next, we assessed if the cryptic phenotypes were systematically elevated among Mendelian disease
cases using this new model, and we also ensured that this result replicated in the UKBB (when possible,
as ICD10 diagnostic codes are not available for all of the disorders in the UKBB). This was true for 18 of
the 24 remaining disorders. Finally, we computed the coefficient of determination (R2) between the cryptic
phenotypes inferred by the UKBB and UCSF models within the UCSF dataset 19. There was a fair degree of
variability in R2 estimates across diseases. In the end, we selected only those cryptic phenotypes with an R2-
value greater than or equal to 0.2 (correlation coefficient=0.4) for downstream analyses (see Supplementary
Data File 4). This choice was arbitrary, and we suspect that this low threshold may in part explain our
inability to identify common variant modifiers for some of the diseases.

1.3.8 The Complete Cryptic Phenotype Analysis Pipeline

A summary of our global approach to cryptic phenotype inference is provided in Supplementary Figure 5.
Note, much of the complexity associated with this approach stems from the fact that two independent models
were inferred in two unique datasets. Ideally, future iterations of this approach will perform joint inference
across multiple datasets, which would negate much of this complexity. However, assessing convergence and
replicability will always an important part of any model-based approach to phenotype-driven analyses.

Latent 
Phenotype 
Inference 

Fit Multiple  
vLPI Models 
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Assess Model 
Convergence 

2 
Curate Symptoms and/or 
Modify Hyper-parameters 
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Supplementary Figure 5: Flow diagram for the Cryptic Phenotype Analysis pipeline used in this study.
Further details regarding the individual steps can be found in Section 1.3. This figure was created with
BioRender.com.

Details on how to perform cryptic phenotype inference using the software package developed for this study
(vlpi) are provided with the source code on GitHub: https://github.com/daverblair/vlpi. Briefly, the
steps required are as follows:

1. Instantiate a ClinicalDataset class by either reading the data from disk (tab-delimited text; see
vlpi.data.ClinicalDataset.ReadDatasetFromFile) or importing it from pre-instantiated data ar-
rays (see vlpi.data.ClinicalDataset.LoadFromArrays).

2. Construct a ClinicalDatasetSampler class, (vlpi.data.ClinicalDataset.ClinicalDatasetSampler))
which is used to generate training, testing, and validation subsets in addition to providing a mechanism
for producing random training batches for stochastic inference.

3. Instantiate a vLPI class (see vlpi.vLPI), which contains all functions necessary for model inference,
utilization, and storage.

19It is only possible to perform this analysis in the UCSF dataset due to different encoding used by the UKBB.
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4. Perform model inference by calling the vLPI.FitModel function, which takes a series of hyper-parameters
that can modify the inference algorithm from its baseline settings (see vlpi.vLPI.FitModel on GitHub
for details).

1.3.9 Cryptic Phenotype Replication in Arbitrary Datasets

To facilitate the replication of our results in other datasets, we wrote a small software package that imputes
the cryptic phenotypes for the five diseases included in our follow up analyses into arbitrary datasets using flat
text files containing ICD10-CM/ICD10-UKBB diagnoses. This software package can be found on Github:
https://github.com/daverblair/CrypticPhenoImpute. This package does not perform any model re-
fitting and simply outputs the results of the models that were trained using the UCSF/UKBB datasets.
It is of course possible to train new latent phenotype models on existing/independent datasets, but this
requires the use of the vlpi software package: https://github.com/daverblair/vlpi. Additional details
concerning the use of both software packages can be found on Github.
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2 Supplementary Tables 2-5

Supplementary Table 2: Genomic inflation factors for high frequency ([0.05, 0.5]) and low frequency
([0.01, 0.05)) polymorphisms re-scaled for a smaller sample size (N = 104).

Disease High Freq. λ10
4

IF Low Freq. λ10
4

IF

A1ATD 1.003 1.002
HHT 1.000 1.001
MFS 1.000 1.000
AS 1.003 1.002
ADPKD 1.009 1.005

Supplementary Table 3: Genome-wide significant common variant loci associated with the cryptic phenotype
inferred for A1ATD.

rsID Chrom. Position Ref. Allele Min. Allele
βSNP

(std. err.)
P -value

rs1828591 4 145480780 A G -0.005 (8.21e-04) 1.51e-09
rs16969968 15 78882925 G A 0.006 (8.54e-04) 3.30e-12
rs62206958 20 62002451 C T 0.009 (1.55e-03) 2.46e-08

Supplementary Table 4: Genome-wide significant common variant loci associated with the cryptic phenotype
inferred for AS.

rsID Chrom. Position Ref. Allele Min. Allele
βSNP

(std. err.)
P -value

rs7767099 6 28768698 C T -0.015 (2.06e-03) 4.31e-13
rs9521732 13 111033821 C A 0.008 (1.38e-03) 2.71e-08
rs73045269 19 41825191 C T -0.010 (1.79e-03) 8.71e-09

18



Supplementary Table 5: Genome-wide significant common variant loci associated with the cryptic phenotype
inferred for ADPKD.

rsID Chrom. Position Ref. Allele Min. Allele
βSNP

(std. err.)
P -value

rs12046278 1 10799577 T C 0.010 (1.22e-03) 2.64e-15
rs12037987 1 113042822 T C 0.015 (2.24e-03) 5.74e-11
rs2586886 2 26932031 T C 0.010 (1.19e-03) 4.32e-18
rs1124873 3 27445430 G A -0.007 (1.20e-03) 1.35e-09
rs9993149 4 38404640 G T 0.006 (1.16e-03) 3.05e-08
rs16998073 4 81184341 A T 0.013 (1.28e-03) 4.74e-24
rs17615906 5 128018413 T C 0.009 (1.56e-03) 5.44e-09
rs9313772 5 157804457 C T -0.008 (1.22e-03) 4.07e-10
rs9375459 6 127147704 C T 0.009 (1.17e-03) 2.23e-15
rs117564322 7 150684021 G A 0.020 (3.30e-03) 2.24e-09
rs330081 8 9154065 A C -0.007 (1.17e-03) 5.07e-09
rs11250099 8 10818657 G A 0.007 (1.16e-03) 4.09e-09
rs11014171 10 18711195 C T -0.007 (1.23e-03) 1.39e-08
rs12356674 10 21889083 G T 0.008 (1.29e-03) 1.86e-09
rs1530440 10 63524591 C T -0.012 (1.49e-03) 5.87e-15
rs4980389 11 1892585 G A 0.008 (1.20e-03) 3.70e-12
rs35473622 11 100692566 A G -0.010 (1.34e-03) 7.57e-13
rs76281384 12 70421102 G C 0.009 (1.64e-03) 4.90e-08
rs3184504 12 111884608 C T 0.007 (1.16e-03) 3.99e-09
rs2627323 15 81021383 C T 0.008 (1.17e-03) 3.16e-12
rs7497304 15 91429176 G T 0.008 (1.24e-03) 1.66e-10
rs4293393 16 20364588 A G -0.011 (1.50e-03) 1.65e-13
rs34445439 17 7441756 C T 0.007 (1.27e-03) 8.20e-09
rs17608766 17 45013271 T C 0.009 (1.64e-03) 3.64e-08
rs16948048 17 47440466 A G 0.007 (1.21e-03) 1.50e-08
rs9895661 17 59456589 T C -0.009 (1.55e-03) 4.09e-08
rs167479 19 11526765 G T -0.007 (1.16e-03) 1.38e-10
rs1535067 20 8607333 C T -0.009 (1.46e-03) 1.21e-09
rs6078000 20 10977631 A G 0.008 (1.28e-03) 8.70e-11
rs16982520 20 57758720 A G 0.011 (1.78e-03) 2.91e-09
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3 Supplementary Figures 6-9

PiZZ Effect: 0.41 (0.03; 4.1e-54)
PiMZ Effect: 0.01 (0.00; 8.5e-04)

Marginal P/LP Effect: 0.14 (0.03; 3.1e-08)
Baseline P/LP Effect: 0.16 (0.04; 1.6e-04)
Unflagged P/LP Effect: -0.02 (0.02; 6.4e-01)

a bA1ATD AS

Supplementary Figure 6: Exome sequencing validation of the inferred cryptic phenotypes, continued. (a):
The distribution of cryptic phenotype severity is stratified by the three different α-1-antitrypsin deficiency
(A1ATD) genotypes: Pi*MM (grey), Pi*MZ (green), and Pi*ZZ (purple). Marginal effect sizes for the two
pathogenic genotypes are shown at the top. These effect sizes and their associated summary statistics were
estimated using linear regression and two-sided T -tests. (b): The distribution of cryptic phenotype severity
for Alport Syndrome (AS) is stratified by genotype. Reference (grey), P/LP Carrier (purple), and Flagged
P/LP Carrier (green). The marginal (flagged and unflagged variants) P/LP cryptic phenotype effect size is
shown at the top of the panel. The baseline and unflagged (P/LP x Unflagged) variant effects are displayed
below the marginal effect statistics. Note, the parentheses contain the standard errors and P -values for the
genetic effects. These statistics were estimated using linear regression and two-sided T -tests. The summary
statistics reported in this figure were not adjusted for multiple testing.
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Supplementary Figure 7: Cryptic phenotype-associated genetic variation modifies A1ATD severity, contin-
ued. (a): Polygenic load is stratified by A1ATD genotype and displayed using a Violin plot. The shaded
regions in the plot represent a kernel-density estimate of each PGS distribution, and the boxplot in the
interior of the shaded region denotes the interquartile range (box), the median (point), and overall range
(whiskers). Note, there is no significant association among the genotypes and the PGS (linear regression-
based likelihood-ratio χ2 test with two degrees of freedom; N=49,845 independent subjects). (b): Proportion
of smokers (top; N=49,845 independent subjects) and reported pack-years (Z-scores, bottom; N=34,735)
stratified by genotype. The points represent the mean value for each genotype, and the error bars repre-
sent the 95% confidence intervals (CIs) for the mean (obtained using bootstrapped re-sampling, N=1,000).
P -values summarizing the associations between genotype and smoking history were assessed using Firth-
corrected logistic (likelihood-ratio χ2 test; top) and linear (two-sided T -test, bottom) regression. (c): The
FEV1/FVC ratio (adjusted for pack-years) is plotted against PGS quantile. The points and error bars rep-
resent the mean values within each quantile and their associated 95% CIs respectively. This analysis was
restricted to the pathogenic genotype (Pi*MZ, Pi*ZZ) carriers only (N=9,511 independent subjects). The
P -value summarizing the association between the PGS and FEV1/FVC ratio was computed using linear
regression and a two-sided T -test. (d): Kaplan-Meier curve for COPD onset, stratified by PGS quantile, is
depicted for the Pi*ZZ genotype carriers. The shaded regions represent the 95% confidence intervals for the
survival curves. The summary statistics reported in this figure were not adjusted for multiple testing.
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Supplementary Figure 8: Common variation modifies the severity of outcomes associated with Alport Syn-
drome (AS). (a): Polygenic load is stratified by AS genotype and displayed using a Violin plot. The shaded
regions in the plot represent a kernel-density estimate of each PGS distribution, and the boxplot in the
interior of the shaded region denotes the interquartile range (box), the median (point), and the overall range
(whiskers). Note, there is no association among the genotypes and polygenic burden (linear regression-base
two-sided T -test;N=34,800 independent subjects). (b): Proportion of smokers (top; N=34,677 independent
subjects) and reported pack-years (bottom; N=24,285 independent subjects) stratified by genotype. The
points represent the mean value for each genotype, and the error bars represent the 95% confidence intervals
(CIs) for the mean (obtained using bootstrapped re-sampling, N=1,000). P -values summarizing the asso-
ciations between genotype and smoking history were assessed using Firth-corrected logistic (likelihood-ratio
χ2 test; top) and linear (two-sided T -test) regression. (c): Urine Microalbumin (adjusted for pack-years
and baseline covariates) is plotted against PGS quantile and stratified by P/LP genotype. The points and
error bars represent the mean values within each quantile and their associated 95% CIs respectively. The
association statistics for the marginal PGS and genotype-by-PGS interaction effects are depicted to the right
(estimated using linear regression and two-sided T -tests). (d, e): Kaplan-Meier curves for ESRD (d) and
Persistent Hematuria (e) onset stratified by P/LP carrier status. Association statistics for the P/LP geno-
type (estimated using Cox-Proportional Hazards regression, see Methods) are displayed within each plot.
The shaded regions represent the 95% confidence intervals for the survival curves. The summary statistics
reported in this figure were not adjusted for multiple testing.
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Supplementary Figure 9: Common variation modifies the severity of outcomes associated with Autosomal-
Dominant Polycystic Kidney Disease (ADPKD). (a): Polygenic load is stratified by ADPKD genotype and
displayed using a Violin plot. The shaded regions in the plot represent a kernel-density estimate of each
PGS distribution, and the boxplot in the interior of the shaded region denotes the interquartile range (box),
the median (point), and the overall range (whiskers). Note, there is no association among the genotypes
and polygenic burden (linear regression-based two-sided T -test; N=34,633 independent subjects). (b): Pro-
portion of smokers (top; N=34,526 independent subjects) and reported pack-years (bottom; N=24,230
independent subjects) stratified by genotype. The points represent the mean value for each genotype, and
the error bars represent the 95% confidence intervals (CIs) for the mean (obtained using bootstrapped re-
sampling, N=1,000). P -values summarizing the associations between genotype and smoking history were
assessed using Firth-corrected logistic (likelihood ratio χ2 test; top) and linear (two-sided T -test, bottom)
regression. (c): Estimated Glomerular Filtration Rate (eGFR; adjusted for smoking history and baseline
covariates) is plotted against PGS quantile and stratified by P/LP genotype. The points and error bars
represent the mean values within each quantile and their 95% CIs respectively. Association statistics for the
marginal PGS effect along with genotype interaction effects are depicted to the right (estimated using linear
regression and two-sided T -tests). (d): The Kaplan-Meier curve for ESRD onset is stratified by ADPKD
P/LP carrier status. (e) The Kaplan-Meier curve for ESRD onset among P/LP carriers only, stratified by
PGS quantile. Association statistics (estimated using Cox-Proportional Hazards regression, see Methods)
are displayed within both (d) and (e). The shaded regions represent the 95% confidence intervals for the
survival curves. The summary statistics reported in this figure were not adjusted for multiple testing.
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