
i
i

“main” — 2022/4/29 — 9:28 — page 1 — #10 i
i

i
i

i
i

ODGI: understanding pangenome graphs 1

S Supplement

S.1 Graph topology visualization

In an odgi viz visualization, given a path X traversing two nodes A and
B, the corresponding edge is represented by a black line starting from
the left or right of node A if this node is traversed in reverse or forward,
respectively, by path X; the black line ends to the left or right of node
B if this node is traversed in forward or reverse, respectively, by path X.
Consequently, if two consecutive nodes are linked both in forward, no
edge is shown (it would be 0 pixels long, as it would start from the right
of the first node and ends to the left of the second one).

S.2 Graph navigation and untangling

Pangenome graphs can model alignments of many genomes. With odgi
untangle, users can extract pairwise alignment information between a
given set of “query” sequences and a given set of “target” sequences
(used as references). While pangenome graphs may contain looping
structures that imply many-to-many alignments between the pangenome
sequences, these untangled alignments map each segment of the queries
to a single segment in the set of targets. odgi untangle first discovers
segment boundaries using standard approaches for detecting repeats in
sequence graphs (Pevzner, 2004). We finally “untangle” by finding the
target segment that best matches each query segment using the path
jaccard context mapping model. Moreover, to obtain base-level precise
information on the relationships between the repeated sequences, we can
align them by using the pairs of regions that came from the untangling to
guide the alignment (Guarracino et al., 2021).

odgi tips can identify the break point positions of the contigs relative
to the reference(s) in the graph by walking from the ends of each contig
until a reference node is found. It could be that the reference visits the
node several times. Therefore, for each contig range (a tip) odgi tips takes
a look at each possible reference window and finds the most similar one
using the path jaccard concept. The output is a BED file with the best
reference hit and position for each of the contigs’ ends.

S.2.1 The GFF liftover
A GFF file contains annotations for one or more paths in the graph. For
each annotation, we know the start and end within that path. So we can
annotate all nodes that are visited by such a path range with the information
from the attribute field. If there are overlapping features, we append the
annotation for each node. Using the same coloring schema as in odgi viz
we generate a color for each annotated node by its collected annotation.

If a subgraph was as a result from e.g. odgi extract, the path names are
usually in the form of name:start-end. odgi position is able to automatically
detect this and adjust the positions given in the GFF on the fly to the new
positions given in the subgraph. For each GFF entry, it just subtracts the
“missing” number of nucleotides from the start and end field. That’s how
we adjust for the subgraph annotation.

S.2.2 Path Jaccard concept
odgi tips, odgi untangle, and odgi position all translate a query path
position to a target path position. In a repeat region, it could be that the node
of the query path position (Nq) is visited several times by the target path.
We use the graph path jaccard concept to infer the best target position for a
given query path position. For the query position we look at each possible
target window and find the most-similar one:

1. Starting from Nq we follow the steps of one target path position a
certain nucleotide distance to the left and a certain nucleotide distance
to the right, also called context. The ODGI default distance is 10kbp for
each direction.

2. We collect all node identifiers that are visited this way in a multi-set.

3. Repeat the same process when following the query path position steps.

Now we have two multi-sets of node identifiers, the target path position T
one, and the query path position Q one. We apply the Jaccard measure to
estimate the similarity between these two multi-sets (Equ. 1).

J(T,Q) =
|T ∩Q|
|T ∪Q|

(1)

The "|" indicate that, after we joined our sets together, we actually calculate
the total length in nucleotides represented by the intersection node set in the
nominator, and by the union node set in the denominator, respectively. The
division of the two nucleotide lengths then gives us the jaccard measure
for the two path positions. We collect these jaccard measurements for all
possible target path positions. The largest path jaccard determines the
actual target path position for the translation.

Dependent on how repeat-streaked the graph is and how it was
constructed, one might want to adjust context size, to get an even more
precise positional translation. If we can’t follow the full distance to one
direction, because we are at an end of a sequence, we also adjust this for
all other context evaluating windows.

In the following an example which is based on the graph in Figure S1.
Let’s assume, we want to translate the query path position query:3 to

Fig. S1: Simple example graph to demonstrate the path jaccard concept.
Generated with vg view and graphviz’ dot command. On top are the nodes
connected with edges. On the bottom the paths through the nodes. Each
path has a different color and emoji.

a path position in path target with a context distance of 2 nucleotides
per direction. Node 2 is where query:3 is located. The node is traversed
two times by target. Therefore, we apply the path jaccard concept to
do a precise position translation. Starting from node 2, we collect nodes
{1, 2, 4} for path query. For path target we have two possible steps to start
our collection from: The first or the second step in node 2. We obtain the
node sets T1 = {1, 2, 2} and T2 = {2, 2, 3}.

J1(T1, Q) =
|T1 ∩Q|
|T1 ∪Q|

=
|{1, 2, 2} ∩ {1, 2, 4}|
|{1, 2, 2} ∪ {1, 2, 4}|

=
|{1, 2}|
|{1, 2, 2, 4}|

=̂
3 + 4

3 + 4 + 4 + 1
≈ 0.58 (2)

J2(T2, Q) =
|T2 ∩Q|
|T2 ∪Q|

=
|{2, 2, 3} ∩ {1, 2, 4}|
|{2, 2, 3} ∪ {1, 2, 4}|

=
|{2}|

|{1, 2, 2, 3, 4}|
=̂

4

3 + 4 + 4 + 2 + 1
≈ 0.29 (3)

We observe a path jaccard of 0.58 for T1/Q (Equ. 2) and 0.29 for T2/Q

(Equ. 3). Therefore, we translate query path position query:3 to the target
path position target:3.

i
i

“main” — 2022/4/29 — 9:28 — page 2 — #11 i
i

i
i

i
i

2 Guarracino, Heumos et al.

S.3 Editing

Subgraphs can be extracted by using the paths in the graph as coordinate
systems to guide the process. For such operation, odgi extract allows users
to extract specific regions of the graph as defined by query criteria. Regions
of interest can be specified by graph nodes or path range(s), also in BED
format. Furthermore, it is possible to indicate a list of paths to be preserved
completely in the extracted graph. We begin by collecting all graph nodes
that fall within the ranges to extract (and the paths to preserve, if requested).
Users can specify the number of steps or nucleotides to expand the selection
and include neighboring nodes. Then, edges connecting all selected nodes
are added in the subgraph under construction. Finally, the portions of the
paths (i.e., the subpaths) walking through the selected nodes are extracted
and added to the new subgraph. Subpaths are searched in parallel, created
serially, and extended in parallel again thanks to the parallelism enabled by
the ODGI data structure (see §4.1), making odgi extract a scalable solution
to extract also complex subregions presenting nodes with very high node
depth.

Pangenome graphs can embed multiple chromosomes as separated
connected components (inter-chromosomal structural variants would join
the components into bigger ones). odgi explode separates the connected
components in different ODGI format files, while odgi squeeze allows
merging multiple graphs into the same ODGI format file, preventing node
ID collisions.

Pangenome graphs can be used in a variety of applications, ranging
from read mapping to variant identification and genotyping (Eizenga
et al., 2020b). However, graphs presenting complex topology can increase
the computational overhead of many downstream analyses. ODGI offers
multiple commonly-needed basic operations on the topology of the graph
and its nodes.

For simplifying the graph structure, users can use odgi prune to take
away complex parts as defined by query criteria, while with odgi break
they can remove cycles in the graph, reducing the complexity of the graph
topology. Furthermore, odgi groom allows removing spurious inverting
links by exploring the graph from the orientation supported by most paths;
the process does not remove any genetic information, but only edits how
the sequences are represented in the graph.

To enable efficient sequence alignment against the graph, long nodes
can be divided into shorter nodes at a maximum requested size using
odgi chop. Partial order alignment, which consists of aligning sequences
against a directed acyclic graph (DAG), is frequently used in pangenome
building pipelines (Garrison et al., 2021), but the current implementations
return DAGs with 1-bp long nodes. odgi unchop allows joining nodes that
can be merged without changing the graph topology, nor the embedded
sequences, obtaining an equivalent, but more compact, representation of
the graph.

S.4 Sorting and node identifier compaction

Most subcommands in ODGI require and verify that the input graph’s node
identifiers (IDs) are optimized, that is compacted from 1 to N where N is
the number of nodes in the graph. If this assumption is violated, odgi sort
provides functionality to optimize the graph. This means that the first node
identifier (ID) starts at 1 and the last node ID is the number of nodes. All
sorting operations update the graph in place with an efficient ID rewriting
algorithm. The graph is then updated in place. First, the node identifiers
are normalized (from 1 to number of nodes) including the adjustment of
the edges. Second, path information, including both path metadata that
points into the start and end steps of the path, plus each step of every path,
is updated, too. We point out that changing the node order does not change
our coordinate systems based on paths. These will now refer to a new node
ordering.

When we sort a graph, we switch the node IDs of the nodes according
to the result of the sorting algorithm. For example, if a random sort was
applied, all existing node IDs would be replaced with new, random ones
(the largest node ID would still correspond to the number of nodes on the
graph). We would update the edge and path information as described in
the paragraph above. The reordering of nodes has a great influence on how
the pangenome looks like (Fig. S2).

S.5 Linear projections

Pangenome graph topology can be derived by applying odgi matrix,
obtaining information on graph nodes connections in textual sparse matrix
format. To investigate on the genomic sequences encoded in the graph, odgi
paths allows users to calculate pairwise overlap statistics of groupings of
paths and emit all path sequences in FASTA format, and it also allows
the generation of a “pangenome matrix” that reports the copy number
(presence/absence) of each path over each node.

In standard practice, pangenome analysis examines presence-absence
variations (PAVs), which correspond to loci that are present in some
samples but not others. odgi pav uses a set of genomic intervals (in BED
expressed in the coordinate space of paths in the graph) to demarcate PAVs.
It then describes the coverage of all paths relative to these PAVs, yielding
matrix or tabular representation. The precise determination of PAVs based
on graph topology remains an open problem, but practically any method
capable of generating a BED file can be used here. This lets us define
PAVs using repeat or gene annotations of the genomes represented as
paths in the graph. A simple technique is to take the output of odgi flatten,
which generates a linearization of the graph by emitting the pangenome
sequence (the concatenation of all node sequences) in FASTA format, and
the projection of all paths on the linearized sequence in BED format relative
to the graph’s paths.

ODGI also supports an experimental binned representation of graphs
designed to support the study and visualization of pangenomes at different
scales of resolution. odgi bin summarizes graph path information into
bins of a specified size, generating a summarized view of gigabase scale
graphs in TSV or JSON file formats. We have further supported this binning
approach in pangenome graph ontology model (Yokoyama et al., 2020).

i
i

“main” — 2022/4/29 — 9:28 — page 3 — #12 i
i

i
i

i
i

ODGI: understanding pangenome graphs 3

(a)

(b)

(c)

(d)

Fig. S2: Sorting and visualizing the human major histocompatibility complex (MHC) and complement component 4 (C4) pangenome graphs. All
visualization are made with odgi viz by coloring the paths by node depth: using the Spectra color palette with 4 levels of node depths, white indicates no
depth, while grey, red, and yellow indicate depth 1, 2, and greater than or equal to 3, respectively. (a) Visualization of a MHC pangenome graph with
nodes randomly sorted from left to right. The image shows a region 5 Mbp-long. The bad node order completely hides the linear graph structure. (b)
Visualization of the same MHC pangenome graph but sorted by applying the path-guided stochastic gradient descent algorithm (PG-SGD). The graph
globally shows a linear structure, without long range links (at the bottom of the image). Furthermore, the C4 region is visible as a region with red and
orange paths. (c) Visualization of the PG-SGD sorted C4 subgraph. The image shows a region 83361 bp-long. The C4 region is still not well sorted locally,
with the node order that still hides the underlying copy number variation status present in such a region. (d) Visualization of the same C4 pangenome
graph but sorted by applying a topological sorting. The graph shows its structure: the two references present two different allele copies of the C4 genes
(in red), both of them including the HERV sequence. HG01071#2 presents 3 copies of the locus (orange), of which one contains the HERV sequence
(gray in the middle of the orange). In HG01952#1, the HERV sequence is absent (white in the middle of the red).

i
i

“main” — 2022/4/29 — 9:28 — page 4 — #13 i
i

i
i

i
i

4 Guarracino, Heumos et al.

S.6 Evaluation Table S1: Performance measurements when transforming a human
chromosome 6 pangenome graph into the tool’s native format. haps is
the number of haplotypes in the graph. Displayed are the mean results
after 10 runs.

time in seconds memory in gigabytes

threads haps odgi build vg convert odgi build vg convert

1 1 10.78 21.92 1.15 0.56

1 2 14.55 28.71 1.48 0.78

1 4 22.28 45.02 1.82 1.51

1 8 43.41 78.67 2.52 3.01

1 16 76.60 133.27 3.57 5.54

1 32 176.55 292.32 5.90 11.29

1 64 322.50 497.51 10.19 21.3

2 1 10.56 21.18 1.15 0.56

2 2 12.79 27.51 1.48 0.78

2 4 17.08 43.64 1.81 1.51

2 8 28.90 75.52 2.42 3.01

2 16 47.93 126.71 3.46 5.54

2 32 102.67 280.12 5.58 11.29

2 64 171.31 457.37 9.52 21.3

4 1 10.54 20.69 1.15 0.56

4 2 12.63 27.90 1.48 0.78

4 4 14.80 42.36 1.88 1.51

4 8 21.00 74.80 2.18 3.01

4 16 32.69 123.41 3.08 5.54

4 32 65.30 271.10 4.87 11.29

4 64 105.51 451.54 8.70 21.3

8 1 11.53 20.33 1.15 0.56

8 2 13.16 27.18 1.48 0.78

8 4 15.61 41.77 1.85 1.51

8 8 19.63 73.09 2.20 3.01

8 16 28.43 131.82 2.87 5.54

8 32 46.23 256.74 4.30 11.29

8 64 71.55 441.59 6.91 21.30

16 1 11.18 21.14 1.15 0.56

16 2 13.27 26.74 1.48 0.78

16 4 15.55 41.90 1.87 1.51

16 8 21.16 73.36 2.24 3.01

16 16 29.09 136.96 2.92 5.54

16 32 46.58 269.61 4.36 11.29

16 64 70.84 442.71 6.89 21.30

i
i

“main” — 2022/4/29 — 9:28 — page 5 — #14 i
i

i
i

i
i

ODGI: understanding pangenome graphs 5

Table S2: Performance measurements when extracting the centromeric
region of a human chromosome 6 pangenome graph. haps is the number
of haplotypes in the graph. Displayed are the mean results after 10 runs.

time in seconds memory in gigabytes

threads haps odgi extract vg chunk odgi extract vg chunk

1 1 3.65 3.34 1.07 0.42

1 2 6.08 14.25 1.22 0.95

1 4 15.96 58.67 1.51 3.06

1 8 37.16 170.63 1.91 8.12

1 16 67.47 364.98 2.49 15.25

1 32 161.32 968.71 4.00 33.65

1 64 313.05 1897.00 6.96 60.37

2 1 3.67 3.33 1.07 0.42

2 2 5.50 13.57 1.22 0.96

2 4 12.33 56.44 1.51 3.06

2 8 24.06 170.62 1.92 8.12

2 16 43.49 376.67 2.51 15.25

2 32 97.03 987.85 4.03 33.65

2 64 187.51 1907.98 7.00 60.37

4 1 3.64 3.32 1.07 0.42

4 2 5.59 13.40 1.22 0.96

4 4 9.93 57.67 1.52 3.06

4 8 16.58 174.94 1.94 8.11

4 16 27.99 374.99 2.52 15.26

4 32 56.94 992.85 4.06 33.65

4 64 108.34 1885.91 7.04 60.37

8 1 3.61 3.30 1.07 0.42

8 2 5.47 14.01 1.22 0.96

8 4 8.43 58.69 1.53 3.06

8 8 12.40 180.51 1.98 8.11

8 16 19.11 379.25 2.55 15.26

8 32 36.35 991.09 4.11 33.65

8 64 68.54 1841.57 7.11 60.37

16 1 3.64 3.34 1.07 0.42

16 2 5.53 14.67 1.22 0.95

16 4 7.62 58.22 1.54 3.06

16 8 10.55 171.90 2.03 8.12

16 16 14.80 373.70 2.60 15.26

16 32 25.51 981.79 4.27 33.65

16 64 46.87 1838.51 7.23 60.37

i
i

“main” — 2022/4/29 — 9:28 — page 6 — #15 i
i

i
i

i
i

6 Guarracino, Heumos et al.

Table S3: Performance measurements when visualizing a human
chromosome 6 pangenome graph. haps is the number of haplotypes in
the graph. Both odgi viz and vg viz were run with 1 thread. Displayed are
the mean results after 10 runs. *A 816MB SVG was produced which can’t
be opened by any program. **All produced SVGs were empty except for
an XML header.

time in seconds memory in gigabytes

haps odgi viz vg viz odgi viz vg viz

1 4.14 43.40 * 1.04 7.09 *

2 5.30 57.94 ** 1.14 9.69 **

4 7.85 76.15 ** 1.27 14.05 **

8 12.95 109.16 ** 1.53 21.84 **

16 22.33 170.72 ** 1.88 36.97 **

32 49.24 303.40 ** 2.87 69.88 **

64 102.82 543.50 ** 4.78 127.36 **

i
i

“main” — 2022/4/29 — 9:28 — page 7 — #16 i
i

i
i

i
i

ODGI: understanding pangenome graphs 7

Table S4: Performance measurements when locating all path positions
of a node in a human chromosome 6 pangenome graph. haps is the
number of haplotypes in the graph. Displayed are the mean results after 10
runs. The number of threads does not affect the running time or memory
consumption. vg find had to be run for each path position. The total run
time of finding all path positions of a node is reported here.

time in seconds memory in gigabytes

threads haps odgi position vg find odgi position vg find

1 1 2.58 0.16 1.01 0.21

1 2 3.19 0.39 1.11 0.26

1 4 3.52 1.23 1.23 0.42

1 8 3.97 4.28 1.49 0.74

1 16 5.07 14.32 1.81 1.25

1 32 7.79 55.61 2.73 2.46

1 64 15.60 198.54 4.51 4.56

2 1 2.54 0.16 1.01 0.21

2 2 3.17 0.38 1.11 0.26

2 4 3.55 1.24 1.23 0.42

2 8 3.95 4.31 1.49 0.74

2 16 5.08 14.10 1.81 1.25

2 32 7.76 55.56 2.73 2.46

2 64 15.34 198.56 4.51 4.56

4 1 2.67 0.16 1.01 0.21

4 2 3.15 0.38 1.11 0.26

4 4 3.55 1.23 1.23 0.42

4 8 3.98 4.31 1.49 0.74

4 16 5.06 14.23 1.81 1.25

4 32 7.79 55.66 2.73 2.46

4 64 15.41 196.6 4.51 4.56

8 1 2.59 0.16 1.01 0.21

8 2 3.20 0.38 1.11 0.26

8 4 3.55 1.25 1.23 0.42

8 8 3.99 4.31 1.49 0.74

8 16 5.07 14.20 1.81 1.25

8 32 7.70 55.12 2.73 2.46

8 64 15.9 203.02 4.51 4.56

16 1 2.62 0.16 1.01 0.21

16 2 3.16 0.38 1.11 0.26

16 4 3.55 1.23 1.23 0.42

16 8 3.95 4.26 1.49 0.74

16 16 5.1 14.3 1.81 1.25

16 32 7.66 54.78 2.73 2.46

16 64 15.5 202.57 4.51 4.56

i
i

“main” — 2022/4/29 — 9:28 — page 8 — #17 i
i

i
i

i
i

8 Guarracino, Heumos et al.

Table S5: Disk space measurements of GFAv1 and the respective tools’
binary formats. haps is the number of haplotypes in the graph. For VG,
the file size of the XG format was measured.

disk space in megabytes

haps GFAv1 ODGI VG

1 283 604 189

2 333 660 237

4 432 745 394

8 622 968 706

16 947 1277 1200

32 1657 2131 2388

64 2913 3745 4426

