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1 Definition of Fmax-score

The CAFA challenge [18] uses the Fmax-score to compare the performance of protein function
predictors:

pr(τ) =
1

m(τ)

m(τ)∑
i=1

∑
f 1(f ∈ Pi(τ) ∧ f ∈ Ti)∑

f 1(f ∈ Pi(τ))
,

rc(τ) =
1

n

n∑
i=1

∑
f 1(f ∈ Pi(τ) ∧ f ∈ Ti)∑

f 1(f ∈ Ti)
,

Fmax = max
τ

{
2 · pr(τ) · rc(τ)

pr(τ) + rc(τ)

}
,

(1)

where f is a GO term, n is the number of sequences, m(τ) is the number of sequences with a score
greater than or equal to τ , Pi(τ) is the set of predicted terms with a score greater than or equal to τ
for a protein sequence i, Ti denotes the corresponding ground truth set of terms for that sequence,
and 1(·) an indicator function.
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2 Conditioning mechanism

In this section, we first detail how we adapted the Wasserstein loss to the conditional setting, then
we describe state-of-the-art conditional GAN objective functions and variants used in this project.

Loss function of conditional GANs: Our models are trained with the Wasserstein objective
with gradient penalty from [7]. As a reminder, the WGAN-GP losses can be written as follows:

LD = Eq(xxx)[D(xxx)]− Ep(xxx)[D(xxx)]

+ λEm(x̂xx)[(‖∇x̂xxD(x̂xx)‖2 − 1)2]

LG = −Eq(xxx)[D(xxx)]

(2)

where xxx ∼ p(xxx) is the data distribution and xxx ∼ q(xxx) is the generator model distribution, x̂xx is an
interpolated sample between a real sequence and a generated one, m is the distribution of interpolated
samples, D is the discriminator (or critic), LD the loss of the discriminator and LG the loss of the
generator. The term Em(x̂xx)[(‖∇x̂xxD(x̂xx)‖2 − 1)2] ensures that the discriminator is Lipschitz continuous.

To be able to use the Wasserstein objective with gradient penalty in the projection discrimina-
tor [13] (see below), we had to adapt the objective formula to include the label information. Let D
be the discriminator and G the generator. Let (xxx,yyy) ∼ p be a sample from the dataset, where xxx is a
one-hot encoded sequence, and yyy an encoding of choice of the categorical label. Let q be the generator
model distribution, such that yyy ∼ q(yyy) is defined by the user and, in practice, follows the distribution
of the labels in the dataset, and xxx ∼ q(xxx|yyy) is learned. Let x̂xx be a linear interpolation between a real
sequence and a generated one, with interpolation parameter chosen uniformly at random between
0 and 1. We call x̂xx ∼ m(x̂xx|yyy) the conditional distribution of interpolated sequences given a label
encoding yyy. Let λ be a weighing factor introduced in [7]. The discriminator and generator losses can
be written as follows:

LD = Eq(yyy)[Eq(xxx|yyy)[D(xxx,yyy)]]− Ep(yyy)[Ep(xxx|yyy)[D(xxx,yyy)]]

+ λEp(yyy)[Em(x̂xx|yyy)[(‖∇x̂xxD(x̂xx,yyy)‖2 − 1)2]],

LG = −Eq(yyy)[Eq(xxx|yyy)[D(xxx,yyy)]].

(3)

This formulation ensures that the Lipschitz constraints imposed on the discriminator in the
unconditional WGAN-GP objective holds for each class.

Case of the cGAN with projection discriminator [13]: In the conditional GAN with
projection discriminator model, the discriminator is decomposed into a sum of two terms, one being
the inner product between a label embedding and an intermediate transformation of the input,
and the second term being solely depending on the input sequence xxx. The new expression of the
projection discriminator can be derived by assuming that the label is categorical and that both the
log-likelihoods of the data and target distribution can be written as log linear models. Let yyy → vvv(yyy)
be a linear projection of the label encoding. Let φφφθ be an embedding function applied to the input xxx
and ψγ a scalar function applied to the embedding function φφφθ. Let A be an activation function of
choice. The projection discriminator in [13] can therefore be written as:

D(xxx,yyy) = A(vvv(yyy)Tφφφθ(xxx) + ψγ(φφφθ(xxx))) (4)

The label information is therefore introduced via an inner-product. This formulation leads to a
more stable algorithm compared to a simple concatenation of the label with the input [12], potentially
thanks to the introduction of a form of regularization on the discriminator.

In this project, we tested the possibility to include several projections in the discriminator.
In addition to the previous notations introduced in this section, let us assume that we have now
k projections. Let {gi}ki=1 be k neural networks, which can be decomposed in ni layers gi =
lini
◦ lllini−1 ◦ · · · lll

i
2 ◦ llli1. Let {pi}ki=1 be the layer number at which the inner product with the output

of the linear projection {vvvi}ki=1 occurs in each neural network. The projections obey a tree-like
branching structure, where all layers p ≤ pi of the neural network i are shared with the neural
networks j for which pi < pj and the branching of a different projection is always done at a different
layer number. The discriminator with multiple projections can then be written as:

D(xxx,yyy) = A(

k∑
i=1

(vvvi(yyy)T lllipi ◦ · · · lll
i
1(xxx) + gi(xxx))) (5)

In practice we allow for up to four projections. Our BOHB hyperparameter searches did not show
evidence of the superiority of projection mechanisms for conditioning purposes when they are the
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unique type of conditional mechanism in the network. However, the projection models were able to
generate sequences similar to naturally occurring ones (low MMD), and the resulting model of the
optimization had two projections.

Case of the cGAN model with auxiliary classifier [15]: As opposed to cGANs with
projection discriminator, cGANs with auxiliary classifier add a term to the generator and discriminator
losses to incorporate the log-likelihood of the correct labels (compare Equation 3). In addition to
notations introduced for Equation 3, let CD be the auxiliary classifier, ce the cross entropy and γ
a weighting factor. For each label yyy, the loss function of cGANs with auxiliary classifiers can be
written as:

LD = Eq(yyy)[Eq(xxx|yyy)[D(xxx,yyy)]]− Ep(yyy)[Ep(xxx|yyy)[D(xxx,yyy)]]

+ λEp(yyy)[Em(x̂xx|yyy)[(‖∇x̂xxD(x̂xx,yyy)‖2 − 1)2]]

+ γ Ep(xxx|yyy)[ce(CD(xxx), yyy)] + γ Eq(xxx|yyy)[ce(CD(xxx), yyy)],

LG = −Eq(yyy)[Eq(xxx|yyy)[D(xxx,yyy)]] + γ Ep(xxx|yyy)[ce(CD(xxx), yyy)] + γ Eq(xxx|yyy)[ce(CD(xxx), yyy)]

(6)

CD typically shares weights with D and is trained when minimising LD but is fixed when
minimising LG.

In our work, we compare both types of conditional GANs (GAN equipped with auxiliary classifier
or with multiple projections at several layers (see Equation 5)) to a third proposed model that
combines both mechanisms. It is important to note that in this case the label information introduced
in the projection may not be shared with the auxiliary classifier. The fANOVA analysis performed on
the second BOHB optimization results (Figure S4) shows that the combination of both mechanisms
helps to obtain a better performing conditioning mechanism, as measured by MRR.
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3 Data

Sequence data was obtained from the UniProt Knowledgebase on May 23rd, 2020 via the query
(existence:"evidence at transcript level" OR existence:"evidence at protein level")

goa:(evidence:manual) go:0003674. For this proof-of-concept work we selected highly confident
annotations and sequences, future work may profit from e.g. pretraining with a larger sequence pool.

Functional labels were collected from the same database. The gene ontology (GO) resource
is composed of three branches, molecular function, cellular component and biological process. We
focus on the molecular function ontology which contains thousands of terms ranging from description
like binding (GO:0005488) to very specific terms such as microtubule-severing ATPase activity
(GO:0008568). Each protein is annotated with a set of GO labels describing the molecular function
of a protein in modular way. The ontology is structured as a directed acyclic graph with a single
root. Further, labels have a hierarchical relationship, i.e. protein with a given functional label
inherits automatically the labels of its parents in the DAG (is-a relationship). The molecular function
ontology resource currently contains more than ten thousand labels, many of which have a highly
specific meaning and only few representatives. We therefore restrict the number of labels to the 50
largest classes. We argue fifty labels is sufficient for a proof-of-principle and would even enable the
design of experimental assays for validation. Figure S1 illustrates the selected subset of labels and
their relationships. The ontology itself (the DAG) was downloaded at the same time from a separate
source: http://purl.obolibrary.org/obo/go/go-basic.obo

Train, validation and test splits were created to preferably represent all labels uniformly in
the test and evaluation sets. This is complicated by the multi-label structure of the data and we
hence resort to a heuristic approach. To create the sets, we randomly sample sequences until there is
at least 1.300 (300 in the optimization) sequences per class, where at each step we only sample from
sequences that have at least one underrepresented label. The selection of hyperparameters by the
BOHB hyperparameter optimizations for ProteoGAN and by the hyperparameter searches for the
baselines are done on the validation set, while the results presented in the main text were acquired on
the test set. For sequence sample generation the model was conditioned on the label combinations of
the evaluation/test set and the resulting sequences then compared with the respective set by MMD
and MRR.

OOD holdout sets were manually selected based on their usefulness in real-world application
and the amount of samples they comprise (Table S2).

Table S1: Physicochemical properties and their accession numbers in the AAIndex.

Property name Accession number

Molecular Weight FASG760101
Hydrophobicity FASG890101
Hydrophilicity HOPT810101
Polarity RADA880108
Amphiphilicity MITS020101
Positive Charge FAUJ880111
Negative Charge FAUJ880112
pK JOND750102
Isoelectric Point ZIMJ680104
Probability Helix KANM800101
Probability Sheet KANM800102
Average Accessible Surface Area JANJ780101
Buriability ZHOH040103
Linker Index BAEK050101
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Figure S1: GO DAG of the 50 labels selected for this project.

Table S2: Label combinations held-out from the training dataset for OOD evaluation. Also given
are the size of smallest class in XTrain (SizeTrain), the number of samples in XHoldout (SizeHoldout),
and the average maximum percent identity of holdout sequences with the remaining dataset, with
standard deviation.

ID Labels SizeTrain SizeHoldout Identity (%)

A drug binding & transmembrane transporter activ-
ity

10446 1678 62 ± 14

B catalytic activity & cofactor binding & anion bind-
ing

5427 4027 78 ± 17

C small molecule binding & signaling receptor ac-
tivity & catalytic activity, acting on a protein &
kinase activity

7676 1079 71 ± 17

D ion transmembrane transporter activity & cation
binding

7945 1109 62 ± 10

E DNA binding & RNA binding 13207 1435 63 ± 13
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4 Baselines

We implement several baselines to put the performance of our model into perspective. In this section,
we would like to give additional details concerning the baselines that we gathered from the literature.

The HMM baselines were implemented based on HMMER [3]. For OpC-HMM, all sequences
in the training dataset containing a specific label combination were aggregated, for each of the
ca. 1.800 label combinations of the test set. For OpL-HMM, all sequences in the training dataset
containing a specific label were aggregated, for each of the 50 labels. The resulting sequence sets
were aligned with MAFFT (with parameters --retree 1 --maxiterate 0 --ep 0.123). Because
of the time-intensive multiple sequence alignment the sequences sets were randomly sampled to have
a maximum size of 5000 sequences. From the alignment, a profileHMM was built with HMMER
which was then sampled to generate a sequence.

In the n-gram baseline also, sequences were selected according to label sets (OpC) and single
labels (OpL). Here the full data was used. n was set to 3. The sequence lengths were sampled from
the sequence length distribution of the training data.

CVAE [5] uses a conditional VAE (CVAE) in order to generate either metalloproteins with desired
metal binding sites or fold properties. In the case of fold properties, the authors introduce iterative
sampling and guidance steps in the latent space. The decoder and encoder are both MLPs and
the number of layers is chosen with hyperparameter search. We introduced a KL-balancing term
to stabilize training. We performed a Bayesian Optimization hyperparameter search for which we
tried 1, 000 combinations of hyperparameters. Notably, we allowed for an optimization of network
architecture by optimizing over the layer numbers for both encoder and decoder, and by optimizing
the number of units in the first layer of the encoder and the last layer of the decoder. The unit
number then halved towards the latent space with each layer. The hyperparameters and their value
ranges, as well as the final model configuration can be found in Table S3. We refer the reader to
Greener et al. [5] for more information on the model.

ProGen’s source code was collected from https://github.com/lucidrains/progen. We ad-
justed the model size in order to have reasonable and comparable runtimes to the other models. We
trained a 4-layer model with 4 attention heads of dimension 66 in the heads and dimension 132 in
the linear layers with window size 264 for 100 epochs with batch size 36. The model was trained and
evaluated on the same dataset as the others. The perplexity of ProGen on our test set was 11.77.

Table S3: CVAE of Greener et al. hyperparameters subject to BO optimization.

Name Values Final Value

Learning rate [1e-5,1e-2] 7.8e-4
Pretrain start [1,5000] 2598
Pretrain end [1,5000] 1251
Latent dimension [10,1000]† 761
KL balancing β [1e-3,100]† 1.1e-3
Encoder layer number [1,5] 3
Decoder layer number [1,5] 1
Log2(Encoder first layer units) [4,10] 7
Log2(Decoder last layer units) [4,10] 9

† Values were sampled on a logarithmic scale.
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5 Hyperparameter search

For ProteoGAN we conducted hyperparameter searches with the Bayesian Optimization and Hyper-
Band (BOHB) algorithm. The Hyperband [11] algorithm uses successive halving [9] to evaluate a
number of models on a given budget of resources. The better half of the models are then evaluated
on twice the budget, et cetera. Hyperband is an independent optimization algorithm that has been
combined with Bayesian optimization to form Bayesian optimization and Hyperband (BOHB) [4],
the optimization strategy used in this project.

We conducted two BOHB optimizations. For both we evaluated 1, 000 models. All networks were
trained with the Adam optimizer [10] with β1 = 0 and β2 = 0.9 (following [7]). The optimization
consisted first of a broad search among 23 hyperparameters and second, of a smaller and more
specific search, among 9 selected hyperparameters. For the first BOHB optimization, an optimization
iteration was defined as two epochs which we found through pilot experiments was the minimum
time to observe a viable trend in the metrics. The parameters R and η (in the notation of Li
et al. [11]) were set to 9 and 3, respectively, which allowed for a maximum training time of 18
epochs (22.5K gradient updates). The optimization objective was to maximize the ratio of metrics
MMD/MRR on the validation set (the metrics are introduced in the main document). During the
optimization, BOHB selected the models based on evaluations at the end of a training period. For
the second optimization, we reduced the number of hyperparameters to only 9. We selected values
for the other hyperparameters based on the analysis of the hyperparameter importance of the first
optimization (see paragraph below). The hyperparameters that showed either no importance or
that were detrimental to training were removed. For this second optimization, the smaller network
size allowed for 3 epochs per iteration, resulting in a maximum training time of 27 epochs (1.2K
gradient updates). The list of hyperparameters of the two BOHB optimizations and their ranges is
presented in Table S4. The parameters of the best models selected by the two BOHB optimizations
are presented Table S5.

Table S4: Hyperparameters subject to BOHB optimization.

Name Symbol Values

Use physicochemical properties Yes, No, only
Label embedding one-hot, node2vec, Poincaré
Conditioning mechanism projection, AC, both
AC weighting factor γ [1, 1000]†

Label smoothing factor θ [0, 0.5]
Latent noise dimension dZ [1, 1000]†

Input noise standard deviation σ [0, 1]
Generator learning rate ηG [1e-5, 1e-2]
Generator learning rate 2 ηG2 [1e-5, 1e-2]
Discriminator learning rate ηD [1e-5, 1e-2]
Discriminator learning rate 2 ηD2 [1e-5, 1e-2]
Training ratio ncritic [1, 10]
Learning rate schedule constant, cosine, exponential
Schedule interval (in epochs) i [1, 18]
Generator layer number nG [1, 10]
Discriminator layer number nD [1, 10]
Strides s 1, 2, 4, 8
Filter size f [3, 12]
Generator skip hG [0, 10]
Discriminator skip hD [0, 10]
Number of projections nP [1, 5]
Output source layers oS [1, 3]
Output label layers oL [1, 3]

† Values were sampled on a logarithmic scale. AC = auxiliary classifier.
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Table S5: Hyperparameters found in the first and second BOHB optimization. Values with an
asterisk indicate the preset configurations in the second optimization.

Name First Second

Use physicochemical properties Yes No
Label embedding one-hot one-hot
Conditioning mechanism both both
AC weighting factor 178 135
Label smoothing factor 0.28 -*
Latent noise dimension 91 100*
Input noise standard deviation 0.29 -*
Generator learning rate 2.0e-3 4.1e-4
Generator learning rate 2 - -*
Discriminator learning rate 8.5e-4 4.0e-4
Discriminator learning rate 2 - -*
Training ratio 1 1*
Learning rate schedule constant constant*
Schedule interval (in epochs) - -*
Generator layer number 2 2*
Discriminator layer number 3 2*
Strides 4 8
Filter size 8 12
Generator skip - -*
Discriminator skip - -*
Number of projections 1 2
Output source layers - 1*
Output label layers 2 1*

AC = auxiliary classifier.
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6 Hyperparameter analysis

After the optimization we analyzed hyperparameter importance with the approach presented in [8].
A surrogate model (random forest) is trained on the parameter configurations and the respective
evaluation scores. This enables a functional analysis of variance (fANOVA) which allows for a
quantification of hyperparameter importance in terms of the variance they explain. It also provides
marginal predictions for each hyperparameter which gives insights about their optimal value setting.
For the random forest, we used 1, 000 trees with a maximum depth of 64, and repeat the estimation
100 times. We do so for all evaluated models of the first and second BOHB optimizations. The
hyperparameter importances obtained from the first optimization (and resp. second optimization)
are presented in Figure S5 (resp. Figure S6). The first fANOVA showed that parameters related to
the discriminator (learning rate, number of layers) are most important for model performance,1 and
helped to select potentially important hyperparameters for the second analysis. Noticeably, the best
model of the first optimization was already a well-performing model, but we chose to run a second
optimization to better understand the role of key hyperparameters to gain insight in potential good
practices when designing conditional generative adversarial networks. The second fANOVA clarified
the importance of the remaining hyperparameters, such as use of physicochemical features and label
embeddings among others (Figure S6).

We also show marginal predictions for hyperparameters of the first optimization in Figure S2,
and for the second optimization in Figure S3 and Figure S4.

1Some other important factors were learning rate schedule-related parameters such as Generator learning rate 2
or schedule. We realized that these were detrimental to model performance as the short duration of training in the
optimization did not allow to estimate long term effects seen in the selected models that were trained for 100 epochs.
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(a) Auxiliary Classifier weighing
factor

(b) Discriminator layer number (c) Discriminator learning rate

(d) Generator layer number (e) Input noise (f) Training ratio

(g) Strides (h) Use physicochemical features (i) Latent dimensionality

(j) Auxiliary Classifier weighing
factor (Selected)

Figure S2: Marginal predictions of hyperparameters based on data in the first optimization. We
show some selected predictions that allowed for interpretation, all others were inconclusive. If not
otherwise noted, data comes from all trials in the optimization. Predictions were obtained training
on MMD and MRR. Note that for MMD, lower is better.
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(a) Auxiliary Classifier weighing
factor

(b) Conditioning mechanism (c) Discriminator learning rate

(d) Generator learning rate (e) Kernel size (f) Label embedding

(g) Projections (h) Strides (i) Use physicochemical features

Figure S3: Marginal predictions of hyperparameters based on optimization data in the second
optimization. Predictions were obtained training on MMD and MRR. Note that for MMD, lower is
better.
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(a) Auxiliary Classifier weighing
factor

(b) Conditioning mechanism (c) Discriminator learning rate

(d) Generator learning rate (e) Kernel size (f) Label embedding

(g) Projections (h) Strides (i) Use physicochemical features

Figure S4: Marginal predictions of hyperparameters based on the data of the 27 best selected models
in the second optimization. Predictions were obtained training on MMD and MRR. Note that for
MMD, lower is better.
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Figure S5: Hyperparameter importance for the first BOHB optimization. Shown are all hyperparam-
eters subject to optimization for all models (left), and a manual selection of models that was trained
for 100 epochs (right).

Figure S6: Hyperparameter importance for the second BOHB optimization. The bars show individual
importance of each hyperparameter in terms of the variance they explain. We conducted the analysis
for all trials of the optimization (left) and for the selected models that were trained for prolonged time
(100 epochs) (right). The total variance explained by the main effects was 36% and 88%, respectively.
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7 Losses, Duality Gap and real-time evaluation of ProteoGAN

The loss function of the final model presented in the main document, combining projection and
auxiliary classifier, is shown Figure S7. We monitored the duality gap (red), for which we split the
training data into an adversary finding set and a test set of 1% of the train set each (these sets are
required additionally to estimate the duality gap, compare Grnarova et al. [6]). The duality gap is
well-behaved, with a fast convergence to 0, indicating that there is no mode collapse and suggesting
that the samples are of reasonable quality. Also, the evaluations of MMD and MRR can be seen
during training (evaluated twice per epoch) which provides valuable information for model selection
and early stopping.

Figure S7: Losses and evaluations at training time. W = Wasserstein, AC = Auxiliary Classifier
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8 Control for overfitting

To control that our model is not simply reproducing training examples we computed pairwise distances
in feature space and verified that generated sequences were not closer to the training set than the
test set (Figure S8).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
min. sq. euclidean distance between each sequence in the 
 test / generated set and all sequences in the training set

0

200

400

600

800
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1200
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un
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train - generated

Figure S8: Distributions of minimum pairwise distances in Spectrum kernel feature space between a
test set and the training set (red) and a generated set of ProteoGAN and the training set (green). It
can be seen that the generated sequences are not closer to the training set than to the testset (which
would indicate overfitting). Further the generated sequences are about as far, but not further away
from the training set than the testset.
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9 Breakdown of conditional performance per label

Figure S9: Mean rank of each individual label in Spectrum MRR over five data splits. The structure
represents the relations of the 50 labels of interest in the GO DAG. Nodes are colored by how well
the model can target them. Dark blue indicates that the model can target the function well.
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10 Model evaluation with ProFET, UniRep and ESM.

Table S6: Evaluation of ProteoGAN and other models with proposed metrics, based on the ProFET
embedding (compare results in the main text).

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.019 ± 0.005 0.011 ± 0.000 0.826 ± 0.021 0.928 ± 0.021 -0.004 ± 0.006 -0.010 ± 0.060
Negative Control 11.704 ± 0.005 1.006 ± 0.000 0.090 ± 0.000 0.119 ± 0.000 7.208 ± 0.010 6.373 ± 0.056

ProteoGAN 0.163 ± 0.014 0.038 ± 0.002 0.594 ± 0.050 0.766 ± 0.063 -0.047 ± 0.025 -0.328 ± 0.217
Predictorguided 0.091 ± 0.005 0.024 ± 0.001 0.131 ± 0.016 0.168 ± 0.018 0.032 ± 0.023 0.151 ± 0.147
Non-Hierarchical 1.144 ± 0.242 0.142 ± 0.016 0.288 ± 0.045 0.402 ± 0.075 -0.215 ± 0.231 -7.006 ± 4.127
ProGen 0.271 0.047 0.353 0.499 0.223 0.833
CVAE 1.086 ± 0.281 0.100 ± 0.006 0.286 ± 0.034 0.408 ± 0.039 -0.145 ± 0.106 -2.841 ± 2.097
OpC-ngram 0.548 ± 0.014 0.048 ± 0.001 0.259 ± 0.016 0.342 ± 0.022 -0.005 ± 0.009 -6.804 ± 0.264
OpC-HMM 0.689 ± 0.012 0.201 ± 0.002 0.170 ± 0.012 0.235 ± 0.013 1.135 ± 0.013 2.937 ± 0.057

OpL-GAN 0.161 0.043 0.644 0.807 0.196 0.981
OpL-ngram 0.580 ± 0.016 0.055 ± 0.001 0.267 ± 0.022 0.326 ± 0.021 0.022 ± 0.008 -6.738 ± 0.327
OpL-HMM 0.798 ± 0.013 0.225 ± 0.003 0.176 ± 0.013 0.236 ± 0.014 1.330 ± 0.006 3.089 ± 0.038

ProteoGAN (100 labels) 0.124 0.037 0.537 0.746 -0.041 -0.547
ProteoGAN (200 labels) 0.245 0.079 0.297 0.412 0.314 0.856

Table S7: Evaluation of ProteoGAN and other models with proposed metrics, based on the UniRep
embedding (compare results in the main text).

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.038 ± 0.005 0.011 ± 0.000 0.855 ± 0.040 0.946 ± 0.034 -0.000 ± 0.004 -0.050 ± 0.185
Negative Control 10.618 ± 0.002 1.000 ± 0.000 0.090 ± 0.000 0.119 ± 0.000 8.121 ± 0.007 27.981 ± 0.169

ProteoGAN 1.512 ± 0.019 0.061 ± 0.003 0.244 ± 0.013 0.300 ± 0.011 0.866 ± 0.027 12.611 ± 0.731
Predictorguided 1.591 ± 0.012 0.068 ± 0.002 0.097 ± 0.004 0.121 ± 0.005 0.964 ± 0.017 15.004 ± 0.263
Non-Hierarchical 2.408 ± 0.456 0.069 ± 0.009 0.170 ± 0.037 0.225 ± 0.034 0.689 ± 0.166 4.790 ± 3.039
ProGen 1.240 0.054 0.255 0.331 0.762 10.938
CVAE 1.808 ± 0.203 0.046 ± 0.010 0.213 ± 0.016 0.276 ± 0.017 0.632 ± 0.109 7.201 ± 3.752
OpC-ngram 2.062 ± 0.009 0.100 ± 0.001 0.147 ± 0.005 0.192 ± 0.014 0.943 ± 0.006 16.176 ± 0.161
OpC-HMM 2.083 ± 0.021 0.194 ± 0.002 0.116 ± 0.007 0.146 ± 0.011 1.529 ± 0.011 18.765 ± 0.182

OpL-GAN 1.721 0.095 0.224 0.278 1.108 16.853
OpL-ngram 2.154 ± 0.008 0.118 ± 0.001 0.159 ± 0.006 0.224 ± 0.008 1.025 ± 0.011 17.424 ± 0.185
OpL-HMM 2.263 ± 0.026 0.244 ± 0.006 0.120 ± 0.018 0.150 ± 0.017 1.749 ± 0.028 19.904 ± 0.428

ProteoGAN (100 labels) 1.446 0.055 0.225 0.294 0.820 10.707
ProteoGAN (200 labels) 2.059 0.149 0.126 0.177 1.393 21.001

Table S8: Evaluation of ProteoGAN and other models with proposed metrics, based on the ESM
embedding (compare results in the main text).

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.045 ± 0.006 0.011 ± 0.000 0.868 ± 0.029 0.956 ± 0.010 -0.001 ± 0.004 0.023 ± 0.202
Negative Control 10.303 ± 0.002 1.000 ± 0.000 0.090 ± 0.000 0.105 ± 0.001 8.808 ± 0.003 27.127 ± 0.074

ProteoGAN 5.751 ± 0.032 0.063 ± 0.004 0.095 ± 0.006 0.109 ± 0.006 0.729 ± 0.035 17.790 ± 0.488
Predictorguided 5.686 ± 0.016 0.083 ± 0.003 0.090 ± 0.001 0.104 ± 0.001 0.849 ± 0.014 19.212 ± 0.169
Non-Hierarchical 5.610 ± 0.198 0.058 ± 0.013 0.092 ± 0.002 0.106 ± 0.003 0.366 ± 0.149 8.590 ± 5.563
ProGen 5.463 0.098 0.091 0.104 0.925 19.563
CVAE 5.728 ± 0.097 0.025 ± 0.005 0.092 ± 0.002 0.106 ± 0.002 0.225 ± 0.137 6.509 ± 4.271
OpC-ngram 5.803 ± 0.019 0.071 ± 0.001 0.091 ± 0.000 0.104 ± 0.000 0.704 ± 0.002 16.852 ± 0.085
OpC-HMM 6.324 ± 0.018 0.170 ± 0.003 0.090 ± 0.000 0.104 ± 0.000 1.189 ± 0.008 22.038 ± 0.104

OpL-GAN 5.688 0.097 0.102 0.115 0.881 18.983
OpL-ngram 5.803 ± 0.020 0.082 ± 0.001 0.091 ± 0.000 0.104 ± 0.000 0.751 ± 0.005 17.453 ± 0.224
OpL-HMM 6.500 ± 0.019 0.202 ± 0.002 0.090 ± 0.000 0.104 ± 0.000 1.283 ± 0.004 22.912 ± 0.073

ProteoGAN (100 labels) 5.658 0.061 0.101 0.115 0.737 17.453
ProteoGAN (200 labels) 5.855 0.104 0.090 0.104 0.921 19.327
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11 Robustness and selection of embedding

There are various hyperparameters in MMD that need to be tuned, such as the embedding, the
choice of kernel, and its parameters. Different settings can result in vastly different results, to the
extent that models may be ranked differently. Selecting the right hyperparameters is challenging
because the optimal set highly depends on the task at hand. O’Bray et al. [14] propose a method
based on perturbations to select the best embedding, kernel and kernel parameters. Based on the
desideratum that MMD shall detect small differences in the distributions of two samples behaving
as a metric, they introduce increasing amounts of noise into a sample of real data. Ideally, MMD
between a real sample and the perturbed samples should show a high correlation with the amount of
perturbation added, and parameters can be selected on the highest correlation.

We performed such an analysis (Figure S10) with various, simple types of noises that we would
expect in the context of protein generation (Table S9). We found that all embeddings were affected by
the choice of kernel and parameters. However, the Spectrum embedding proved to be least affected.
As opposed to the other embeddings, the linear kernel applied to the Spectrum embedding remained
high across all types of perturbations (orange, Figure S10). As can be seen in Figure S11, the optimal
parameters of the Gaussian kernel differ between types of perturbations. It is hence pertinent to
choose the most robust embedding for the task of evaluation, the Spectrum kernel embedding. Note
that the correlation is high in all cases, and the embedding is robust not because it is generally
bad. We further show that euclidean distances of Spectrum embeddings correlate best with sequence
alignment distances (Figure S12).

We think that the reason for the higher robustness of the Spectrum embedding is its simplicity.
The other embeddings are complex, learned mappings of sequences that were trained on a very
large set of natural sequences. As such, they (deliberately) overfit to natural sequences and behave
badly on artificial sequences that do not follow the natural protein distribution (the problem of
distribution shift). While we eventually aim to generate proteins that exactly follow this distribution,
it is indispensable for a metric of generative models to be discriminative also in regimes that do
not perfectly resemble the real distribution. The Spectrum embedding makes no assumption on the
distribution of proteins and is hence better suited for the metrics we propose in this paper.

Table S9: Sequence- and sample-based perturbations. The severity of the perturbations were varied
between 0% and 10% in 10 regularly spaced intervals. Severity is indicated as x.

Perturbation Description

Mutation x% of residues in each sequence were mutated to a random amino acid
Insertion x% of residues in each sequence were inserted
Deletion x% of residues in each sequence were deleted

Random x% of the sample was replaced with a random amino acid string
Chimera x% of the sample was replaced with half-half chimeras of two proteins
Shorten x% of the sample was shortened from the end by x%
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Figure S10: Spearman correlation of different perturbations with MMD based on different embeddings
and kernel parameters over 1000 sequences. The linear kernel in orange, different Gaussian kernel
parameters (gamma) in blue. Kernel parameters were varied between 0.1 and 10 times the median of
embedding distances in the unperturbed set, in logarithmic intervals.
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Figure S11: Spearman correlation of different perturbations with MMD based on different embeddings
and kernel parameters over 1000 sequences. Kernel parameters (gamma, on the x-axis) were varied
between 0.1 and 10 times the median of embedding distances in the unperturbed set, in logarithmic
intervals.

Figure S12: Distribution of Spearman correlation between string edit distance and euclidean embed-
ding distance over 1000 sequences with different perturbations. This analysis could only be performed
on the sequence-based perturbations.
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12 P-values corresponding to MMD tests

Table S10: Empirical p-values (Monte-Carlo simulation, n=1000) to the corresponding MMD tests
for three embeddings and all models of the main results (mean and standard deviation over five
data splits). Recall that in the case of a good generative model we would like to confirm the null
hypothesis that the two samples originate from the same distribution, and thus expect a high p-value.

Model Spectrum ProFET UniRep

Positive Control 0.435 ± 0.360 0.523 ± 0.419 0.675 ± 0.255
Negative Control 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

ProteoGAN 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Predictorguided 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Non-Hierarchical 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
CVAE 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
OpC-ngram 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
OpC-HMM 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

OpL-GAN 0.000 0.000 0.000
OpL-ngram 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
OpL-HMM 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

ProteoGAN (100 labels) 0.000 0.000 0.000
ProteoGAN (200 labels) 0.000 0.000 0.000
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13 Kolmogorov-Smirnov statistics

Figure S13: KS statistics over 8000 Spectrum kernel features, lower is better.

Figure S14: KS statistics over ca. 500 ProFET biological features, lower is better.

Figure S15: KS statistics over 1900 UniRep biological features, lower is better.
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Figure S16: KS statistics over 1280 ESM biological features, lower is better.
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14 PCA of generated vs real sequences

Figure S17: KDE plot on a PCA of three generative models (red) compared to the distribution of real
(test set) sequences. Contours indicate density. ProteoGAN is best able to reproduce the distribution
of real sequences, confirming the MMD results. Note that the two principal components only explain
1.6% of the variance, MMD statistics are a better tool to assess the two-sample problem in this case.
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15 Model evaluation with homology-controlled test sets

Table S11: Model evaluation with homology controlled test sets and the Spectrum embedding.
Sequences were allowed to have up to 90% homology with the training set. Compare main result
tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.018 ± 0.001 0.014 ± 0.000 0.769 ± 0.021 0.902 ± 0.023 -0.039 ± 0.008 0.005 ± 0.002
Negative Control 1.014 ± 0.000 0.934 ± 0.000 0.090 ± 0.000 0.097 ± 0.000 0.688 ± 0.007 1.848 ± 0.002

ProteoGAN 0.045 ± 0.002 0.028 ± 0.001 0.527 ± 0.015 0.702 ± 0.035 -0.052 ± 0.011 0.017 ± 0.004
Predictorguided 0.030 ± 0.001 0.021 ± 0.001 0.114 ± 0.004 0.141 ± 0.007 -0.028 ± 0.009 0.007 ± 0.003
Non-Hierarchical 0.336 ± 0.118 0.242 ± 0.096 0.298 ± 0.048 0.421 ± 0.057 -0.395 ± 0.179 0.295 ± 0.170
ProGen 0.055 0.034 0.392 0.518 -0.197 0.042
CVAE 0.231 ± 0.077 0.147 ± 0.057 0.282 ± 0.019 0.398 ± 0.035 0.206 ± 0.026 0.151 ± 0.086
OpC-ngram 0.055 ± 0.002 0.034 ± 0.001 0.338 ± 0.016 0.408 ± 0.020 0.171 ± 0.006 -0.045 ± 0.002
OpC-HMM 0.175 ± 0.003 0.111 ± 0.002 0.099 ± 0.008 0.145 ± 0.007 -0.627 ± 0.016 0.204 ± 0.005

OpL-GAN 0.042 0.027 0.493 0.686 -0.102 0.027
OpL-ngram 0.058 ± 0.002 0.036 ± 0.001 0.324 ± 0.011 0.384 ± 0.014 0.196 ± 0.008 -0.047 ± 0.002
OpL-HMM 0.200 ± 0.002 0.129 ± 0.002 0.098 ± 0.009 0.145 ± 0.009 -0.703 ± 0.013 0.249 ± 0.004

ProteoGAN (100 labels) 0.040 0.027 0.574 0.769 -0.066 0.024
ProteoGAN (200 labels) 0.163 0.112 0.298 0.455 0.065 0.056

Table S12: Model evaluation with homology controlled test sets and the ProFET embedding.
Sequences were allowed to have up to 90% homology with the training set. Compare main result
tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.066 ± 0.011 0.016 ± 0.001 0.723 ± 0.034 0.850 ± 0.032 0.002 ± 0.008 0.100 ± 0.096
Negative Control 11.673 ± 0.007 1.006 ± 0.000 0.090 ± 0.000 0.119 ± 0.000 7.242 ± 0.011 6.484 ± 0.090

ProteoGAN 0.184 ± 0.013 0.040 ± 0.002 0.509 ± 0.024 0.682 ± 0.029 -0.042 ± 0.026 -0.217 ± 0.247
Predictorguided 0.138 ± 0.006 0.029 ± 0.001 0.130 ± 0.016 0.166 ± 0.033 0.038 ± 0.024 0.261 ± 0.177
Non-Hierarchical 1.152 ± 0.259 0.142 ± 0.016 0.290 ± 0.044 0.403 ± 0.075 -0.207 ± 0.228 -6.896 ± 4.099
ProGen 0.322 0.052 0.372 0.514 0.227 0.961
CVAE 1.070 ± 0.270 0.099 ± 0.006 0.286 ± 0.014 0.395 ± 0.025 -0.138 ± 0.104 -2.730 ± 2.080
OpC-ngram 0.526 ± 0.015 0.049 ± 0.001 0.261 ± 0.009 0.329 ± 0.010 0.003 ± 0.011 -6.693 ± 0.273
OpC-HMM 0.736 ± 0.015 0.204 ± 0.002 0.177 ± 0.011 0.255 ± 0.017 1.138 ± 0.014 3.048 ± 0.090

OpL-GAN 0.220 0.049 0.581 0.731 0.200 1.109
OpL-ngram 0.561 ± 0.017 0.057 ± 0.001 0.259 ± 0.008 0.319 ± 0.010 0.029 ± 0.010 -6.627 ± 0.333
OpL-HMM 0.846 ± 0.010 0.228 ± 0.003 0.198 ± 0.008 0.261 ± 0.013 1.333 ± 0.006 3.200 ± 0.071

ProteoGAN (100 labels) 0.150 0.038 0.500 0.699 -0.036 -0.419
ProteoGAN (200 labels) 0.253 0.081 0.277 0.399 0.321 0.984

Table S13: Model evaluation with homology controlled test sets and the UniRep embedding. Sequences
were allowed to have up to 90% homology with the training set. Compare main result tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.116 ± 0.018 0.015 ± 0.000 0.766 ± 0.034 0.892 ± 0.020 -0.013 ± 0.006 0.255 ± 0.218
Negative Control 10.627 ± 0.003 1.000 ± 0.000 0.090 ± 0.000 0.116 ± 0.002 8.134 ± 0.006 28.286 ± 0.206

ProteoGAN 1.509 ± 0.018 0.062 ± 0.003 0.244 ± 0.009 0.305 ± 0.005 0.852 ± 0.029 12.916 ± 0.758
Predictorguided 1.592 ± 0.012 0.069 ± 0.002 0.096 ± 0.006 0.126 ± 0.008 0.951 ± 0.017 15.309 ± 0.282
Non-Hierarchical 2.437 ± 0.471 0.069 ± 0.009 0.174 ± 0.033 0.229 ± 0.035 0.676 ± 0.163 5.095 ± 3.032
ProGen 1.256 0.055 0.254 0.311 0.747 11.288
CVAE 1.804 ± 0.205 0.047 ± 0.010 0.212 ± 0.019 0.267 ± 0.022 0.619 ± 0.108 7.507 ± 3.770
OpC-ngram 2.060 ± 0.007 0.101 ± 0.001 0.145 ± 0.013 0.179 ± 0.017 0.931 ± 0.007 16.481 ± 0.194
OpC-HMM 2.121 ± 0.019 0.195 ± 0.002 0.122 ± 0.003 0.155 ± 0.005 1.515 ± 0.012 19.070 ± 0.211

OpL-GAN 1.729 0.096 0.236 0.281 1.092 17.203
OpL-ngram 2.153 ± 0.006 0.119 ± 0.001 0.160 ± 0.012 0.215 ± 0.017 1.013 ± 0.013 17.729 ± 0.209
OpL-HMM 2.302 ± 0.021 0.244 ± 0.006 0.128 ± 0.007 0.160 ± 0.010 1.735 ± 0.029 20.209 ± 0.452

ProteoGAN (100 labels) 1.443 0.056 0.245 0.302 0.805 11.057
ProteoGAN (200 labels) 2.053 0.150 0.130 0.162 1.377 21.351
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Table S14: Model evaluation with homology controlled test sets and the ESM embedding. Sequences
were allowed to have up to 90% homology with the training set. Compare main result tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.483 ± 0.005 0.014 ± 0.000 0.543 ± 0.030 0.695 ± 0.026 -0.053 ± 0.006 -1.143 ± 0.263
Negative Control 10.278 ± 0.001 1.000 ± 0.000 0.090 ± 0.000 0.113 ± 0.002 8.810 ± 0.005 25.961 ± 0.139

ProteoGAN 5.461 ± 0.027 0.063 ± 0.004 0.096 ± 0.005 0.112 ± 0.004 0.675 ± 0.035 16.624 ± 0.529
Predictorguided 5.395 ± 0.015 0.083 ± 0.003 0.090 ± 0.000 0.106 ± 0.001 0.795 ± 0.015 18.046 ± 0.223
Non-Hierarchical 5.331 ± 0.197 0.058 ± 0.013 0.093 ± 0.001 0.109 ± 0.002 0.313 ± 0.145 7.424 ± 5.493
ProGen 5.179 0.098 0.103 0.118 0.873 18.415
CVAE 5.450 ± 0.111 0.026 ± 0.005 0.094 ± 0.003 0.109 ± 0.003 0.173 ± 0.136 5.343 ± 4.232
OpC-ngram 5.521 ± 0.013 0.071 ± 0.001 0.093 ± 0.004 0.109 ± 0.004 0.654 ± 0.003 15.686 ± 0.151
OpC-HMM 6.041 ± 0.015 0.170 ± 0.003 0.091 ± 0.001 0.106 ± 0.002 1.134 ± 0.009 20.872 ± 0.174

OpL-GAN 5.407 0.097 0.103 0.118 0.828 17.835
OpL-ngram 5.521 ± 0.015 0.082 ± 0.001 0.096 ± 0.005 0.111 ± 0.005 0.699 ± 0.003 16.286 ± 0.232
OpL-HMM 6.221 ± 0.013 0.202 ± 0.002 0.095 ± 0.005 0.110 ± 0.006 1.228 ± 0.006 21.746 ± 0.142

ProteoGAN (100 labels) 5.374 0.061 0.093 0.108 0.685 16.305
ProteoGAN (200 labels) 5.576 0.104 0.091 0.106 0.869 18.179

Table S15: Model evaluation with homology controlled test sets and the Spectrum embedding.
Sequences were allowed to have up to 70% homology with the training set. Compare main result
tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.026 ± 0.001 0.020 ± 0.000 0.545 ± 0.033 0.738 ± 0.018 -0.058 ± 0.009 0.006 ± 0.002
Negative Control 1.016 ± 0.001 0.935 ± 0.000 0.090 ± 0.000 0.098 ± 0.000 0.671 ± 0.007 1.849 ± 0.002

ProteoGAN 0.049 ± 0.002 0.031 ± 0.001 0.416 ± 0.032 0.580 ± 0.034 -0.071 ± 0.010 0.018 ± 0.004
Predictorguided 0.035 ± 0.001 0.024 ± 0.001 0.133 ± 0.006 0.169 ± 0.010 -0.047 ± 0.006 0.008 ± 0.003
Non-Hierarchical 0.337 ± 0.117 0.243 ± 0.096 0.293 ± 0.041 0.407 ± 0.054 -0.417 ± 0.181 0.296 ± 0.171
ProGen 0.058 0.036 0.329 0.480 -0.209 0.042
CVAE 0.235 ± 0.077 0.149 ± 0.057 0.256 ± 0.017 0.368 ± 0.013 0.187 ± 0.031 0.152 ± 0.086
OpC-ngram 0.056 ± 0.002 0.035 ± 0.001 0.298 ± 0.006 0.378 ± 0.009 0.156 ± 0.008 -0.044 ± 0.002
OpC-HMM 0.175 ± 0.003 0.111 ± 0.002 0.110 ± 0.008 0.158 ± 0.010 -0.655 ± 0.015 0.206 ± 0.005

OpL-GAN 0.044 0.029 0.368 0.533 -0.114 0.027
OpL-ngram 0.059 ± 0.002 0.036 ± 0.001 0.296 ± 0.015 0.378 ± 0.025 0.181 ± 0.008 -0.046 ± 0.002
OpL-HMM 0.201 ± 0.002 0.129 ± 0.001 0.102 ± 0.010 0.150 ± 0.011 -0.732 ± 0.014 0.251 ± 0.003

ProteoGAN (100 labels) 0.046 0.031 0.511 0.681 -0.078 0.024
ProteoGAN (200 labels) 0.163 0.113 0.280 0.417 0.053 0.056

Table S16: Model evaluation with homology controlled test sets and the ProFET embedding.
Sequences were allowed to have up to 70% homology with the training set. Compare main result
tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.092 ± 0.011 0.021 ± 0.001 0.668 ± 0.051 0.802 ± 0.046 -0.012 ± 0.009 0.292 ± 0.140
Negative Control 11.675 ± 0.011 1.006 ± 0.000 0.090 ± 0.000 0.119 ± 0.000 7.267 ± 0.027 6.676 ± 0.136

ProteoGAN 0.210 ± 0.013 0.043 ± 0.002 0.475 ± 0.020 0.627 ± 0.030 -0.058 ± 0.028 -0.025 ± 0.298
Predictorguided 0.140 ± 0.005 0.032 ± 0.001 0.127 ± 0.027 0.165 ± 0.025 0.023 ± 0.025 0.453 ± 0.206
Non-Hierarchical 1.159 ± 0.254 0.141 ± 0.017 0.290 ± 0.044 0.392 ± 0.066 -0.219 ± 0.224 -6.704 ± 4.068
ProGen 0.323 0.054 0.300 0.428 0.212 1.131
CVAE 1.075 ± 0.272 0.098 ± 0.006 0.263 ± 0.029 0.348 ± 0.052 -0.152 ± 0.102 -2.538 ± 2.059
OpC-ngram 0.510 ± 0.019 0.051 ± 0.001 0.239 ± 0.009 0.294 ± 0.011 -0.010 ± 0.011 -6.501 ± 0.294
OpC-HMM 0.732 ± 0.016 0.204 ± 0.002 0.164 ± 0.011 0.240 ± 0.013 1.120 ± 0.017 3.239 ± 0.136

OpL-GAN 0.216 0.051 0.574 0.720 0.184 1.280
OpL-ngram 0.541 ± 0.021 0.057 ± 0.001 0.251 ± 0.008 0.311 ± 0.012 0.017 ± 0.011 -6.436 ± 0.370
OpL-HMM 0.844 ± 0.011 0.228 ± 0.002 0.183 ± 0.010 0.255 ± 0.030 1.315 ± 0.008 3.392 ± 0.119

ProteoGAN (100 labels) 0.178 0.040 0.476 0.641 -0.051 -0.248
ProteoGAN (200 labels) 0.239 0.081 0.276 0.386 0.304 1.154
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Table S17: Model evaluation with homology controlled test sets and the UniRep embedding. Sequences
were allowed to have up to 70% homology with the training set. Compare main result tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.163 ± 0.008 0.019 ± 0.000 0.759 ± 0.019 0.884 ± 0.024 -0.059 ± 0.008 0.383 ± 0.344
Negative Control 10.628 ± 0.004 1.000 ± 0.000 0.090 ± 0.000 0.112 ± 0.003 8.127 ± 0.004 28.414 ± 0.355

ProteoGAN 1.497 ± 0.018 0.062 ± 0.003 0.228 ± 0.012 0.288 ± 0.016 0.803 ± 0.030 13.044 ± 0.874
Predictorguided 1.574 ± 0.014 0.069 ± 0.002 0.099 ± 0.006 0.125 ± 0.007 0.903 ± 0.019 15.437 ± 0.413
Non-Hierarchical 2.439 ± 0.468 0.069 ± 0.010 0.171 ± 0.029 0.228 ± 0.033 0.629 ± 0.159 5.223 ± 3.010
ProGen 1.261 0.055 0.239 0.312 0.706 11.634
CVAE 1.812 ± 0.201 0.046 ± 0.010 0.209 ± 0.026 0.259 ± 0.024 0.570 ± 0.111 7.634 ± 3.876
OpC-ngram 2.047 ± 0.016 0.101 ± 0.001 0.137 ± 0.010 0.164 ± 0.013 0.886 ± 0.007 16.608 ± 0.325
OpC-HMM 2.094 ± 0.023 0.195 ± 0.002 0.122 ± 0.009 0.148 ± 0.011 1.465 ± 0.013 19.197 ± 0.361

OpL-GAN 1.725 0.096 0.212 0.274 1.049 17.548
OpL-ngram 2.137 ± 0.017 0.119 ± 0.001 0.159 ± 0.012 0.203 ± 0.009 0.967 ± 0.013 17.857 ± 0.338
OpL-HMM 2.275 ± 0.026 0.244 ± 0.006 0.123 ± 0.007 0.148 ± 0.010 1.684 ± 0.030 20.337 ± 0.532

ProteoGAN (100 labels) 1.452 0.055 0.235 0.292 0.762 11.403
ProteoGAN (200 labels) 2.052 0.150 0.127 0.161 1.334 21.697

Table S18: Model evaluation with homology controlled test sets and the ESM embedding. Sequences
were allowed to have up to 70% homology with the training set. Compare main result tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.911 ± 0.009 0.018 ± 0.000 0.415 ± 0.010 0.585 ± 0.014 -0.138 ± 0.006 -2.271 ± 0.278
Negative Control 10.261 ± 0.003 1.000 ± 0.000 0.090 ± 0.000 0.113 ± 0.005 8.787 ± 0.003 24.833 ± 0.165

ProteoGAN 5.207 ± 0.025 0.064 ± 0.004 0.094 ± 0.005 0.110 ± 0.005 0.585 ± 0.035 15.496 ± 0.558
Predictorguided 5.140 ± 0.023 0.083 ± 0.003 0.090 ± 0.001 0.107 ± 0.001 0.705 ± 0.014 16.918 ± 0.177
Non-Hierarchical 5.088 ± 0.201 0.059 ± 0.012 0.093 ± 0.001 0.109 ± 0.001 0.225 ± 0.141 6.296 ± 5.492
ProGen 4.919 0.098 0.091 0.107 0.783 17.174
CVAE 5.217 ± 0.120 0.027 ± 0.004 0.095 ± 0.003 0.111 ± 0.003 0.086 ± 0.135 4.215 ± 4.228
OpC-ngram 5.279 ± 0.017 0.072 ± 0.001 0.091 ± 0.001 0.107 ± 0.001 0.571 ± 0.005 14.558 ± 0.167
OpC-HMM 5.793 ± 0.016 0.170 ± 0.003 0.091 ± 0.001 0.107 ± 0.001 1.042 ± 0.009 19.744 ± 0.197

OpL-GAN 5.153 0.098 0.091 0.107 0.736 16.594
OpL-ngram 5.277 ± 0.019 0.082 ± 0.001 0.091 ± 0.001 0.108 ± 0.001 0.613 ± 0.004 15.159 ± 0.289
OpL-HMM 5.975 ± 0.014 0.202 ± 0.002 0.090 ± 0.001 0.106 ± 0.001 1.136 ± 0.005 20.618 ± 0.159

ProteoGAN (100 labels) 5.118 0.061 0.091 0.107 0.594 15.064
ProteoGAN (200 labels) 5.324 0.104 0.090 0.106 0.778 16.938

Table S19: Model evaluation with homology controlled test sets and the Spectrum embedding.
Sequences were allowed to have up to 50% homology with the training set. Compare main result
tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.038 ± 0.000 0.028 ± 0.000 0.299 ± 0.013 0.447 ± 0.016 -0.084 ± 0.008 0.006 ± 0.003
Negative Control 1.018 ± 0.001 0.936 ± 0.000 0.090 ± 0.000 0.099 ± 0.001 0.645 ± 0.007 1.849 ± 0.002

ProteoGAN 0.056 ± 0.003 0.037 ± 0.001 0.310 ± 0.032 0.426 ± 0.041 -0.099 ± 0.011 0.019 ± 0.004
Predictorguided 0.042 ± 0.002 0.030 ± 0.001 0.114 ± 0.007 0.150 ± 0.014 -0.074 ± 0.009 0.008 ± 0.004
Non-Hierarchical 0.338 ± 0.117 0.243 ± 0.095 0.276 ± 0.045 0.405 ± 0.057 -0.449 ± 0.188 0.296 ± 0.169
ProGen 0.063 0.041 0.223 0.352 -0.243 0.043
CVAE 0.239 ± 0.076 0.153 ± 0.056 0.192 ± 0.018 0.299 ± 0.022 0.160 ± 0.030 0.152 ± 0.085
OpC-ngram 0.060 ± 0.002 0.040 ± 0.001 0.236 ± 0.008 0.321 ± 0.015 0.136 ± 0.007 -0.044 ± 0.003
OpC-HMM 0.176 ± 0.003 0.112 ± 0.002 0.103 ± 0.013 0.157 ± 0.025 -0.695 ± 0.019 0.206 ± 0.006

OpL-GAN 0.051 0.035 0.235 0.359 -0.147 0.028
OpL-ngram 0.061 ± 0.002 0.040 ± 0.001 0.272 ± 0.017 0.371 ± 0.020 0.161 ± 0.009 -0.046 ± 0.003
OpL-HMM 0.201 ± 0.002 0.130 ± 0.002 0.099 ± 0.011 0.153 ± 0.025 -0.776 ± 0.016 0.251 ± 0.004

ProteoGAN (100 labels) 0.056 0.038 0.377 0.486 -0.111 0.025
ProteoGAN (200 labels) 0.165 0.115 0.197 0.313 0.020 0.057
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Table S20: Model evaluation with homology controlled test sets and the ProFET embedding.
Sequences were allowed to have up to 50% homology with the training set. Compare main result
tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.136 ± 0.010 0.032 ± 0.001 0.547 ± 0.024 0.674 ± 0.012 -0.054 ± 0.016 0.752 ± 0.263
Negative Control 11.668 ± 0.014 1.005 ± 0.000 0.090 ± 0.000 0.119 ± 0.000 7.284 ± 0.030 7.136 ± 0.259

ProteoGAN 0.244 ± 0.021 0.047 ± 0.003 0.445 ± 0.053 0.602 ± 0.062 -0.107 ± 0.035 0.434 ± 0.397
Predictorguided 0.158 ± 0.013 0.038 ± 0.002 0.130 ± 0.021 0.171 ± 0.035 -0.022 ± 0.030 0.913 ± 0.338
Non-Hierarchical 1.163 ± 0.250 0.139 ± 0.017 0.265 ± 0.044 0.375 ± 0.077 -0.260 ± 0.213 -6.244 ± 4.028
ProGen 0.339 0.060 0.292 0.434 0.171 1.621
CVAE 1.083 ± 0.277 0.096 ± 0.005 0.246 ± 0.035 0.343 ± 0.051 -0.196 ± 0.100 -2.078 ± 1.973
OpC-ngram 0.493 ± 0.020 0.055 ± 0.001 0.229 ± 0.013 0.281 ± 0.017 -0.051 ± 0.015 -6.041 ± 0.413
OpC-HMM 0.730 ± 0.021 0.206 ± 0.002 0.170 ± 0.017 0.246 ± 0.025 1.062 ± 0.025 3.699 ± 0.259

OpL-GAN 0.231 0.057 0.438 0.573 0.141 1.769
OpL-ngram 0.519 ± 0.025 0.061 ± 0.001 0.236 ± 0.032 0.287 ± 0.036 -0.024 ± 0.017 -5.976 ± 0.392
OpL-HMM 0.841 ± 0.016 0.229 ± 0.003 0.168 ± 0.027 0.227 ± 0.043 1.258 ± 0.016 3.851 ± 0.238

ProteoGAN (100 labels) 0.230 0.045 0.423 0.576 -0.095 0.241
ProteoGAN (200 labels) 0.243 0.084 0.252 0.339 0.257 1.644

Table S21: Model evaluation with homology controlled test sets and the UniRep embedding. Sequences
were allowed to have up to 50% homology with the training set. Compare main result tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 0.292 ± 0.017 0.029 ± 0.000 0.725 ± 0.032 0.870 ± 0.022 -0.202 ± 0.016 0.577 ± 0.387
Negative Control 10.604 ± 0.004 1.000 ± 0.000 0.090 ± 0.000 0.106 ± 0.003 8.063 ± 0.012 28.608 ± 0.395

ProteoGAN 1.402 ± 0.020 0.062 ± 0.003 0.240 ± 0.018 0.289 ± 0.018 0.645 ± 0.038 13.238 ± 0.968
Predictorguided 1.474 ± 0.012 0.069 ± 0.003 0.095 ± 0.006 0.117 ± 0.006 0.749 ± 0.024 15.631 ± 0.314
Non-Hierarchical 2.369 ± 0.464 0.069 ± 0.009 0.176 ± 0.028 0.229 ± 0.028 0.479 ± 0.144 5.417 ± 2.844
ProGen 1.150 0.055 0.257 0.328 0.538 11.308
CVAE 1.746 ± 0.214 0.047 ± 0.010 0.197 ± 0.013 0.246 ± 0.015 0.416 ± 0.098 7.829 ± 3.602
OpC-ngram 1.976 ± 0.008 0.101 ± 0.001 0.134 ± 0.009 0.162 ± 0.011 0.740 ± 0.019 16.803 ± 0.342
OpC-HMM 1.981 ± 0.025 0.195 ± 0.002 0.118 ± 0.010 0.142 ± 0.009 1.305 ± 0.020 19.392 ± 0.433

OpL-GAN 1.589 0.095 0.203 0.262 0.874 17.222
OpL-ngram 2.065 ± 0.008 0.119 ± 0.002 0.149 ± 0.010 0.196 ± 0.011 0.821 ± 0.021 18.052 ± 0.444
OpL-HMM 2.162 ± 0.016 0.244 ± 0.006 0.118 ± 0.013 0.142 ± 0.013 1.524 ± 0.028 20.531 ± 0.630

ProteoGAN (100 labels) 1.334 0.055 0.250 0.308 0.588 11.076
ProteoGAN (200 labels) 1.930 0.149 0.105 0.125 1.157 21.371

Table S22: Model evaluation with homology controlled test sets and the ESM embedding. Sequences
were allowed to have up to 50% homology with the training set. Compare main result tables.

Model MMD↓ gauss. MMD↓ MRR↑ MRRB ↑ ∆Entropy ∆Distance

Positive Control 1.386 ± 0.029 0.024 ± 0.000 0.287 ± 0.027 0.420 ± 0.029 -0.304 ± 0.011 -3.177 ± 0.385
Negative Control 10.214 ± 0.007 1.000 ± 0.000 0.090 ± 0.000 0.114 ± 0.001 8.708 ± 0.009 23.928 ± 0.312

ProteoGAN 4.797 ± 0.040 0.066 ± 0.004 0.092 ± 0.001 0.107 ± 0.001 0.398 ± 0.040 14.590 ± 0.743
Predictorguided 4.727 ± 0.032 0.085 ± 0.003 0.090 ± 0.000 0.106 ± 0.001 0.517 ± 0.022 16.012 ± 0.364
Non-Hierarchical 4.722 ± 0.208 0.061 ± 0.012 0.092 ± 0.001 0.108 ± 0.001 0.045 ± 0.125 5.390 ± 5.430
ProGen 4.484 0.100 0.092 0.107 0.602 16.091
CVAE 4.861 ± 0.160 0.032 ± 0.004 0.092 ± 0.001 0.109 ± 0.002 -0.092 ± 0.126 3.309 ± 4.098
OpC-ngram 4.876 ± 0.032 0.074 ± 0.001 0.091 ± 0.001 0.107 ± 0.001 0.407 ± 0.010 13.652 ± 0.371
OpC-HMM 5.389 ± 0.038 0.171 ± 0.003 0.091 ± 0.001 0.106 ± 0.001 0.848 ± 0.017 18.838 ± 0.350

OpL-GAN 4.726 0.099 0.092 0.107 0.549 15.510
OpL-ngram 4.873 ± 0.031 0.084 ± 0.001 0.091 ± 0.001 0.107 ± 0.001 0.438 ± 0.009 14.253 ± 0.436
OpL-HMM 5.573 ± 0.033 0.203 ± 0.002 0.091 ± 0.001 0.106 ± 0.000 0.941 ± 0.014 19.712 ± 0.315

ProteoGAN (100 labels) 4.689 0.063 0.092 0.107 0.404 13.981
ProteoGAN (200 labels) 4.899 0.106 0.090 0.105 0.586 15.854

29



16 Comparison with random mutagenesis

Table S23: Comparison of MMD achieved by ProteoGAN and MMD of a natural set of proteins
with increasing amounts of random mutation, simulating experimental random mutagenesis with
different mutation rates. MMD values are computed with the Spectrum embedding. Indicated are
the sequence identities of the mutated sequences with their original. Random mutagenesis with
90% sequence identity achieved similar MMD values to ProteoGAN, although ProteoGAN generates
sequences with only 56% sequence identity. ProteoGAN can thus generate sequences that are four to
five times more novel (contain more mutations) than random mutagenesis, at the same deviation
from the protein distribution.

Sequence Identity MMD

100% 0.011
99% 0.011
98% 0.014
97% 0.017
96% 0.021
95% 0.024
94% 0.029
93% 0.033
92% 0.037
91% 0.041
90% 0.045

ProteoGAN (56%) 0.044
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17 OOD evaluation

(a) Spectrum embeddings (b) Spectrum embeddings

(c) Unirep embeddings (d) Unirep embeddings

(e) ProFET embeddings (f) ProFET embeddings

(g) ESM embeddings (h) ESM embeddings

Figure S18: Top-1 and Top-10 accuracies for ProteoGAN, Non-Hierachical, CVAE, ProGen and a
Random baseline, which consists in sampling real sequences from the training set. Distances between
generated sequences and real sequences are calculated in the embedding spaces, either Spectrum,
Unirep, ProFET or ESM.
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18 Multiple Sequence Alignments of some generated sequences

We computed Multiple Sequence Alignments (MSAs) for three models (ProteoGAN, CVAE, ProGen)
on a few generated sequences conditioned on the same label set (labels were taken from the holdout
sets, compare Table S2). Some excerpts are replicated below, full data can be found at https:

//github.com/timkucera/proteogan/tree/master/paper/supplemental_data.
Generally, ProteoGAN and ProGen showed few conserved residues in their generated sequences.

CVAE showed a block-aligned structure with more conservation. Sequences between models are very
dissimilar with few aligned positions, however some short blocks of aligned residues exist between
models.

Representative part of MSAs for each model independently:

ProteoGAN:B --------------APLAYPRPGPLIAFLAPADSFQQSQPSIDLELVTHSGL--------

ProteoGAN:B TCRDSMEKDESREYGPSLYSDFGVINKFSQNYRKSTRPV--------IKSSSKKVKLGVS

ProteoGAN:B ----------------YYCPQKGPVDKFVKEVVKRYTPAQSRRTEANDT-----------

ProteoGAN:B --------------------GGKPLDAFASRNVDD--------IEAKT------------

ProteoGAN:B --------------NMATYMANENIPAFLMRSVSFQEGMSSLEFGAGVSELTKRIRLRKT

ProGen:B ------------------------------------------------------------

ProGen:B RKIEANLKRPKEAVESFFNPSKGIFMYGIFEPMNQQWINGFLSEQTCYSQAAFKDKKTLS

ProGen:B D--GCTYKRTNFVNKSY------------IYTAQGR--------------------RKRS

ProGen:B K--GCPYESFYSK--------------------CSA--------------------LKQN

ProGen:B VGALCNLMRQHIGSPNR------------LYLTEAKWCPGVMSVITCFLDVNCIHCKLQW

CVAE:B MAKDKAEKELTKPKRKSKRRLGEREKPRAVDLIRLRHKDRQLSKVIQSRKDKRKVKAIRG

CVAE:B MASEGAQTDSAKKAPESKLVLGARHVEKGLTLSVKVSLLERLSGGKVAATDKKYTKV---

CVAE:B MQKDHNQKPGDKRSPVAESVLPNREHTEKPPPGVGVNRDQRRSKRSEAVRADRRREKSSV

CVAE:B MAKGEAEKPETKDKGESGGVLGDAEKTRDGDLIRKSHLDRKLEKVIQSSNAKHKRKAKDE

CVAE:B MAKERVQTTLAVLGSEAAKVLAAAGAEKEKSGSLDVVLDNRLSKVKVSMRKLVKVLVSDV

Representative part of MSAs between all three models:

ProteoGAN:B -------QS-QPSIDLELVTHSGLN--RARSLRMGMRR---SGGPGQCSLD---------

ProteoGAN:B PDGLNLPDN-VNILSASLTFHCID----LCEEVLGEAK---KQGKEN-------------

ProteoGAN:B ------PQV-VQAIGRQQLEDLNPV--QKRNKIVSQSG---KP-----------------

ProteoGAN:B ----------------------------IGEPVLEEEK---DGEKSTELRK------RSQ

ProteoGAN:B ------------RLA-------------AKRRIMVKRS---KPRIPPERAE------RFD

CVAE:B ----------------------------KSKRRLGERE---KPRAVDLIRL---------

CVAE:B ----------------------------ESKLVLGARH---VEKGLTLSVK---------

CVAE:B ----------------------------VAESVLPNRE---HTEKPPPGVG---------

CVAE:B ----------------------------ESGGVLGDAE---KTRDGDLIRK---------

CVAE:B ----------------------------EAAKVLAAAG---AEKEKSGSLD---------

ProGen:B ------------------------------------------DCGAEIA-----------

ProGen:B ----------MDNLNSLILFKLKNK--QQRNELYGEFM----------------------

ProGen:B QDGLRYHQEAVSANGDIILWNANKAAAELRQEVLDKVTAYKVGSGITVVVYAATHDDAVR

ProGen:B ---MSQNQY-HRTFQALQLQDMER----VQEELVSE----------QPRWE------TLR

ProGen:B -------WI---FLRALVVCQVGPT--CSADSLLRDF----DGSEAHESWQ------RL-
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19 Structure predictions of ProteoGAN generated proteins

We obtained structure predictions for a small sample (n = 50) of generated sequences with trRosetta
[16] (max iter= 200). Out of three predictions for each sequence we selected the best by choosing the
one with minimal energy as predicted by the Rosetta all-atom energy function [1]. We then measure
how much the designed proteins resemble natural folds by aligning [2] their structures to the Protein
Data Bank (PDB). The structural similarities are reported as TM-score [17], where higher is better.
Some exemplary structure alignments are shown in Figure S19, the average TM-score was 0.60± 0.09.

We note however that this prediction pipeline was not tested on generated sequences before and
that it is not guaranteed to work as expected with natural proteins.

(a) TM-Score = 0.65 (b) TM-Score = 0.79 (c) TM-Score = 0.65 (d) TM-Score = 0.68

(e) TM-Score = 0.72 (f) TM-Score = 0.52 (g) TM-Score = 0.71 (h) TM-Score = 0.69

(i) TM-Score = 0.61 (j) TM-Score = 0.65 (k) TM-Score = 0.69 (l) TM-Score = 0.72

(m) TM-Score = 0.54 (n) TM-Score = 0.61 (o) TM-Score = 0.58 (p) TM-Score = 0.72

Figure S19: Some exemplary ProteoGAN generated structures (blue) in comparison to their struc-
turally closest homolog in PDB (green).
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