
 

Supplementary Materials and Methods.  

Patient Recruitment: 

In an effort to identify patients isolating in similar residential settings, the patient population 

focused on University California San Diego (UCSD) students isolating in the established, on-

campus UCSD isolation dorm housing. Cases were identified through the UCSD Health system 

as COVID-19 positive outpatients with a positive anterior nares clinical RT-qPCR assay from the 

UCSD EXCITE (EXpedited COVID-19 IdenTification Environment) laboratory. Patients were 

recruited to the study via phone call, enrolled into an IRB-approved study (UCSD protocol 

200477), and confirmed to be active UCSD students isolating in the isolation dorms. Three 

students were enrolled in the study: two of the students isolated in the on-campus isolation 

dorms, and the third isolated in their on-campus residence (graduate housing with similar 

architecture and design as the on-campus isolation dorms).  

 

Surface Swabbing: 

For each paired sample, two 1 mL sample collection tubes (ThermoFisher Scientific, 3740TS) 

were prepared. One tube contained 800 µL of 0.5% w/v sodium dodecyl sulfate (SDS) (Acros 

Organics, 230420025) in water and was used for detecting SARS-CoV-2, and the second tube 

contained 95% spectrophotometric-grade ethanol solution (Sigma-Aldrich #493511) which was 

designated for 16S sequencing. To recover genetic material from the surfaces, a prewashed 

cotton swab (Puritan, 806-WC) was pre-moistened with the ethanol solution and then used to 

vigorously swab the surface. The cotton end of the swab was then placed back into the sample 

collection tube and broken at the designated break point. The process was then immediately 

repeated on an adjacent site of the same surface with a flocculated tip swab (Affordable IHC 

Solutions) pre-moistened with the SDS solution, minimizing overlap between swabbed areas.  

 

Viral Nucleic Acid Extraction and RT-qPCR: 

Swabs stored in SDS were subjected to SARS-CoV-2 RT-qPCR detection following methods 

previously described (1). Briefly, 150µL of the SDS solution were extracted with Omega 

MagBind Viral DNA/RNA kit (Omega Bio-Tek, M6246) on Kingfisher Flex (ThermoFisher 

Scientific) instruments. Viral gene detection was performed using a miniaturized TaqPath™ 

COVID-19 Combo Kit (ThermoFisher Scientific, A47814) assay on a QuantStudio 7 Pro with a 

384-well sample block (ThermoFisher Scientific).  

 

Microbial Nucleic Acid Extraction: 

Sample plating and extractions of all surface swabs were carried out in a biosafety cabinet 

Class II in a BSL2+ facility. Cotton tipped swabs suspended in 95% ethanol were plated into 

bead plates from 96 MagMAX™ Microbiome Ultra Nucleic Acid Isolation Kits (A42357 Thermo 

Fisher Scientific, USA). Following the KatharoSeq low biomass protocol (2), each sample 

processing plate included eight positive controls consisting of 10-fold serial dilutions of a 

microbial standard consisting of a gram negative Paracoccus spp. and gram positive Bacillus 

subtilis ranging from 5 to 50 million cells per extraction, and 3 negative controls (Blanks, 

sample-free lysis buffer). Nucleic acid extraction and purification was performed following 



 

methods previously described (3). Briefly, samples were extracted in plates using the 

MagMAXTM Microbiome Ultra Nucleic Acid Isolation Kit (Applied BiosystemsTM), following 

manufacturer specifications, in KingFisher FlexTM robots (Thermo Fisher Scientific, USA), 

including a bead beating step in a TissueLyser II (Qiagen, Germany) at 30 Hz for 2 min. 

 

16S Sequencing: 

16S rRNA gene amplification was performed according to the Earth Microbiome Project protocol 

(4). Briefly, the V4 region of the 16S rRNA gene was targeted for amplification in a miniaturized 

reaction (5) using the 515f-806r primers with Golay error-correcting barcodes. Amplicons were 

pooled at equal volumes and the pool was purified with a QIAquick PCR purification kit 

(QIAGEN). The pooled libraries were sequenced on a MiSeq (Illumina) instrument with a MiSeq 

Reagent 300 cycle v2 Kit, with the appropriate sequencing primers. 16S sequencing data 

available in Qiita (Study ID: 13957) and EBI (ERP135867). 

 

Estimating viral genomic equivalents: 

To estimate viral genomic equivalents for each sample, we used published standard curves 

relating average Cqs from RT-qPCR to known SARS-CoV-2 viral particle concentrations (in 

GE’s from digital droplet PCR) used to inoculate a variety of indoor surfaces (1). The equation 

used depended on which qualitative category the surface materials belonged to: rough (carpet, 

fabric) or smooth (e.g., acrylic, steel, glass, ceramic tile). The relationship between Cqs and 

GEs for rough materials is [GEs = -0.52 x (Avg Cq) + 39.90] while for smooth materials the 

equation used was [GEs = -0.77 x (Avg Cq) + 40.41].  

 

Data processing: 

16S sequences were demultiplexed, quality filtered, and denoised with Deblur (7) in Qiita (8) 

using default parameters. Resulting feature tables were processed using QIIME2 (9). 

 

Katharoseq:  

In addition to the 381 samples that underwent 16S sequencing, three negative controls (blanks) 

and eight positive controls (a serially diluted bacterial stock, see Microbial Nucleic Acid 

Extraction) were included in each 96-well extraction plate. The positive controls were used to 

determine the threshold read count for which at least 80% of sequencing reads align to the 

positive controls (10).  

 

Alpha Diversity:  

To explore the relationship between microbial diversity and SARS-CoV-2 status, we compared 

the Faith’s PD values of the microbiome samples between SARS-Cov-2 status groups 

(Detected/Not Detected) at different levels of sample subsetting (whole dataset, by apartment, 

and by room type). The relationship between microbial diversity (Faith’s PD) and SARS-CoV-2 

detection status was tested with a Mann-Whitney U test .2D Figures were made using matplotlib 

(11). 

 

Beta Diversity: 



 

We used the unweighted Unifrac phylogenetic distance (12-13) to explore how the microbial 

samples compare to each other. To quantify the effect size of different categorical variables on 

our data, redundancy analysis (RDA) was applied to the unweighted Unifrac principal 

coordinates. RDA estimates the contributions of individual and combined effects of multiple 

covariates using the varpart function in R to perform linear constrained ordination (14). 2D 

Figures were made using matplotlib (11) and EMPeror (15).  

 

Differential Abundance: 

To prepare the data for differential abundance, we filtered the unrarefied feature table to 

exclude features present in fewer than 10 samples and samples with depth less than 1000 

reads. This resulted in a table of 258 samples and 1047 sOTUs. We performed multinomial 

regression using Songbird (16) (a compositionally aware multinomial regression method that 

operates on centered log-ratio feature coordinates) accounting for viral detection status, 

apartment, surface type, and indoor space classifier as covariates. We used 5000 epochs and a 

learning rate of 0.0001 as hyperparameters. Additionally, we specified a 3:1 split of 

training:testing samples for cross validation. To ensure that our model was not overfitting we fit 

a null regression model with no covariates using the same hyperparameters. Comparing the two 

models we found a positive pseudo-Q2 value of 0.059, indicating that our regression model 

outperformed the null model. 

 

Random Forest Classifier: 

We performed machine learning analysis on the bacterial portion of the built environment 

surface microbiome from 16S sequencing to predict the samples’ SARS-CoV-2 status from 

paired RT-qPCR detection results. Random forest classifiers were trained on the rarefied 

feature table and tested following a leave-one-site-out-cross-validation (LOSOCV) approach: 

the classifier was trained with samples from N-1 sites and its performance was tested in the 

remaining site using a precision-recall curve (Area Under the Precision Recall Curve (AUPRC), 

and Relative AUPRC). Classifiers were trained on sOTU-level features with tuned 

hyperparameters as 20-time repeated, LOSOCV, with sites resolved at the apartment_id (Fig. 

2A) and room_type (Fig. 2B)  levels using the R caret package(17). The classifiers’ performance 

was evaluated with AUPRC based on the samples’ SARS-CoV-2 status predictions of the 

holdout test site using the R PRROC package (18). The importance of each sOTU for the 

prediction performance of the classifiers was estimated by the built-in random forest scores in a 

100-fold cross validation. We ranked the top 32 important features by their average ranking of 

importance scores across the 100 classification models. Relevant codebase for machine 

learning analysis is available at https://github.com/shihuang047/crossRanger and is based on 

random forest implementation from R ranger package (19). 

 

Phylogenetic Tree visualization: 

To identify phylogenetic clades important for the prediction of SARS-CoV-2 status from 

environmental surface samples, we visualized the top 32 important features identified by the 

random forest classifier and the ranked differentially abundant features between SARS-CoV-2 

status groups from multinomial regression using EMPress (20). Briefly, a phylogenetic tree was 

built through SATé-enabled phylogenetic placement (SEPP) (21) of sOTU sequences into a 

https://github.com/shihuang047/crossRanger


 

curated, reference tree (greengenes 13_8) (22); taxonomy of sOTUs, displayed as colored 

branches in the tree visualization, was assigned through a prefitted classifier (trained on 

greengenes 13_8 reference) (22). The leaves of the tree represent the intersection of the set of 

sOTUs in the rarefied and Katharoseq filtered feature table used in the microbiome diversity 

analysis, and the set of sOTUs evaluated for differential abundance with Songbird (total sOTUs 

= 1047). All of the aforementioned steps were performed with QIIME2 (9).  

 

3D Mapping: 

3D models were provided by UC San Diego’s Housing, Dining, and Hospitality department. A 

circular target was placed on all swabbed locations in each apartment. 3D coordinates were 

picked following published methods (ref) (https://github.com/MolecularCartography/ili), and 

merged with viral load (in GEs) data for visualization. 3D models and merged data (coordinates 

and viral load) were visualized in ili (23).  

 

  

https://github.com/MolecularCartography/ili
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