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Figure S1. Plateaus in DDM image structure functions are due to myosin-driven contractile 

dynamics. Representative normalized image structure functions 
𝐷(𝑞,∆𝑡)

𝐷0
 at 𝑞 = 1.48 µm-1 in the actin 

channel for (ΦA, cM) = (0.50, 0.24) composites imaged under the following conditions: no myosin is 
included in the composite (dark grey crosses), myosin is included but the composite is not exposed 
to 488 nm light to deactivate blebbistatin (light grey stars), and myosin is included and the 
composite is exposed to 488nm light (green stars). Neither negative control case (light or dark grey) 
reaches a decorrelation plateau over the experimental time frame, demonstrating that image 
structure function plateaus are due to myosin-driven active dynamics.  
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Figure S2. Active entangled actin networks exhibit faster contraction dynamics than active 
actin-microtubule composites. (A) Still images of a 5.8 µM actin network ((ΦA, cM)=(1, 0.24)) 
before and after 6 min of myosin II rearrangement. Timescale is shortened due to the network 
disappearing from the field of view due to faster contraction dynamics. Scale bar is 50 µm. (B) 

Representative normalized image structure function 
𝐷(𝑞,∆𝑡)

𝐷0
 at 𝑞 = 1.48 µm-1. 

𝐷(𝑞,∆𝑡)

𝐷0
 reaches a plateau 

at a much earlier lag time compared to networks containing microtubules (see Fig. 2A). (C) Average 

𝜏(𝑞) plot follows a power law relationship 𝜏 =
1

𝑘𝑞
, from which we extract an average contraction 

velocity of 90 ± 20 nm/s, faster than the velocity of the (ΦA, cM) = (0.75, 0.48) composite. Error bars 
represent standard error across 5 replicates. 
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Supplementary Information Text 

Double-Network Model and Calculations 

Mathematical model for simulating myosin-driven active double-networks composed of 

actin filaments and microtubules. Rigidity percolation theory has been immensely successful in 

predicting the mechanical properties and phase transitions in single-component cytoskeletal and 

extracellular matrix networks as a function of filament concentrations. This theory models 

biopolymer networks as two interconnected networks of disordered fibers and provides a 

framework for connecting network rigidity to structure and composition. Here we combine rigidity 

percolation theory with an active double network model made of a stiff microtubule network and an 

active semiflexible actomyosin network.  

This active rigidly percolating double-network (RPDN) is constructed as follows. Starting 

with two networks, each based on a fully occupied kagome lattice such that at each crosslink there 

are no more than two crossing fibers, we dilute the networks by uniformly and randomly removing 

bonds from the networks according to two different probabilities (Fig. S3). We remove bonds from 

the stiff microtubule network with probability 1 − 𝑝1 and from the semiflexible actin network with 

probability 1 − 𝑝2, where 0 < 𝑝1, 𝑝2 < 1, and a contiguous series of colinear bonds constitute a 

fiber. The stretching moduli of the fibers in the stiff and semiflexible networks are α1 and 

α2 respectively, and the bending moduli are κ1 and κ2 respectively.  The two networks interact via 

weak Hookean springs with spring constant α3, which connect the midpoints of bonds (𝒙𝟏, 𝒙𝟐) and 

are only present when corresponding bonds are present in both networks. The energy cost of 

deforming this double network is given by: 

𝐸1 =
α1

2
∑ 𝑝1,𝑖𝑗<𝑖𝑗>  (𝒓𝒊𝒋 − 𝒓𝒊𝒋𝟎)

2
+ 

κ1

2
∑ 𝑝1,𝑖𝑗<𝑖𝑗𝑘̂=π>  𝑝1,𝑗𝑘   Δθ𝑖𝑗𝑘

2  

𝐸2 =
α2

2
 ∑ 𝑝2,𝑖𝑗<𝑖𝑗>  (𝒔𝒊𝒋 −  𝜌𝒔𝒊𝒋𝟎)

2
 + 

κ2

2
∑ 𝑝2,𝑖𝑗<𝑖𝑗𝑘̂=π>  𝑝2,𝑗𝑘   Δβ𝑖𝑗𝑘

2  

𝐸3 =
α3

2
∑ 𝑝1,𝑖𝑗  𝑝2,𝑖𝑗(𝒙𝟏 − 𝒙𝟐)2 (1) 

where 𝐸1 is the deformation energy of the stiff network, 𝐸2 is the deformation energy of the 

semiflexible network, and 𝐸3 is the deformation energy of the bonds connecting the two networks. 

In 𝐸1 and 𝐸2, the first term corresponds to the energy cost of fiber stretching, and the second term 

to fiber bending1. 

In the above expression, the indices 𝒊, 𝒋, 𝒌 refer to sites (nodes) in each lattice-based 

network, such that 𝑝𝑖𝑗 is 1 when a bond between those lattice sites is present and 0 if a bond is not 

present. The quantities 𝒓𝒊𝒋 and 𝒔𝒊𝒋 refer to the vector lengths between lattice sites 𝑖 and 𝑗 for the 
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deformed stiff and flexible networks respectively, while 𝒓𝒊𝒋𝟎 and 𝒔𝒊𝒋𝟎 are the corresponding 

quantities for the initial undeformed networks. Active contractility is incorporated into the 

semiflexible network by setting the rest length of the bonds in this network to be 𝜌𝒔𝒊𝒋𝟎, where 𝜌 is a 

function of myosin concentration as described later in this document and is 1 for a purely actin 

network and less than 1 for an actomyosin network2. The angles Δθ𝑖𝑗𝑘 in the rigid network and Δβ𝑖𝑗𝑘 

in the semiflexible network correspond to the change in angles between initially collinear bond pairs 

𝑖𝑗 and 𝑗𝑘 for the deformed and undeformed network, respectively.   

Simulations of the above active RPDN model determined the linear response under 

0.005% shear. We adopt a shear protocol where external deformations are applied along the top 

and bottom boundaries and periodic boundary conditions are used for the left and right sides of the 

network. For each set of parameters, active double networks containing ∼ 2 × 105 nodes were 

randomly generated with given fractions of bonds 1 − 𝑝1  and 1 − 𝑝2 missing.  The total deformation 

energy was minimized for the applied macroscopic shear and the shear modulus was calculated1 

as a function of the bond occupation probabilities 𝑝1 and 𝑝2. The values of 𝑝1 and 𝑝2 were obtained 

from experimental molar concentrations of tubulin and actin respectively, and the contraction 

parameter 𝜌 was obtained using the ratio of experimental myosin and actin concentrations as 

described in the next section.   

We calculated the shear (elastic) modulus 𝐺′in simulation units using the expression  𝐺′ =

2ℇ

𝛾2
, where ℇ is the minimized energy per unit area of the simulation box and 𝛾 is the applied shear 

strain. One simulation unit of this elastic modulus corresponds to ~210 kPa, as summarized in the 

next section. We use this conversion to obtain the values of 𝐺′ presented in Figure 4. Since our 

simulations assume physical crosslinking in the microtubule and actin networks (absent in 

experiments), we believe that our simulations overestimate the true value of the modulus.   
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Figure S3: Model of an active double-network with molar actin fraction A=0.5. Actin filaments are 

shown in magenta and microtubules are shown in green. 

 

Parameter estimation informed from experiments and literature. To calculate stretching moduli 

and bending moduli, we use persistence lengths of 20 m and 1 mm, and diameters of 10 nm and 

50 nm, for the actin filaments and microtubules respectively3. 

By defining persistence length 𝑙𝑝 as 𝑙𝑝 =
κ

𝑘𝐵𝑇
, where κ is the bending stiffness of the bond, 

𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature, the bending modulus is given by the relation 

𝛋 ∝ 𝒍𝒑. For slender rods, the stretching modulus is given by 𝛂 ∝
𝒍𝒑

𝑹𝟐, where 𝑅 is the cross-sectional 

radius of the rod 4. From these two relationships, we can calculate the stretching moduli α1 and α2, 

and the bending moduli κ1 and κ2, of the fibers in the stiff and semiflexible networks respectively. 

In our simulations, all moduli are scaled by, and expressed in terms of, α1. To introduce contraction 

to the actomyosin network, we assign different values of 𝜌, or the amount the rest length of each 

bond is reduced due of myosin-induced contractility2, to networks with different myosin 

concentrations. We use the Fermi estimate 𝜌 = 1 −
[𝑚𝑦𝑜𝑠𝑖𝑛]

[𝑎𝑐𝑡𝑖𝑛]
,  such that in the absence of myosin, 

the network does not undergo any contraction.  

To map the concentrations of actin filaments and microtubules to the bond occupation 

probabilities in the semiflexible and rigid networks, we use the following procedure. Let each bond 

in the network have length 𝑙0, and let a primitive cell of the network have a length 𝑎 = 𝑙0, as shown 

in Fig. S4. 
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Figure S4: A single primitive cell of a kagome fiber network 

        

There are eight perimeter bonds, each contributing half a bond to the primitive cell, and 

two interior bonds, each contributing one bond.  The area of a primitive cell is 𝐴 =
√3𝑎2

2
= 2√3𝑙0

2. 

For a bond occupation probability 𝑝, the length of fiber per unit area is then  
𝑙𝑒𝑛𝑔𝑡ℎ

𝑎𝑟𝑒𝑎
=

6𝑝𝑙0

2√3𝑙0
2 =

𝑝√3

𝑙0
.  

Assuming the thickness of each slice of the three-dimensional sample to be 𝑙0, the length per unit 

volume is then 
𝑙𝑒𝑛𝑔𝑡ℎ

𝑣𝑜𝑙𝑢𝑚𝑒
=

𝑝√3

𝑙0
2 .  For a given fiber type 𝑓, let n𝑓 be the number of monomers per unit 

length. If the molar concentration is [𝑓], then the total fiber length per unit volume should be 
𝑙𝑒𝑛𝑔𝑡ℎ

𝑣𝑜𝑙𝑢𝑚𝑒
=

[𝑓]𝑁𝐴

n𝑓
 where 𝑁𝐴 is Avagadro’s constant ≈ 6.022 × 1023. By setting the two length per volume 

equations equal to each other, 
[𝑓]𝑁𝐴

𝑛𝑓
 =  

𝑝√3

𝑙0
2 ,  we find 𝑝 =

𝑙0
2[𝑓]𝑁𝐴

n𝑓√3
.  

To determine n𝑓(𝑎𝑐𝑡𝑖𝑛) and n𝑓(𝑚𝑖𝑐𝑟𝑜𝑡𝑢𝑏𝑢𝑙𝑒), which represent the number of monomers 

per unit length for actin filaments and microtubules, respectively, we use 2.7 nm per monomer for 

actin filaments5 and 12 nm per 13 tubulin dimers for microtubules6. In using the above-mentioned 

calculation to map the microtubule and actin fractions to the bond occupation probabilities  𝑝1 and 

𝑝2 respectively, we have set each bond occupation probability to 1 when the corresponding 

concentration is 5.8 M. 

To determine 𝐺′ in experimental units (i.e., Pa), we estimate the maximum attainable 

stiffness of a fiber network by considering an undiluted Kagome lattice, a primitive cell of which we 

show below. In this limit, the deformation is nearly affine, meaning a uniform strain is imposed 

throughout. A simple shear deformation induces a displacement in the x direction of 𝑦𝜀𝑠 , where 𝜀𝑠 
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is the magnitude of the strain. Given that all bonds have an unstrained length 𝑙0, the resulting strain 

energy is evaluated by finding the resultant change in the length of each bond, squaring this change 

in length, and multiplying by 
𝛼

2
. Energies are truncated at quadratic order in the strain. The change 

in length of the bonds along the left and right edges of the primitive cell is 

               𝑙 − 𝑙0 = √(
𝑙0

2
+

𝑙0√3 𝜀𝑠

2
)

2

+
3𝑙0

2

4
− 𝑙0 ≈

√3ϵ𝑠𝑙0

4
+

3ϵ𝑠
2𝑙0

8
, 

such that, to quadratic order in the strain, their energy of deformation is  𝑈1 ≈
3𝛼𝜀𝑠

2𝑙0
2

32
. 

The two interior bonds undergo a length change: 𝑙 − 𝑙0 ≈ −
√3ϵ𝑠𝑙0

4
+

3ϵ𝑠
2𝑙0

8
, such that their strain 

energy, to quadratic order, is the same as that of the bonds along the left and right edges of the 

primitive cell: 𝑈2 ≈
3𝛼𝜀𝑠

2𝑙0
2

32
. 

The bonds along the top and bottom of the primitive cell are not strained, as their vertices 

are at the same height, and the aforementioned displacement field therefore neither stretches nor 

compresses these bonds. The bonds along the left and right edges are shared between two 

primitive cells each, while the interior bonds are contained entirely within the primitive cell. 

Therefore, in computing the energy per primitive cell, the contribution from each bond along the left 

and right edges should be halved. The total energy per unit cell is 2𝑈1 + 2𝑈2 =
3𝛼𝜀𝑠

2𝑙0
2

8
. 

 The area of the primitive cell is 2√3 𝑙0, so that the energy density is 𝑢 =  
√3𝛼𝜀𝑠

2

16
, and the 

shear modulus is: 𝐺′ =
𝜕2𝑢

𝜕𝜀𝑠
2    =

√3𝛼

8
. This modulus is appropriate for two-dimensional networks, but 

has the wrong dimensions for a three-dimensional shear modulus. To estimate a three-dimensional 

strain, we divide by the bond length to obtain 𝐺3𝐷
′ ≈

√3 𝛼

8𝑙0
. For a micron-long microtubule, with 

Young’s modulus 𝑌, we compute the spring stiffness as 𝛼 =  
𝑌 𝜋𝑟2

𝑙0
 ≈ .98 

𝑁

𝑚
, where we assume 𝑟 ≈

12.5 𝑛𝑚 and 𝑌 ≈ 2 𝐺𝑃𝑎. This suggests that one simulation unit of the 3D elastic modulus is 

equivalent to 𝐺3𝐷
′ ≈ 2.1 ×  105 𝑃𝑎. 

 

Creating strain maps of actin and microtubule networks. To produce strain maps, we begin by 

producing a Delaunay triangulation7 of the vertices of the network in its undeformed state and 

compute the area of each triangular facet. After the bonds of the actin network are subjected to 

contractile forces, and the network is relaxed to its energetic ground state, we use the new positions 
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of the vertices in the microtubule and actin networks to produce deformed triangular meshes. We 

compute the new area of each deformed triangular mesh cell, subtract from this area the area of 

the corresponding, undeformed mesh cell, and divide by the area of the undeformed cell to find 

relative change in area. We next identify all groups of contiguous cells that undergo contraction, 

and all contiguous groups that undergo extension. To color-code contiguous regions that undergo 

contractile or extensile deformation, we take the fourth root of each relative extension and 

contraction to account for the large dynamic range in contraction and extension. We map these 

adjusted values to a color gradient in which deep red regions are highly contractile, and deep blue 

values are highly extensile. 

 

Table S1. Active composites exhibit ballistic contraction. 

(ΦA,cM) power (microtubule channel) power (actin channel) 

(0.25, 0.12) -- -- 

(0.25, 0.24) -- -- 

(0.25, 0.48) -0.97 ± 0.01 -0.88 ± 0.08 

(0.50, 0.12) -- -- 

(0.50, 0.24) -1.00 ± 0.08 -1.1 ± 0.1 

(0.50, 0.48) -0.94 ± 0.05 -0.87 ± 0.04 

(0.75, 0.12) -1.5 ± 0.2 -1.5 ± 0.1 

(0.75, 0.24) -1.12 ± 0.07 -1.10 ± 0.07 

(0.75, 0.48) -1.1 ± 0.1 -1.03 ± 0.07 

For image structure functions that plateau, 𝜏(𝑞) plots are fit to the form 𝜏~𝑞𝑏 over the range 𝑞=1-3 

µm-1, where 𝑏 is the power displayed in the table. Values are averaged over 3-5 replicates and 

error bars represent the corresponding standard error. 

 

Movie S1. Time-series of active actin-microtubule networks show varying compositions 
tune dynamics and structure. https://drive.google.com/file/d/1PlQFyRUjBFfkyA2vDHB_-
k5fHO7othzW/view?usp=sharing  

 

https://drive.google.com/file/d/1PlQFyRUjBFfkyA2vDHB_-k5fHO7othzW/view?usp=sharing
https://drive.google.com/file/d/1PlQFyRUjBFfkyA2vDHB_-k5fHO7othzW/view?usp=sharing
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