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A. EQUILIBRATION DYNAMICS OF THE SPIN-ORBIT COUPLING SYSTEM

The isolated quantum system evolves unitarily, and it seems that equilibration cannot oc-

cur in such system. However, many investigations have shown theoretically and experimen-

tally that a part of the isolated quantum system (the rest part served as a bath) can equili-

brate when the effective dimension of the initial state is large enough [1–5]. For the spin-orbit

coupling (SOC) quantum system adopted in our experiment, its Hamiltonian takes the form

H =
∑

k E(k)(nH(k) · ~σ)⊗ |k〉〈k|, where E(k) is the energy, nH(k) = (nxH(k), nyH(k), nzH(k))

denotes the axis for the spinor eigenstates at each momentum k, and ~σ = (σx, σy, σz) is

the Pauli matrix. For a split-step quantum walk (SSQW) [6], we can get the exact form of

the (quasi-)energy cos[E(k)] = cos(θ1/2) cos(θ2/2) cos k − sin(θ1/2) sin(θ2/2) and the corre-

sponding spinor eigenvector

nxH(k) =
sin(θ1/2) cos(θ2/2) sin k

sin[E(k)]

nyH(k) =
sin(θ1/2) cos(θ2/2) cos k + cos(θ1/2) sin(θ2/2)

sin[E(k)]

nzH(k) =
− cos(θ1/2) cos(θ2/2) sin k

sin[E(k)]
,

(S1)

where θ1 and θ2 are the system’s control parameters.

Without loss of generality, we can set the initial state as

|Ψ(0)〉 =
∑

k
(ak|nuk〉+ bk|ndk〉)⊗

√
P(k)|k〉, (S2)

where ak and bk are the normalized complex amplitudes satisfying |ak|2+|bk|2 = 1, P(k) is the

initial probability distribution in momentum space, |nu(d)
k 〉 denotes the spinor eigenstates in

the upper (lower) energy band with the momentum k, and |k〉 is eigenstate of the momentum

operator. At any given time t, the time-evolving density matrix of the spin subsystem can

be written as [7]

ρ(t) =
1

2
{I +

∑
k
P(k)[(ni(k) · nH(k))nH(k) · ~σ (S3)

− cos[2E(k)t](ni(k) · nH(k))nH(k) · ~σ + cos[2E(k)t]ni(k) · ~σ

+ sin[2E(k)t](nH(k)× ni(k)) · ~σ]},
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where ni(k) denotes the Bloch vector of the initial spin state at each momentum k and

satisfies ni(k) · nH(k) = |ak|2 − |bk|2.

Moreover, the steady state for any initial state can be obtained by using its “diagonal

ensemble” [8, 9] as ρDE ≡
∑

α |cα|2|α〉〈α|, where |α〉 is the eigenstate of the Hamiltonian,

and cα = 〈α|φ0〉 is the initial coefficient. Thus, we can predict the steady state of the spin

subsystem as

ρst = TrB[ρDE] (S4)

= TrB[
∑

k
(|ak|2|nuk〉〈nuk|+ |bk|2|ndk〉〈ndk|)⊗ P(k)|k〉〈k|]

=
∑

k

1

2
[I + P(k)(ni(k) · nH(k))nH(k) · ~σ].

Then the dynamics of the reduced density matrix of the spin subsystem can be investigated

by comparing the time-evolving state with the steady state ρst. Herein, we use the trace

distance D to measure the difference between two states as

D =
1

2
||ρ(t)− ρst||1 (S5)

=

∣∣∣∣∑k
P(k){cos[2E(k)t]ni(k)− cos[2E(k)t](ni(k) · nH(k))nH(k)

+ sin[2E(k)t](nH(k)× ni(k))}
∣∣∣∣, (S6)

where || · || denotes Schatten 1-norm of a matrix, and | · | denotes the norm of a vector.

If P(k) is dense enough in momentum space, such that we can approximately replace the

sum by the integral as
∑

k →
∫
dk, which can be satisfied for the infinite lattice. Moreover,

by applying the Riemann-Lebesgue Lemma, D can vanish in the long-time limit. The SOC

system thus relaxes to a steady state that can be predicted by the “diagonal ensemble”. It

is noteworthy that ρst can also be directly obtained based on Eq. (S3) through the long-time

average of the spin states [2, 5].

B. EQUILIBRATION TIME SCALE OF THE ISOLATED QUANTUM SYSTEM.

In this part, we will determine the the upper bound on the equilibration time scale Teq

for the isolated quantum system [10]. Here, we use a normalized trace distance, comparing

the time-evolved expected value of an observable A to its equilibrium value, to give a mea-

surement for the distinguishability between the evolved state ρt and the long-time average
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ρDE

〈DNA (ρt, ρDE)〉T ≡
1

T

∫ T

0

dt
|Tr[ρtA]− Tr[ρDEA]|2

|Tr[ρ0A]− Tr[ρDEA]|2
. (S7)

Here, the initial density matrix ρ0 =
∑

i,j ρi,j|Ei〉〈Ej| where |Ei〉 is the eigenvalue of the

Hamiltonian H, and ρDE =
∑

i ρi,i|Ei〉〈Ei| is the diagonal ensemble. Then, we have

〈DNA (ρt, ρDE)〉T =
1

T

∫ T

0

dt
|
∑

j 6=k e
−i(Ej−Ek)tρj,kAk,j|2

|
∑

j 6=k ρj,kAk,j|2
(S8)

=
1

T

∫ T

0

dt
|
∑

α e
−i(Gα)tvα|2

|
∑

α vα|2

=
1

T

∫ T

0

dt
|
∑

α,β e
−i(Gα−Gβ)tvαv

∗
β|

|
∑

α vα||
∑

β vβ|

6
1

T

∫ T

0

dt

∑
α,β e

−i(Gα−Gβ)t|vα||v∗β|
|
∑

α vα||
∑

β vβ|
,

where {G1, G2, ...} is all energy gaps of the Hamiltonian, vα ≡ ρj,kAk,j. For convenience of

the proof, we define a probability distribution

pα =
1

N
|vα|
|
∑

α vα|
, (S9)

where the normalization factor N =
|
∑
α vα|∑
α |vα|

. Therefore, we get

〈DNA (ρt, ρDE)〉T 6
N 2

T

∫ T

0

dt
∑
α,β

pαpβe
−i(Gα−Gβ)t. (S10)

Moreover, based on the result in [10], we have

〈DNA (ρt, ρDE)〉T 6
5πN 2

4T

∫ T

0

dt
∑
α,β

pαpβe
−(Gα−Gβ)t (S11)

6 πN 2(4Pmax(
1

T
))

6 πN 2[
4d(ε)

T
+ 4δ(ε)],

where ε can be any positive real number, Pmax(∆) ≡ maxx0∈R
∑

δ:Gδ∈[x0,x0+∆] pδ, d(ε) ≡
Pmax(ε)

ε
and δ(ε) ≡ Pmax(ε).

According to the inequality Eq. (S11), the system will eventually be equilibrated with

respect to A when the second term on the right-hand side is samll N 2δ(ε) << 1. And the
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system wll equilibrate for the time T >> Teq, where the equilibration time scale Teq, in

which the decay of distinguishability happens, is then given by

Teq ≡ 4πN 2d(ε). (S12)

C. FAILURE OF THE EIGENSTATE THERMALIZATION HYPOTHESIS

It is generally believed that thermalization can occur in the chaotic system; it is broken

down in the integrable system. This can be explained by utilizing the validity (failure)

of the eigenstate thermalization hypothesis in the chaotic (integrable) system. Eigenstate

thermalization hypothesis (ETH) suggests that all the energy eigenstates can be locally equal

to the thermal state which is obtained by averaging on an uniformly distributed micro-

canonical ensemble (ME) [8, 11], i.e.,

TrB[|Eα〉〈Eα|] = TrB

[
IHδEME

dim(HδEME
)

]
. (S13)

|Eα〉 is the eigenstate with energy Eα, HδEME
is the Hilbert subspace spanned by the eigen-

states whose energies are belong to the energy window [Eα − δEME, Eα + δEME], dim(·)

denotes the dimension of a space and IHδEME
is the identity matrix in this subspace. More-

over, the energy window should be macroscopically small but microscopically large to cover

enough energy eigenstates [12]. Based on the ETH, all the energy eigenstates with the similar

energy should be locally close to each other. As a result, any superposition of the eigenstates

whose energies lie within a small energy window can locally relax to an equivalent state.

However, for the case of SSQW, the energy eigenstate has two-fold degeneracy, i.e.,

E(k) = E(−k). Considering the scenario that two individual eigenstates with the oppo-

site momentum ±kα (kα > 0) have a same energy Eα (see Fig. S1), the reduced density

matrices of the two eigenstates are totally different

TrB[(|nu(d)
kα
〉 ⊗ |kα〉)(〈nu(d)

kα
| ⊗ 〈|kα|)] =

1

2
[I± nH(kα) · ~σ] (S14)

6=

TrB[(|nu(d)
−kα〉 ⊗ | − kα〉)(〈n

u(d)
−kα | ⊗ 〈| − kα|)] =

1

2
[I± nH(−kα) · ~σ],
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Thus, for a general energy eigenstate |Eα〉 = a+|nH(kα)〉 ⊗ |kα〉 + a−|nH(−kα)〉 ⊗ | − kα〉,

its reduced density matrix highly depends on the complex coefficient a±, which indicates

the breakdown of the ETH. That is to say, only the information of energy is not enough

to determine the steady state of the spin subsystem, and the other nontrivial conserved

quantity (i.e., the momentum) is necessary to be introduced to the SSQW.

Consider the initial state in a small energy window [E0 − δE,E0 + δE] as

|Ψ(0)〉 =
∑
k>0;

|k−kE0
|<δkE

(eiωl(k)|nu(d)
k 〉 ⊗

√
P(k)|k〉+ eiωr(k)|nu(d)

−k 〉 ⊗
√
P(−k)| − k〉). (S15)

The ωl(r)(k) is the phase, and the expected energy of the initial state is E0. Moreover, the

positive momentum window |k− kE0| < δkE is directly gotten by the chosen energy window

(see Fig. S1). According to Eq. (S4), the steady state of the spin system can be written as

ρst =
∑
k>0;

|k−kE0
|<δkE

1

2
[I + P(k)(ni(k) · nH(k))nH(k) · ~σ]

=
1

2
[I±

∑
k>0;

|k−kE0
|<δkE

P(k)nH(k) · ~σ ±
∑
k>0;

|k−kE0
|<δkE

P(−k)nH(−k) · ~σ] (S16)

δE is small−−−−−−→ 1

2
[I± P̃RnH(kE0) · ~σ ± P̃LnH(−kE0) · ~σ],

where “±” represents that the chosen energy eigenstate lies in the upper (lower) energy

band, and P̃R(L) ≡
∑

δkE
P(±k). On the other hand, based on the ETH, the steady state of

the spin subsystem can also be predicted by the micro-canonical ensemble as

ρth = TrB

[
IHδEME

dim(HδEME
)

]
(S17)

= TrB[
1

NE0,δEME

∑
|E−E0|<δEME

(|nu(d)
k 〉 ⊗ |k〉)(〈nu(d)

k | ⊗ 〈k|)]

=
1

NE0,δEME

1

2
[I±

∑
|k−kE0

|<δkEME

nH(k) · ~σ ±
∑

|k−kE0
|<δkEME

nH(−k) · ~σ] (S18)

δEME is small−−−−−−−−→ 1

2
[I± 1

2
nH(kE0) · ~σ ±

1

2
nH(−kE0) · ~σ],

where NE0,δEME
is the number of the eigenstates whose energies located in the energy window

[E0−δEME, E0+δEME], and δkEME is the half-width of the corresponding momentum window.

Obviously, ρst 6= ρth, where ρth dependents on the energy E0, and ρst remains the details of
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FIG. S1. Diagram of the initial state within a small energy window. The solid red line is the

effective energy band structures of the SSQW with Heff(4π
9 ,

π
9 ) [6], and the blue region is a small

energy window [E0− δE,E0 + δE]. Because of the two-fold degeneracy of the energy, there are two

corresponding momentum windows [kE0 − δkE, kE0 + δkE] and [−kE0 − δkE,−kE0 + δkE], where

kE0 > 0 satisfying E(kE0) = E0, and δkE is the half-width of the momentum window, which is

determined by δE.

the initial condition P̃R(L). Thus, due to the breakdown of the ETH, the steady state of the

spin subsystem cannot be characterized by a thermal state.

D. VALIDITY OF THE GENERALIZED EIGENSTATE THERMALIZATION

HYPOTHESIS.

As demonstrated in the previous section, in integrable system such as SSQW, the ETH

is broken down; thus, the thermal state fails to characterize the steady state. However,

the steady state in integrable system can still be characterized by the generalized micro-

canonical ensemble (GME) state [9], and this generalized thermalization is explicable by

using the generalized ETH (GETH) [13]. According to the GETH, the mutual eigenstates
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of the conserved quantities should be locally equal to the GME state [13, 14], i.e.,

TrB [|iα〉〈iα|] = TrB

[
IH{δiGME

}

dim(H{δiGME})

]
, (S19)

where |iα〉 denotes the eigenstate with the values of the conserved quantities iα ≡ {i0α, i1α, ..., iNα }

(in the SSQW, the conserved quantities are the energy and momentum), H{δiGME} is the

Hilbert subspace spanned by the eigenstates whose values of the conserved quantities iµ

(µ = 0, 1, 2, ..., N) lie within the window [iµα− δi
µ
GME, i

µ
α+ δiµGME] (i0 is defined as the energy),

and IH{δiGME}
is the identity matrix in this subspace. Moreover, the GETH predicts that

the mutual eigenstates with the similar values of the conserved quantities should be locally

close to each other. As a result, the steady state of any superposition of these mutual

eigenstates within the windows all gives the same result, which shows the “universality” of

the generalized thermalization. Then, we will demonstrate that the SOC system satisfies the

GETH and exhibits the generalized thermalization, i.e., the steady state can be predicted

by the GME state.

For a mutual eigenstate with momentum k0 and energy E
u(d)
0 = ±|E(k0)|, its reduced

density matrix reads

TrB[(|nu(d)
k0
〉 ⊗ |k0〉)(〈nu(d)

k0
| ⊗ 〈k0|)] =

1

2
[I± nH(k0)], (S20)

where “±” denotes that the mutual eigenstate lies in the upper (lower) band. On the other

hand, the reduced state can also be obtained by the ensemble of the right-hand side in

Eq. (S19) as

ρGME = TrB

[
IH{δiGME

}

dim(H{δiGME})

]
(S21)

=
1

NδkGME

TrB[
∑

|k−k0|<δkGME

(|nu(d)
k 〉 ⊗ |k〉)(〈nu(d)

k | ⊗ 〈k|)]

=
1

2
[I± 1

NδkGME

∑
|k−k0|<δkGME

nH(k) · ~σ]

≈ 1

2
[I± nH(k0) · ~σ ± 1

2NδkGME

..
nH(k)|k=k0 · ~σ

∑
δkGME

(k − k0)2]

δkGME is small−−−−−−−−→ 1

2
[I± nH(k0) · ~σ],

where δkGME denots the half-width of the momentum window of the GME state (at the

same time, the energy window is determined based on the function E(k)), which should
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be macroscopically small but can cover enough mutual eigenstates,
..

A denotes the second

derivative of A with respect to k, and NδkGME
is the number of the mutual eigenstates whose

momentum located in the momentum window. Since the GME state should be independent

of the width of the chosen window [8], it satisfies the condition

1
2
| ..nH(k)|k=k0 |∆2

kGME

|nH(k0)|
<< 1, (S22)

where ∆2
kGME

= 1
NδkGME

∑
|k−k0|<δkGME

(k−k0)2, and ∆kGME
is the momentum standard deviation

of the GME state. Obviously, the state in Eq. (S20) and Eq. (S21) are the same, indicating

the validity of the GETH.

We further consider the superposition state of the mutual eigenstates with the similar

conserved quantities k0 and E
u(d)
0 (i.e., the momentum of these eigenstates lie in the window

[k0− δk, k0 + δk], and their energies lie in the window [E0− δEk, E0 + δEk]) (see Fig. S2) as

|Ψ(0)〉 =
∑

|k−k0|<δk

eiω(k)|nu(d)
k 〉 ⊗

√
P(k)|k〉, (S23)

where ω(k) denotes the phase.

According to Eq. (S4), the initial state finally relaxes to a steady state as

ρst =
∑

|k−k0|<δk

1

2
[I + P(k)(ni(k) · nH(k))nH(k) · ~σ]

=
∑

|k−k0|<δk

1

2
[I± P(k)nH(k) · ~σ]

GETH−−−→ 1

2
[I± nH(k0) · ~σ]. (S24)

Clearly, the steady state is only determined by the conserved quantities k0 and E(k0) (H(k)

is determined by k and E(k)). Moreover, the momentum standard deviation of the initial

state ∆k (for the Gaussian initial state adopted in the QW experiment, δk =
√

2ln(2)∆k)

should satisfy Eq. (S22) to make sure the small conserved quantities fluctuation. Thus, the

maximal value of can be estimated by the maximum value of ∆kGME
satisfying Eq. (S22). If

the ∆k (and the associated δk) of the initial state satisfies this condition, then its steady

state is identical to the prediction of the GME.

9



-p 0 p

Momentum

-p

0

p

4.5

0

4.5

FIG. S2. Diagram of the initial state within a small energy-momentum window. The red line is

the energy band of the SSQW effective Hamiltonian Heff(4π
9 ,

π
9 ) [6], the orange region is the small

momentum window [k0 − δk, k0 + δk], and the blue region is its corresponding energy window

[E0 − δEk, E0 + δEk], where δEk is determined by δk. We choose herein that the energy window

is in upper energy band, so E0 > 0. Moreover, there is only one part of the mutual eigenstates

within this energy-momentum window with respect to the case in Fig. S1.

E. THE GENERALIZED THERMALIZATION IN EXTENDED SITUATIONS

As discussed in section C, due to the validity of the GETH, any superposition state of the

mutual eigenstate within a small connected window exhibits the generalized thermalization.

Further, we consider a superposition state of the mutual eigenstates within two separated

windows and show the occurrence of the generalized thermalization in this extended situation

can also be understood by the GETH.

Firstly, we consider the situation that both the two separated energy-momentum windows

are within the same momentum window but different energy windows (see Fig. S3). The

initial state then takes the form

|Ψ(0)〉 =
∑

|k−k0|<δk
(ak|nuk〉+ bk|ndk〉)⊗

√
P(k)|k〉, (S25)

where δk denotes the half-width of the small momentum window. The initial state’s

expected energy is E0 =
∑
|k−k0|<δk E(k)P(k)(|ak|2 − |bk|2) and expected momentum is

10
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FIG. S3. Diagram of the initial state within two separated energy-momentum windows. The

red line is the energy band of the SSQW effective Hamiltonian Heff(4π
9 ,

π
9 ) [6], the orange region

is the small momentum window [k0 − δk, k0 + δk], and the two separated blue regions are the

corresponding energy windows [E(k0) − δEk, E(k0) + δEk] and [−E(k0) − δEk,−E(k0) + δEk],

where δEk is determined by δk.

k0 =
∑
|k−k0|<δk kP(k). In addition, when ak → 0 or bk → 0, it reduces to the scenario

discussed in the section C. According to Eq. (S4), we have

ρst =
∑

|k−k0|<δk

1

2
[I + P(k)(ni(k) · nH(k))nH(k) · ~σ] (S26)

=
1

2
[I +

∑
|k−k0|<δk

P(k) |ak|2nH(k) · ~σ −
∑

|k−k0|<δk

P(k) |bk|2nH(k) · ~σ]

GETH−−−→ 1

2
[I + P̃upnH(k0) · ~σ − P̃downnH(k0) · ~σ]

≈ 1

2
[I +

E0

E(k0)
nH(k0) · ~σ],

where P̃up ≡
∑
|k−k0|<δk P(k) |ak|2 and P̃down ≡

∑
|k−k0|<δk P(k) |bk|2 are the upper and

lower band occupancy of the initial state, respectively. The approximation of the last line

can be gotten by applying E0 ≈ E(k0)
∑
|k−k0|<δk P(k)(|ak|2 − |bk|2). Moreover, the GME

state in this extended situation is the weighted average of the GME states in the individual
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connected window, and takes the form

ρGME = P̃upTrB

[
IH{δiGME1}

dim(H{δiGME1})

]
+ P̃downTrB

[
IH{δiGME2}

dim(H{δiGME2})

]
(S27)

≈ P̃up

2
[I + nH(k0) · ~σ] +

P̃down

2
[I− nH(k0) · ~σ]

≈ 1

2
[I +

E0

E(k0)
nH(k0) · ~σ],

where H{δiGME1} (H{δiGME2}) denotes the Hilbert subspace spanned by the eigenstates located

in the upper (lower) energy window (see Fig. S3), and IH{δiGME1}
(IH{δiGME2}

) denotes the

identity matrix in this subspace. The weights are the probabilities to be found in the upper

connected window P̃up and the lower one P̃down. Thus, based on the GETH, the steady state

in this extended situation can also be characterized by the GME prediction and consequently

only depends on E0 and k0, exhibiting the generalized thermalization.

Furthermore, we consider the situation that both the two separated energy-momentum

windows are within the same energy window but different momentum windows (see Fig. S4),

which has been previously used in section B to indicate the failure of the ETH (and ther-

malization) in the SSQW system. The initial state then reads

|Ψ(0)〉 =
∑
k>0;

|k−kE0
|<δkE

[eiωr(k)|nu(d)
k 〉 ⊗

√
P(k)|k〉+ eiωl(k)|nu(d)

−k 〉 ⊗
√
P(−k)| − k〉], (S28)

where ωl(r)(k) denotes the phase, and |k − kE0| < δkE (kE0 > 0) is the positive mo-

mentum window, which is determined by the chosen energy window. The initial expected

energy is E0 = ±[
∑

k>0;
|k−kE0

|<δkE
(P(k)E(k) + P(−k)E(−k))], and expected momentum is

k0 =
∑

k>0;
|k−kE0

|<δkE
[P(k)k + P(−k)(−k)]. According to the Eq. (S4), we have

ρst =
∑

k

1

2
[I + P(k)(ni(k) · nH(k))nH(k) · ~σ]

=
1

2
[I±

∑
k>0;

|k−kE0
|<δkE

P(k)nH(k) · ~σ ±
∑
k>0;

|k−kE0
|<δkE

P(−k)nH(−k) · ~σ]

GETH−−−→ 1

2
[I± P̃R nH(kE0) · ~σ ± P̃L nH(−kE0) · ~σ]

≈ 1

2
[I± kE0 + k0

2kE0

nH(kE0) · ~σ ±
kE0 − k0

2kE0

nH(−kE0) · ~σ],
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FIG. S4. Diagram of the initial state within two separated energy-momentum windows. The red

line is the energy band of the SSQW effective Hamiltonian Heff(4π
9 ,

π
9 ) [6], the blue region is the

small energy window [E0−δE,E0+δE], and the two separated orange regions are the corresponding

momentum windows [−kE0−δkE ,−kE0 +δkE ] and [kE0−δkE , kE0 +δkE ], where δkE is determined

by δE.

where P̃R =
∑

k>0;
|k−kE0

|<δkE
P(k) and P̃L =

∑
k>0;

|k−kE0
|<δkE

P(−k) (k > 0) are the probabilities

to be found in the right and left connected windows, respectively. The last approximation

is obtained by applying k0 ≈ kE0

∑
k>0;

|k−kE0
|<δkE

(P(k)−P(−k)). Moreover, the GME state in

this extended situation can also be the weighted average of the GME states in the right and

left connected windows (the weights are P̃R and P̃L), and takes the form

ρGME = P̃RTrB

[
IH{δi′

GME1
}

dim(H{δi′GME1})

]
+ P̃LTrB

[
IH{δi′

GME2
}

dim(H{δi′GME2})

]
(S29)

≈ P̃R

2
[I± nH(kE0) · ~σ] +

P̃L

2
[I± nH(−kE0) · ~σ]

≈ 1

2
[I± kE0 + k0

2kE0

nH(kE0) · ~σ ±
kE0 − k0

2kE0

nH(−kE0) · ~σ],

where H{δi′GME1} (H{δi′GME2}) is the Hilbert subspace spanned by the eigenstates located in

the right (left) window (see Fig. S4), and IH{δi′
GME1

}
(IH{δi′

GME2
}
) is the identity matrix in this

subspace. As discussed in the section B, the SSQW system in this extended situation cannot

be thermalized, and only with the energy E0 is not enough to characterize its steady state;

however, with another information of the conserved quantity–momentum k0, the steady state

can be predicated by the GME state in Eq. (S29), which is explicable by using the GETH.
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F. RELATION WITH SU-SCHRIEFFER-HEEGER MODEL

In this part, we will show that the validity of GETH in SOC system will lead to a

special case of the generalized thermaliztion in an equivalent many-body system like the

Su-Schrieffer-Heeger (SSH) model[15]. For the SSH model, its Hamiltonian reads[16]

HSSH =
∑
k

c′
†
kHkc

′
k (S30)

with c′k = (c′s1,k, c
′
s2,k

). c′i,k (i = s1, s2) are the annihilation operators in momentum space

for two different sublattice in SSH model, and Hk = E(k)nH(k) · ~σ where E(k) and nH(k)

is what we defined in the SOC system. By performing an unitary transformation for each

individual Hk,

U =

 ξ1,k ξ2,k

−ξ∗2,k ξ∗1,k

 (S31)

we can rewrite the Hamiltonian as

HSSH =
∑
k

(E(k)c†u,kcu,k − E(k)c†d,kcd,k) (S32)

where cu,k = ξ∗1,kc
′
s1,k
− ξ2,kc

′
s2,k

, and cd,k = ξ∗2,kc
′
s1,k

+ ξ1,kc
′
s2,k

. The energy eigenstate thus

reads

|eM〉 = ΠP
k∈[−π,π]Mk|0〉 (S33)

with |0〉 is vacuum state, which means there is no quasi-particle in the system. M ≡

{Mk|Mk = c†u,k or c†d,k or Ik, k ∈ [−π, π]} where Ik means that the eigenstate has no quasi-

particle with momentum k, and P represents a permutation of Mk. As an example, con-

sidering a two quasi-particles state, where the momentum of the quasi-particles are k1 and

k2, the permutation of Mk is two, the first one reads |eM1,2〉 = c†u,k1c
†
u,k2
|0〉 = |1k11k2〉 =

1√
2
(|1k1〉|1k2〉 − |1k2〉|1k1〉), and the second one reads |eM1,2〉 = c†u,k2c

†
u,k1
|0〉 = |1k21k1〉 =

1√
2
(|1k2〉|1k1〉 − |1k1〉|1k2〉). Obviously, these two states are not independent. Actually, it is

14



enough to only choose one permutation to generate a complete set of eigenbasis. In the fol-

lowing, for the energy eigenbasis we use, we choose the momentum sequential permutation.

Namely, eM = (Mk1Mk2 ...Mki ...)|0〉 where k1 < k2 < ... < ki < ....

As we know, the Hermitian operator for a single spinor reads o0I+~o·~σ where ~o = (o1, o2, o3)

is a vector. Now, considering the one-body observable with a specific momentum in this

system, there are four kinds (In the following, we ignore the trivial parts of the observable,

i.e. the terms proportional to the identity matrix). The first kind of the one-body observable

reads O1,k = c†1,k(~o1,k · ~σk)c1,k where c1,k = (cu,k, cd,k), and ~σk is the Pauli matrices in a new

coordinate whose z-axis is parallel with the nH(k). In other word,
σx,k = |nuk〉〈ndk|+ |ndk〉〈nuk|

σy,k = −i|nuk〉〈ndk|+ i|ndk〉〈nuk|

σz,k = |nuk〉〈nuk| − |ndk〉〈ndk|

(S34)

and ~o1,k = (~o1,k · ~σx,k, ~o1,k · ~σy,k, ~o1,k · ~σz,k). Besides, the eigenstate expectation value of the

first kind of one-body observable is

〈e|O1,kα|e〉 =


~o1,k · ~σz,k Mkα = cu,kα

−~o1,k · ~σz,k Mkα = cd,kα

0 Mkα = Ikα

(S35)

The second kind of one-body observable reads O2,k = c†2,k(
~O2,k · ~σk)c2,k where c2,k =

(c†u,k, cd,k), whose eigenstate expectation value is

〈e|O2,kα|e〉 =


0 Mkα = cu,kα

0 Mkα = cd,kα

~o1,k · ~σz,k Mkα = Ikα

(S36)

The third kind of one-body observable reads O3,k = c†3,k(
~O3,k ·~σk)c3,k where c3,k = (cu,k, c

†
d,k),

whose eigenstate expectation value is

〈e|O3,kα|e〉 =


0 Mkα = cu,kα

0 Mkα = cd,kα

−~o1,k · ~σz,k Mkα = Ikα

(S37)

The forth kind of one-body observable reads O4,k = c†4,k(
~O4,k ·~σk)c4,k where c4,k = (c†u,k, c

†
d,k),
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whose eigenstate expectation value is

〈e|O4,kα|e〉 =


−~o1,k · ~σz,k Mkα = cu,kα

~o1,k · ~σz,k Mkα = cd,kα

0 Mkα = Ikα

(S38)

Furthermore, if the initial state |φ0〉 =
∑

j lMj
|eMj
〉 with mean energy E0 and mean mo-

mentum k0 only occupies the energy eigenstates whose quasi-particle momentum is within

a small momentum window Wk = [k̃0 − δk, k̃0 + δk], which is similar with the case in the

SOC system we have showed, and a one-body observable reads

O = q1

∑
kα∈Wk

O1,kα + q2

∑
kα∈Wk

O2,kα + q3

∑
kα∈Wk

O3,kα + q4

∑
kα∈Wk

O4,kα . (S39)

where O1,kα · nH(k̃0) = O1,k̃0
· nH(k̃0) = Ck0,1, O2,kα · nH(k̃0) = O2,k̃0

· nH(k̃0) = Ck0,2,

O3,kα ·nH(k̃0) = O3,k̃0
·nH(k̃0) = Ck0,3, O4,kα ·nH(k̃0) = O4,k̃0

·nH(k̃0) = Ck0,4 for all kα, then

the expectation of O respecting to the diagonal ensemble of this initial state would be

Tr[ρDEO] =q1(
∑
kα∈Wk

∑
j

Mj,kα
=cu,kα

|lMj
|2O1,kα · nH(kα)−

∑
kα∈Wk

∑
j

Mj,kα
=cd,kα

|lMj
|2O1,kα · nH(kα))

(S40)

+ q2

∑
kα∈Wk

∑
j

Mj,kα
=Ikα

|lMj
|2O2,kα · nH(kα) + q3(−

∑
kα∈Wk

∑
j

Mj,kα
=Ikα

|lMj
|2O3,kα · nH(kα))

+ q4(−
∑
kα∈Wk

∑
j

Mj,kα
=cu,kα

|lMj
|2O4,kα · nH(kα) +

∑
kα∈Wk

∑
j

Mj,kα
=cd,kα

|lMj
|2O4,kα · nH(kα))

≈q1(
∑
kα∈Wk

∑
j

Mj,kα
=cu,kα

|lMj
|2O1,kα · nH(k̃0)−

∑
kα∈Wk

∑
j

Mj,kα
=cd,kα

|lMj
|2O1,kα · nH(k̃0))

+ q2

∑
kα∈Wk

∑
j

Mj,kα
=Ikα

|lMj
|2O2,kα · nH(k̃0) + q3(−

∑
kα∈Wk

∑
j

Mj,kα
=Ikα

|lMj
|2O3,kα · nH(k̃0))

+ q4(−
∑
kα∈Wk

∑
j

Mj,kα
=cu,kα

|lMj
|2O4,kα · nH(k̃0) +

∑
kα∈Wk

∑
j

Mj,kα
=cd,kα

|lMj
|2O4,kα · nH(k̃0))

=(q1Ck̃0,1 − q4Ck̃0,4)Lu + (q4Ck̃0,4 − q1Ck̃0,1)Ld + (q2Ck̃0,1 − q3Ck̃0,4)L0

where Lu ≡
∑

kα∈Wk

∑
j

Mj,kα
=cu,kα

|lMj
|2, Ld ≡

∑
kα∈Wk

∑
j

Mj,kα
=cd,kα

|lMj
|2, and L0 ≡

∑
kα∈Wk

∑
j

Mj,kα
=Ikα

|lMj
|2 =

NWk
− Lu − Ld with NWk

=
∑

kα∈Wk

1. We can see the key part of the derivation above is
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the approximation. Namely, we can replace all nH(kα), where kα is within the momentum

window, by nH(k̃0). This is due to the validity of the GETH in the SOC system.

Moreover, considering the conserved charges of the initial state, i.e. the energy and the

momentum, we have

E0 =
∑
kα∈Wk

∑
j

Mj,kα
=cu,kα

E(k)|lMj
|2 −

∑
kα∈Wk

∑
j

Mj,kα
=cd,kα

E(k)|lMj
|2 (S41)

≈ E(k̃0)(Lu − Ld),

k0 =
∑
kα∈Wk

∑
j

Mj,kα
=cu,kα

k|lMj
|2 −

∑
kα∈Wk

∑
j

Mj,kα
=cd,kα

k|lMj
|2

≈ k̃0(Lu + Ld) (S42)

where both two approximation is valid when Wk is small. We thus can get

Lu =
1

2
(
k0

k̃0

+
E0

E(k̃0)
), (S43)

Ld =
1

2
(
k0

k̃0

− E0

E(k̃0)
). (S44)

Then, the expectation of the one-body operator we defined above is only dependent on three

initial factors, i.e., the initial energy E0, the initial momentum k0, and the mean momentum

of the momentum window k̃0. Thus, the generalized thermalization can occur in this special

situation.

All above, it is the validity of GETH in SOC system that causes the satisfaction of the

generalized thermalization in SSH model.
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[10] L. P. Garćıa-Pintos, N. Linden, A. S. L. Malabarba, A. J. Short, and A. Winter, Equilibration

time scales of physically relevant observables, Phys. Rev. X 7, 031027 (2017).

[11] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zangh̀ı, Canonical typicality, Phys. Rev.

Lett. 96, 050403 (2006).

[12] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81 (2018).

[13] A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized thermalization in an integrable lattice

system, Phys. Rev. Lett. 106, 140405 (2011).

[14] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, Thermalization and prethermalization in

isolated quantum systems: a theoretical overview, J. Phys. B: At., Mol. Opt. Phys. 51, 112001

(2018).

[15] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42,

1698 (1979).
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