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Section I: Protein expression and purification 

Methods 

The haloalkane dehalogenases genes linBH272F, dhaAH272F, dhaAHT and dmmAH315F were cloned into 

pAQN, pET21b or pET24a vectors, were transformed into chemocompetent Escherichia coli BL21 or 

BL21(DE3) cells (Supplementary Table S1). The cells were grown at 37 °C until they reached an optical 

density of about 0.6 at 600 nm in Luria-Bertani (LB) medium containing ampicillin (100 µg‧ml-1) or 

kanamycin (30 µg‧ml-1). The protein expression was induced by addition of 0.5 mM isopropyl β-D-1-

thiogalacto-pyranoside and cells were further incubated at 20 °C. The harvested cell biomass was 

homogenized by Ultrasonic processor (Hielscher, Germany) and clarified by centrifugation at 21 000 g for 

1 h (4 °C). Soluble proteins were purified by metal-affinity chromatography using 5 ml Ni-NTA Superflow 

column (Qiagen, Germany) attached to FPLC purification system (Bio-Rad, USA) which was equilibrated 

with purification buffer A (500 mM NaCl, 20 mM K2HPO4/KH2PO4 (pH 7.5), 10 mM imidazole). The His-

tagged proteins were eluted using purification buffer B containing 300 mM imidazole (Supplementary 

Figure S1A). The eluted proteins were dialyzed against phosphate-buffer saline (PBS) (137 mM NaCl; 2.7 

mM KCl; 10 mM Na2HPO4; 1.8 mM KH2PO4; pH 7.4) with 0.01% (w/v) CHAPS (3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate) either by the dialysation membrane or using gel 

permeation chromatography (GPC) equipped with preparative HiLoadTM 16/600 SuperdexTM 200 

column (GE Healthcare, Sweden), pre-equilibrated by PBS buffer, attached to Äkta FPLC (GE Healthcare, 

Sweden). The protein purity was confirmed by SDS-polyacrylamide gel electrophoresis (Supplementary 

Figure S1B) using 15% polyacrylamide gels, stained with Coomassie brilliant blue R-250 dye (Fluka, 

Buchs, Switzerland). The protein concentration was determined spectrophotometrically using DeNovix DS-

11 spectrophotometer by measuring absorbance at 280 nm with a known extinction coefficient calculated 

from the protein sequence using the ProtParam tool provided by ExPASy1. 
 

Supplementary Table S1. Haloalkane dehalogenases used for fluorescence polarization experiments. 

Enzymes Mutations Expression vectors 

DhaAHTa K175M, C176G, V197I, H272F, Y273L, A292G pET21b 

DhaAH272F H272F pAQN 

LinBH272F H272F pAQN 

DmmAH315F H315F pET24a 

a The DhaAHT used in this study carries two stabilization mutations (V192I, A282G) as compared to the one formerly 

published DhaAHT2 and to the variant generally referred to as HaloTag®3. 
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Results 

The enzymes were overexpressed in E. coli BL21 and BL21(DE3) cells and purified by metal-affinity 

chromatography (Supplementary Figure S1). After affinity purification proteins were dialyzed against 

PBS buffer (pH 7.4, 0.01% CHAPS). The purity of proteins was analyzed by sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE; Supplementary Figure S1). 

 
 

Supplementary Figure S1. (A) Chromatograms from purification of LinBH272F, DhaAH272F, DhaAHT 

and DmmAH315F by metal-affinity chromatography. The target proteins were eluted by 10 and 60% 

gradient of purification buffer B containing 50 mM and 300 mM imidazole, respectively. (B) SDS-PAGE 

of enzymes before and after purification and after GPC separation, here used as dialysis. Lane M: molecular 

weight marker; lane CFE: cell-free extract; lane 10%: protein eluted from the column by 10% gradient of 

buffer B; lane 60%: protein eluted by 60% gradient of buffer B; lane GPC: protein after GPC separation. 

The overexpressed target protein corresponds to the most distinct band.  
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Section II: Kinetic analysis 

Methods 

Fluorescence intensity and anisotropy measurements 

The fluorescence anisotropy and fluorescence intensity measurements with the selected fluorescent ligands 

(E)-1-(5-chloropentyl)-4-(4-(dimethylamino)styryl)pyridin-1-ium iodide (1B), (E)-1-(7-chloroheptyl)-4-

(4-(dimethylamino)styryl)pyridin-1-ium chloride (1D), (E)-1-(8-chlorooctyl)-4-(4-(dimethylamino) 

styryl)pyridin-1-ium chloride (1E) and 4-((2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)carbamoyl)-2-(6-

(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)benzoate (TMR) were performed in black coloured 

96-well polypropylene plates. The reaction mixture, with the total volume of 200 μl, consisted of PBS 

buffer, CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate) to a final concentration 

of 0.01 % (w/v), 0.001 – 0.1 µM of the fluorescent ligand and 0.001 – 8 µM of the enzyme. The 

concentration of the enzyme was kept equal or in access over the concentration of ligand to reduce the 

background effects of the unbound ligand in anisotropy measurements. The time course of the signal was 

monitored using Infinite F500 plate reader (Tecan, Switzerland) equipped with polarization filters with 

excitation/emission wavelengths 544 nm/620 nm or 544 nm/580 nm at 30° C. The signal of the enzyme-

free incubation of the ligands in the reaction buffer was monitored over time as a negative control. The 

kinetic experiments were performed in two to three independent replicates. 

Kinetic data analysis and statistics 

The conventional analysis was performed by fitting the kinetic data by nonlinear regression using 

exponential functions (Supplementary Equations S1-3) built into KinTek Explorer software (KinTek, 

USA). The concentration dependence of the observed rate of the fast phase and slow phase was then fit to 

Supplementary Equations S4-6 by nonlinear regression based on the Levenberg-Marquardt algorithm 

using Origin 6.0 software (OriginLab, USA). The standard error estimates in fitted parameters k1 and k-1 

were propagated to yield error estimates in the calculated value of the equilibrium dissociation constant 

KD=k-1/k1. Alternatively, the apparent rate constants for labeling was calculated according to Los et al. 2008 

by dividing the determined single exponential rate constants by the concentration of the reactant in excess. 

The global analysis was performed using the KinTek Explorer software (KinTek, USA), a dynamic kinetic 

simulation program that allowed multiple data sets to be fit simultaneously to a single model. Data fitting 

used numerical integration of rate equations from an input model searching a set of parameters using the 

Bulirsch–Stoer algorithm with adaptive step size that produces a minimum χ2 value calculated by using 

nonlinear regression based on the Levenberg-Marquardt method4. Residuals were normalized by sigma 

value for each data point. To account for slight variations in the data, enzyme concentrations were allowed 

to vary within an interval of ±10% to make the best fits possible. The standard error was calculated from 

the covariance matrix during nonlinear regression. In addition to standard error values, more rigorous 

analysis of the variation of the kinetic parameters was accomplished by confidence contour analysis by 

using FitSpace Explorer (KinTek, USA)5. In this analysis, the lower and upper limits for each parameter 

were derived from the confidence contours for χ2 threshold at boundary 0.95. 
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Results 

Conventional fitting of kinetic data 

First, the obtained anisotropy data were analyzed by exponential fitting using nonlinear regression. To 

compare the consistency of the data with earlier published results, the apparent second-order rate constants 

were calculated by the same procedure used by Los and co-workers for TMR interaction with DhaAHT. 

The constants were calculated for each experiment by dividing the observed rate (kobs1) calculated from 

single-exponential fit (Supplementary Equation S1) by the respective concentration of the enzyme, the 

component in excess. The obtained values for the incorporation of TMR into DhaAHT ranging between 

0.8 and 2.3 × 106 M-1s-1 for various enzyme concentrations correspond well with the value 2.7 × 106  

M-1s-1  published by Los and co-workers6. This quick analysis served solely for a basic comparison of the 

new variants with the previously reported results; however, the obtained constant has no mechanistic 

meaning. To derive mechanistic information, the concentration dependence of the rates obtained by 

exponential fitting was then analyzed systematically. Although the single-exponential fit (Supplementary 

Equation S1) indicated satisfying statistics for fitting kinetic traces obtained for reaction of TMR with 

DhaAHT (χ2/DoF = 2.29; p-value = 0.28), the use of a double-exponential function (Supplementary 

Equation S2) provided significantly improved goodness of fit (χ2/DoF = 1.21; p-value = 0.43) and 

distinguished two separate, fast and slow, kinetic phases. The two phases indicated in the anisotropic data 

are well consistent with the two-step mechanism expected for the reaction, which includes ligand binding 

and subsequent chemical conversion leading to the formation of the final covalent complex 

(Supplementary Scheme S1). 

 

Supplementary Scheme 1 

The concentration dependence of the observed rates was used for secondary fitting to approximate rate 

equations (Supplementary Equations S4-6) derived for a proposed two-step kinetic model 

(Supplementary Scheme S1). More specifically, the concentration dependence of observed rate for fast 

(kobs1) and slow phase (kobs2) were fitted to Supplementary Equations S4 and S5, respectively. The analysis 

provided estimates of the rate constant for association (k1) and dissociation of enzyme-ligand complex  

(k-1) and the rate constant for the subsequent chemical step (k2) (Supplementary Table S2).  

𝑦 = 𝐴1. 𝑒
−𝑘𝑜𝑏𝑠1.𝑡 + 𝐶     Supplementary Equation S1 

 

𝑦 = 𝐴1. 𝑒
−𝑘𝑜𝑏𝑠1.𝑡 + 𝐴2. 𝑒

−𝑘𝑜𝑏𝑠2.𝑡 + 𝐶   Supplementary Equation S2 

 

𝑦 = 𝐴1. 𝑒
−𝑘𝑜𝑏𝑠1.𝑡 + 𝐶 +𝐷. 𝑡                        Supplementary Equation S3 

 

𝑘𝑜𝑏𝑠1 = 𝑘1. [𝐸] + 𝑘−1 + 𝑘2                      Supplementary Equation S4 
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𝑘𝑜𝑏𝑠2 =
𝑘1.𝑘2.[𝐸]+𝑘−1

𝑘1.[𝐸]+𝑘−1+𝑘2
                    Supplementary Equation S5 

 

𝑘𝑜𝑏𝑠1 =
𝑘2.[𝐸]

𝐾𝐷+[𝐸]
                                 Supplementary Equation S6 

 

In the case of 4-stilbazolium-based ligands, the double-exponential fit did not provide reasonable estimates 

and the rates and amplitudes were obtained by fitting the kinetic data (Supplementary Figures S1B-D) 

using single-exponential (Supplementary Equation S1) or combination of single-exponential and linear 

(Supplementary Equation S3) functions. The concentration dependence of the rate (kobs1) and amplitude 

(A1) indicated that the binding phase gradually disappears in a dead-time of the measurement with 

increasing concentration of the enzyme (Supplementary Figures S1F-H). Moreover, the hyperbolic shape 

of the concentration dependence of the rate also implies that the observed kinetic phase is significantly 

affected by the velocity of the chemical step and not by ligand binding. The dependence of the rate on 

concentration was fitted to the simplified Supplementary Equation S6, which allowed to define estimates 

of the equilibrium dissociation constant of enzyme-ligand complex (KD = k-1/k1) and the rate of consecutive 

the chemical step (k2) (Supplementary Table S2). 

Although this is the currently accepted method for data analysis, there are several limitations related to the 

conventional fitting. First, the fitting curves to multi-exponential functions is error-prone because it 

disregards important relationships between rates and amplitudes7,8. The resulting errors from the weak 

definition of the individual amplitudes propagate to errors in rates, tending to overestimate both rates and 

both amplitudes as can be seen in Supplementary Figure S2E. Moreover, when fitting the data using 

equations, the large number of independent parameters needed to fit the data contributes to increased 

uncertainty7,8. In the example of DhaAHT reaction with TMR, fitting seven traces to a double-exponential 

function, a total of 35 independent parameters are derived for the specific dataset to extract only three 

relevant kinetic parameters (k1, k-1 and k2) in following fit to the rate functions (Supplementary Equations 

S4 and S5). The transfer of individual parameters from one fitting step to another and the inability to 

maintain the relationship between rates and amplitudes means a substantial loss of information contained 

in the original raw data. To overcome these limitations, the global fitting of an entire raw concentration 

dependence data was performed using numerical integration of the rate equations. The initial estimates for 

rate and equilibrium constants obtained by the conventional analysis were used as starting values for the 

numerical integration in the analysis of all tested enzyme variants and ligands. 
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A              B 

      
C              D 

      
E            F 

   
G            H 

   

Supplementary Figure S2. Conventional analysis of DhaAHT reaction with selected ligands. 

Anisotropy kinetic traces obtained upon mixing of 0.001 μM TMR (A), 0.1 μM 1B (B), 0.01 μM 1D (C) 

and 0.1 μM 1E (D) with DhaAHT in concentration range specified in individual legends. The experiments 

were performed at 30° C in PBS with 0.01 % (w/v) CHAPS. The solid lines represent the best exponential 

fit to the data. The concentration dependence of the rates (A, left) and amplitudes (A, left) of the fast (black 
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squares) and slow phases (white squares) derived from doble exponential fitting. Only the single 

exponential fit provided reasonable estimates for 1B (F), 1D (G) and 1E (H) providing the concentration 

dependence of the rates (left) and amplitudes (right). The error bars show the standard error of the fitted 

parameter. The solid lines represent the best fit of the concentration dependences to approximate rate 

equations derived for a two-step kinetic model (Supplementary Equations S4-6). The concentration 

dependence of the amplitude cannot be used for reliable parameter estimation. 

 

Supplementary Table S2. Initial estimates of the kinetic constants obtained by conventional analysis. 

The parameters for reaction of DhaAHT with all tested probes are shown with standard errors derived by 

nonlinear regression. All experiments performed at 30° C in PBS (pH 7.4) with 0.01 % (w/v) CHAPS. 

  k1 / μM-1min-1 k-1 / min-1 KD / μM k2 / min-1 

TMR 41 ± 4 0.08 ± 0.04 0.002 ± 0.001 a 0.06 ± 0.04 

1B - b - b 1.3 ± 0.4 0.10 ± 0.01 

1D - b - b 0.6 ± 0.5 0.03 ± 0.01 

1E - b - b 1.2 ± 0.4 0.33 ± 0.03 
a The standard errors in fitted parameters were propagated to yield error estimates in calculated value KD. 
b The individual rate constants k1 and k-1 cannot be derived, only the equilibrium constant for enzyme-ligand 

dissociation KD = k-1/ k1 could be estimated by the conventional fitting. 

 

Fitting by numerical integration of rate equations 

The concentration dependence data were globally fitted in their raw form (Supplementary Figure S3) to 

the proposed kinetic model (Supplementary Scheme S1) by using Global Kinetic Explorer (KinTek, 

USA)4 providing a unique set of related kinetic parameters (Supplementary Table S3). The observable 

anisotropy signal (y) was defined as the sum of the contributions of each species to the total signal with 

scaling factors for each species. Factor a scales the signal to the concentration of free ligand (L), factors b 

and c reflect the change of the signal corresponding to the formation of enzyme-ligand complex (E.L) and 

covalent alkyl-enzyme complex (E-L), respectively (Supplementary Equation S7). The scaling factors 

are summarized in Supplementary Table S4. 

 

𝑦 = 𝑎 ∗ (𝐿 + 𝑏 ∗ 𝐸. 𝐿 + 𝑐 ∗ 𝐸 − 𝐿)      Supplementary Equation S7 

 

The values are comparable to those obtained by conventional data fitting with standard errors significantly 

smaller with the global data fitting using only six parameters to fit complete data set in comparison to 35 

required for conventional analysis. Additional to standard errors, more rigorous analysis of the variation of 

the kinetic parameters was accomplished by confidence contour analysis by using FitSpace Explorer 

(KinTek, USA)5. In this analysis, the lower and upper limits for each parameter were derived from the 

confidence contours for χ2 threshold at boundary 0.95 (Supplementary Table S5). 
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The free energy of activation (ΔG‡) was calculated for each reaction step from the globally fitted rate 

constants (ki) using Eyring equation (Supplementary Equation 8), where T is the temperature in Kelvin, 

R is gas constant, h is Planck´s constant and kB is Boltzmann constant. 

 

𝛥𝐺‡ = −𝑅. 𝑇. 𝑙𝑛 (
𝑘𝑖.ℎ

𝑘𝐵𝑇
)    Supplementary Equation S8 

 

The free energy of ground state (ΔG0) was calculated from the equilibrium dissociation constant for 

enzyme-ligand complex (KD) using Supplementary Equation 9 at [E] = 10 μM (the component in excess) 

reflecting better the real reaction condition rather than the 1 M standard state. All thermodynamic 

parameters calculated at the reference temperature 30 °C (303.15 K) are summarized in Supplementary 

Table S6 and Figure S4. 

 

𝛥𝐺0 = −𝑅. 𝑇. 𝑙𝑛 (
[𝐸]

𝐾𝐷
)    Supplementary Equation S9 
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A         B 

   
C         D 

 
E         F 

 
G         H 

 

Supplementary Figure S3. Global data analysis using numerical integration. Anisotropy kinetic traces 

obtained upon mixing of 0.001 μM TMR with DhaAHT (A) and DhaAH272F (B), 0.01 μM TMR with 

LinBH272F (C) and DmmAH315F (D), 0.1 μM 1B with DhaAHT (E), DhaAH272F (F), LinBH272F (G), 

DmmAH315F (H), 0.01 μM 1D with DhaAHT (I), DhaAH272F (J), LinBH272F (K), and 0.025 μM 1D 

with DmmAH315F (L), and 0.1 μM 1E with DhaAHT (M), DhaAH272F (N), LinBH272F (O) and 

DmmAH315F (P). The experiments were performed at 30°C in PBS (pH 7.4) with 0.01 % (w/v) CHAPS. 

The solid lines represent the best global fit. 
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M         N 

   
O         P 

 

 

Supplementary Figure S3. (Continued) 
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Supplementary Table S3. Kinetic constants obtained by global fitting. The parameters are shown with 

standard errors derived in globally fitting the data by nonlinear regression. All experiments were performed 

at 30° C in PBS (pH 7.4) with 0.01 % (w/v) CHAPS. The standard errors of the fitted parameters k1 and  

k-1 were propagated to yield the error estimates in the calculated value KD.a 

    k1 / μM-1min-1 k-1 / min-1 k2 / min-1 KD / μM 

TMR 

DhaAHT 39.7 ± 0.6 0.051 ± 0.003 0.004 ± 0.003  (1.28 ± 0.08)  10-3 

DhaAH272F 0.40 ± 0.02 0.127 ± 0.004 0.0014 ± 0.0009 0.32 ± 0.02 

LinBH272F 0.0013 ± 0.0001 0.003 ± 0.001 0.021 ± 0.002 2.34 ± 0.8 

DmmAH315F  0.0042 ± 0.0005 n.d. 0.027 ± 0.004 n.d. 

1B 

DhaAHT 0.17 ± 0.05 0.2 ± 0.1 0.08 ± 0.04 1.2 ± 0.7 

DhaAH272F 0.07 ± 0.01 0.04 ± 0.01 0.017 ± 0.008 0.6 ± 0.2 

LinBH272F 0.07 ± 0.02 0.04 ± 0.02 0.007 ± 0.006 0.6 ± 0.3 

DmmAH315F  16 ± 2 1.1 ± 0.2 0.19 ± 0.01 0.07 ± 0.02 

1D 

DhaAHT 0.10 ± 0.02 0.07 ± 0.06 0.05 ± 0.04 0.7 ± 0.6 

DhaAH272F 0.039 ± 0.008 0.08 ± 0.04 0.04 ± 0.03 2 ± 1 

LinBH272F 0.091 ± 0.009 0.04 ± 0.02 0.014 ± 0.009 0.4 ± 0.2 

DmmAH315F  25 ± 3 4.6 ± 0.6 0.67 ± 0.05 0.18 ± 0.03 

1E 

DhaAHT 1.5 ± 0.3 0.5 ± 0.2 0.25 ± 0.04 0.3 ± 0.1 

DhaAH272F 0.7 ± 0.2 0.4 ± 0.1 0.04 ± 0.01 0.6 ± 0.2 

LinBH272F 3.0 ± 0.6 0.4 ± 0.3 0.4 ± 0.1 0.13 ± 0.10 

DmmAH315F  9.9 ± 0.8 1.6 ± 0.3 0.68 ± 0.07 0.16 ± 0.03 

an.d. means not determined. 
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Supplementary Table S4. Scaling factors of the observed signal included in global fit. Factor a scales 

the observable signal to the concentration of the free ligand, factors b and c reflect the change of the signal 

corresponding to the formation of the binding complex (E.L) and the final covalent alkyl-enzyme complex 

(E-L), respectively. 

    a b c 

TMR 

DhaAHT 89.7 ± 0.3 3.81 ± 0.01 3.49 ± 0.04 

DhaAH272F 89.7 ± 0.1 9.8 ± 0.2a 9.8 ± 0.2a 

LinBH272F 6.86 ± 0.02 2.4 ± 0.2 4.12 ± 0.02 

DmmAH315F  2.1 ± 0.2 7.3 ± 0.1 3.4 ± 0.1 

1B 

DhaAHT 1.568 ± 0.005 1.67 ± 0.02 1.865 ± 0.007 

DhaAH272F 1.542 ± 0.004 1.146 ± 0.009 1.428 ± 0.005 

LinBH272F 1.623 ± 0.005 1.15 ± 0.01 1.499 ± 0.007 

DmmAH315F  1.97 ± 0.01 1.30 ± 0.01 1.36 ± 0.01 

1D 

DhaAHT 12.54 ± 0.07 1.6 ± 0.6 2.21 ± 0.02 

DhaAH272F 13.28 ± 0.04 1.8 ± 0.1 1.71 ± 0.01 

LinBH272F 14.17 ± 0.03 1.71 ± 0.02 2.03 ± 0.02 

DmmAH315F  10.7 ± 0.02 1.22 ± 0.01 1.26 ± 0.01 

1E 

DhaAHT 2.069 ± 0.005 1.46 ± 0.01 1.575 ± 0.004 

DhaAH272F 1.935 ± 0.004 1.483 ± 0.006 1.604 ± 0.003 

LinBH272F 2.268 ± 0.004 1.43 ± 0.01 1.468 ± 0.003 

DmmAH315F  2.425 ± 0.007 1.139 ± 0.004 1.187 ± 0.006 

 a Common scaling factor used for the enzyme-ligand and covalent alkyl-enzyme complex 
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Supplementary Table S5. Confidence contour analysis for global data fitting. The lower and upper 

limits for each rate constant (Scheme 1) derived from the confidence contours for χ2 threshold at boundary 

0.95. 

    k1 / μM-1min-1 k-1 / min-1 k2 / min-1 

TMR 

DhaAHT 38 - 42 0.045 - 0.058 < 0.009 

DhaAH272F 0.36 - 0.45 0.118 - 0.136 0.0003 - 0.003 

LinBH272F 0.0011 - 0.0014 < 0.007 0.016 - 0.032 

DmmAH315F  0.0046 - 0.0052 < 0.0001 0.019 - 0.027 

1B 

DhaAHT 0.1 - 2.1 0.05 - 5 0.05 - 0.12 

DhaAH272F 0.05 - 0.11 0.01 - 0.10 0.012 - 0.024 

LinBH272F 0.07 - 0.25 0.01 - 0.13 0.002 - 0.011 

DmmAH315F  > 7.6 > 0.38 0.12 - 0.37 

1D 

DhaAHT 0.03 - 0.59 < 0.6 0.01 - 1 

DhaAH272F 0.04 - 0.13 < 1.5 0.003 - 0.8 

LinBH272F 0.08 - 0.15 0.02 - 0.12 0.01 - 0.05 

DmmAH315F  > 16 > 1.9 0.43 - 1.31 

1E 

DhaAHT 1.2 - 10 0.2 - 6 0.19 - 0.39 

DhaAH272F 0.3 - 1.4 0.08 - 0.9 0.02 - 0.05 

LinBH272F 2.4 - 10 0.1 - 3.6 0.2 - 0.9 

DmmAH315F  6.3 - 24.1 0.57 - 8.57 0.38 - 2.21 
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Supplementary Table S6. Thermodynamic parameters derived from experimental measurements. 

The free energies of ground state ΔG0 and free energy of activation ΔG‡ calculated from the fitted 

parameters at reference temperature 30 °C (303.15 K) and [E] = 10 μM reflecting the real reaction condition. 

    ΔG‡(k1) / kcal·mol-1 ΔG‡(k-1) / kcal·mol-1 ΔG‡(k2) / kcal·mol-1 ΔG0
KD / kcal·mol-1 

TMR 

DhaAHT 18.0 22.0 23.5 -4.0 

DhaAH272F 20.8 21.5 24.2 -0.7 

LinBH272F 24.2 23.7 22.5 0.5 

DmmAH315F  23.5 n.d. 22.4 n.d. 

1B 

DhaAHT 21.3 21.2 21.7 0.1 

DhaAH272F 21.8 22.2 22.7 -0.3 

LinBH272F 21.8 22.2 23.2 -0.3 

DmmAH315F  18.6 20.2 21.2 -1.6 

1D 

DhaAHT 21.6 21.8 22.0 -0.2 

DhaAH272F 22.2 21.7 22.2 0.4 

LinBH272F 21.7 22.2 22.8 -0.6 

DmmAH315F  18.3 19.3 20.5 -1.0 

1E 

DhaAHT 20.0 20.6 21.1 -0.7 

DhaAH272F 21.8 20.8 22.2 -0.3 

LinBH272F 19.6 20.8 20.8 -1.2 

DmmAH315F  18.8 19.9 20.5 -1.1 
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A                   B 

 

C                   D 

 

Supplementary Figure S4. Thermodynamic parameters derived from experimental measurements. 

The energy of activation ΔG‡ for individual kinetic steps (A) k1, (B) k-1 and (C) k2 and (D) free energy of 

ligand binding ΔG0 (1/KA = KD = k-1/k-1) calculated from the fitted parameters at reference temperature 30 

°C (303.15 K) and [E] = 10 μM reflecting the real reaction condition. 
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A         B           C 

 
D         E           F 

 
G         H           I 

 
J         K           L 

 

 

Supplementary Figure S5. Fluorescence intensity measurements. Fluorescence intensity signal 

recorded upon mixing of different concentration of DhaAHT with 0.1 μM 1B (A), 0.01 μM 1D (B) and 0.1 

μM 1E (C), different concentration of DhaAH272F with 0.1 μM 1B (D), 0.01 μM 1D (E) and 0.1 μM 1E 

(F), different concentration of LinBH272F with 0.1 μM 1B (G), 0.01 μM 1D (H) and 0.1 μM 1E (I) and 

different concentration of DmmAH315F with 0.1 μM 1B (J), 0.025 μM 1D (K) and 0.1 μM 1E (L). The 

experiments were performed at 30° C in PBS with 0.01 % (w/v) CHAPS. The solid lines represent the best 

fit. 
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Non-specific ligand binding 

Methods 

Non-specific interactions of TMR and 1E ligands were measured by monitoring the changes in anisotropy 

upon mixing with DhaAH272F in the active form and after blocking the active sites with conventional non-

fluorescent substrate 1-chlorohexane. For blocking the active site, the enzyme was pre-incubated with 

excess 1-chlorohexane (solubility limit ~0.75 mM) at 30 °C and 150 rpm for >1 hour to ensure complete 

formation of the covalent alkyl-enzyme complex. Fluorescence anisotropy was measured in black coloured 

96-well polypropylene plates. The reaction mixture, with a total volume of 200 μl, consisted of PBS buffer, 

CHAPS to a final concentration of 0.01 % (w/v), the fluorescent ligand and blocked enzyme at 

concentrations corresponding to the experiments in Section II. The time course of the signal was monitored 

using Infinite F500 plate reader (Tecan, Switzerland) equipped with polarization filters with 

excitation/emission wavelengths 544 nm/580 nm or 544 nm/620 nm at 30 °C. The signal of the enzyme-

free incubation of the ligands in the reaction buffer was monitored over time as a negative control. 

 

Results 

The effects of non-specific interactions of the two types of ligands, TMR and 1E, were studied by 

monitoring the anisotropy upon the interaction of ligands with the free enzyme and with the enzyme with 

blocked active site after the reaction with 1-chlorohexane (Supplementary Figure S6A). The experiments 

were designed to analyse the effect of non-specific interactions during both fast (DhaAH272F+TMR) and 

slow labelling reaction (DhaA272F+1E). 

A negligible non-specific binding was observed for DhaAH272F+TMR pair, which has high reactivity 

(Supplementary Figures S6B and 6C). For the slower non-optimal reaction of DhaAH272F with 1E, 

when the reaction needs to be performed at 100-times higher ligand concentration, the non-specific binding 

was more pronounced. However, the specific binding was dominant in both cases, and non-specific 

interactions do not represent a significant bias in the kinetic data. Weak and reversible non-specific 

interactions are also very unlikely to affect the efficiency of the ligand incorporation into the enzyme, i.e., 

they compete against stronger specific binding and, more importantly, the irreversible formation of the final 

covalent complex. 

In case the non-specific binding might cause adverse effects in the target applications of the HaloTag 

technology, it is desirable to examine their extent in this simple way and to consider the result of such an 

analysis in the final selection of the optimal enzyme-ligand pair. 
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A 

   
B             C 

            
D             E 

           

Supplementary Figure S6: Effect of non-specific interactions of TMR and 1E. Scheme of the HaloTag 

enzyme in the active form and after blocking the active sites with conventional non-fluorescent substrate 

1-chlorohexane (A). Anisotropy kinetic traces obtained upon mixing 0.001 µM TMR with 0.00125-0.08 

µM DhaAH272F in free active form (B) and after active site blocking (C). Anisotropy kinetic traces 

obtained upon mixing 0.1 µM 1E with 0.125-8 µM DhaAH272F in free active form (D) and after active 

site blocking (E). The green and red curves show interaction with active and blocked dehalogenases, 

respectively. The black signal represents a negative control, the incubation of the ligands in reaction buffer 

without enzyme. 
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Section III: MALDI-TOF MS analysis 
 

The matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF 

MS) experiments were performed to verify the formation of covalent complexes between the 

HaloTag proteins and fluorescent ligands. 

 

Methods 

The phosphate buffer used for the purification of haloalkane dehalogenases DhaAHT, 

DhaA31H272F, and LinBH272F was exchanged with glycine buffer (20 mM, pH 8.6) by 

overnight dialysis. The protein-ligand reaction proceeded in a volume of 100-200 µl at 4 or 25 °C. 

The concentration of the enzyme was 1.5 mg‧ml-1 and the concentration of the 1D and TMR 

ligands was adjusted to achieve 100% saturation of the enzyme. MALDI-TOF mass spectra were 

recorded on an Ultraflextreme instrument (Bruker Daltonics, Billerica, Germany) operated in 

linear mode for detecting positive ions. Ferulic acid (12.5 mg‧ml-1 in a mixture of 

water:acetonitrile:formic acid 50:33:17, v/v/v) was used as the MALDI matrix. 0.6 µl of the 

enzyme sample was mixed with 2.4 µl of matrix solution, after which 0.6 µl of the mixture was 

deposited onto a stainless steel MALDI target. Protein Calibration mixture II (Bruker Daltonics, 

Billerica, Germany) was used for external calibration of the mass spectra, which were processed 

with FlexAnalysis 3.4 software (Bruker Daltonics, Billerica, Germany). 

 

Results 

MALDI-TOF MS spectra of DhaAHT and LinBH272F were determined before and after 

interaction with the selected 4-stilbazolium-based ligand 1D (Supplementary Figure S7A and 

7B). The analysis confirmed the formation of covalent complexes between the HaloTag proteins 

and the fluorescent ligands. Similarly, we have previously confirmed the formation of a covalent 

complex between the HaloTag enzymes and the TMR ligand. In these reactions, LinBH272F and 

the mutated variant DhaA31H272F were analyzed (Supplementary Figure 7C and 7D). 
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Supplementary Figure S7. Comparison of MALDI-TOF MS spectra of HaloTag proteins in 

a free form and upon their interaction with HaloTag ligands. (A) MALDI-TOF MS spectra of 

DhaAHT before (black line) and after interaction (red line) with 1D ligand. The peaks at 33.9 and 

34.2 kDa corresponds to the free and the complexed forms of the protein, respectively. (B) 

MALDI-TOF MS spectra of LinBH272F before and after interaction with 1D ligand. The peaks 

at 33.8 and 34.1 kDa corresponds to the free and the complexed forms of the protein, respectively. 

(C) MALDI-TOF MS spectra of DhaA31H272F before (black line) and after interaction (red line) 

with TMR ligand.9 The peaks at 34.1 and 34.7 kDa corresponds to the free and the complexed 

forms of the protein, respectively. (D) MALDI-TOF MS spectra of LinB 57 before (black line) 

and after interaction (red line) with TMR ligand.9 The peaks at 33.8 and 34.4 kDa corresponds to 

the free and the complexed forms of the protein, respectively. Experiments were performed in 20 

mM glycine buffer pH 8.6 at 4 °C (binding experiments with 1D ligand) and 25 °C (binding 

experiments with TMR ligand). 
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Section IV: Computational analysis  

Methods 

In silico mutagenesis 

The models of DhaAHT, DhaAH272F, LinBH272F and DmmAH315F were constructed by in silico 

mutagenesis performed on the crystal structures of the template enzymes, obtained from the RCSB Protein 

Data Bank10 (PDB entry 4E46 for DhaA, 1MJ5 for LinB, and 3U1T for DmmA). The water molecules and 

ions were removed, and the protein chain was renumbered in order to start from position 1. The resulting 

structure was minimized by Rosetta using the minimize_with_cst module. The minimization was performed 

according to Kellog et al11. Both backbone and side chain optimization was enabled (sc_min_only false), 

the distance for full atom pair potential was set to 9 Å (fa_max_dis 9.0), the standard weights for the 

individual terms in the energy function were used with a constraint weight 1 (constraint_weight 1.0). The 

output from the minimization step was used by the script convert_to_cst_file.sh for creation of the 

constraints file. In order to calculate the most stable conformers of each mutant, Protocol 16 was followed. 

For that, ddg_monomer module of Rosetta was used according to Kellog et al11, incorporating the backbone 

flexibility. The soft-repulsive design energy function (soft_rep_design weights) was used for side chains 

repacking and backbone minimization (sc_min_only false). The optimization was performed on the whole 

protein without distance restriction (local_opt_only false). The previously generated constraints cst file was 

used during minimization (min_cst true) to impose a restraint of 0.5 Å on the C atoms. The optimization 

was performed in three rounds with increasing weight on the repulsive term (ramp_repulsive true). The 

structure with lowest energy (mean false, min true) was selected from the 50-iteration cycle (iterations 50), 

and it was used as the final result to obtain the minimized model of the mutant. All calculations used the 

talaris201412,13 force field. 

Tunnel calculation 

CAVER 3.0214 was used to identify the tunnels in the predicted models of DhaAHT, DhaAH272F, 

LinBH272F and DmmAH315F. The tunnels were calculated using the default settings and a probe radius 

of 0.8 Å, a shell radius of 5 Å and shell depth 4 Å. The starting point for the tunnel calculation, located in 

the active site, was defined by the center of mass of the atoms OD1 and OD2 of D106, for the DhaA 

variants, or D108 for the LinB variants. 

Ligand preparation 

The structures of TMR and 1E ligands were constructed and minimized using Avogadro 215. The 

minimization step was performed by the Auto Optimization Tool of Avogadro, using the UFF force field16 

with steepest descent algorithm. The resulting structures were then submitted to further optimization and 

calculation of their partial atomic charges using Gaussian 0917, with the Hartree-Fock method and 6-31G(d) 

basis set in vacuum. These settings were similar to those previously used to parameterize other ligands18. 

For the TMR ligand, however, the final structure showed the closing of the carboxylate with the aromatic 

system to form a lactone ring. To test the validity of this result, a more robust calculation was performed 

with B3LYP and the 6-311+G(d,p) basis set and implicit solvent (the Polarizable Continuum Model). 

Finally, the latter conditions were used with both fluorescent ligands. The antechamber module of 

AmberTools 1619 was used to extract the RESP charges for the ligands from the Gaussian output files, 
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which were compiled into the PREPI and FRCMOD parameters files using the atom types of the General 

Amber force field (GAFF). 

System preparation and equilibration 

The hydrogen atoms were removed from the model structures of DhaAHT and LinBH272F, and added 

using the H++ server20, calculated in implicit solvent at pH 7.5, 0.1 M salinity, internal dielectric constant 

of 10 and external of 80. The water molecules from the original crystal structure of DhaA that did not 

overlap with any of the protein atoms were added to those structures. The TMR or 1E ligands were 

randomly placed at least 5 Å from the protein by the High Throughput Molecular Dynamics (HTMD)21 

python script. The systems were solvated in a cubic water box of TIP3P22 water molecules with the edges 

at least 10 Å away from the protein by the solvate module of HTMD. Cl- and Na+ ions were added to 

neutralize the charge of the protein and get a final salt concentration of 0.1 M. The systems topology was 

built, using the amberbuild module of HTMD, with the ff14SB23 Amber force field and the previously 

compiled PREPI parameters file for the ligands. 

The systems were equilibrated using the Equilibration_v2 module of HTMD21. The system was first 

minimized using conjugate-gradient method for 500 steps. Then the system was heated and minimized as 

follows: (I) 500 steps (2 ps) of NVT thermalization with the Berendsen barostat to 300 K with constraints 

on all heavy atoms of the protein, (II) 625 000 steps (2.5 ns) of NPT equilibration with Langevin thermostat 

with 1 kcal·mol-1·Å-2 constraints on all heavy atoms of the protein and (III) 625 000 steps (2.5 ns) of NPT 

equilibration with the Langevin thermostat without constraints. During the equilibration simulations, 

holonomic constraints were applied on all hydrogen-heavy atom bond terms and the mass of the hydrogen 

atoms was scaled with factor 4, enabling 4 fs time step24–27. The simulations employed periodic boundary 

conditions, using the particle mesh Ewald method for treatment of interactions beyond 9 Å cut-off, 

electrostatic interactions suppressed for more than 4 bond terms away from each other and the smoothing 

and switching van der Waals and electrostatic interaction cut-off at 7.5 Å25. 

Adaptive sampling 

HTMD was used to perform adaptive sampling of the binding of the ligand’s reactive end to the protein’s 

active site. The 40 ns production MD runs were started with the system that resulted from the equilibration 

cycle and employed the same settings as the last step of the equilibration. The trajectories were saved every 

0.1 ns. Adaptive sampling was performed using the distance between the reactive carbon atom of the ligand 

and the carboxylic carbon atom (C) of the catalytic nucleophile D106 as the reaction coordinate, and time-

based independent component analysis (tICA)28  in 1 dimension. 50 epochs of 10 MDs each were performed 

for every system, corresponding to a cumulative simulation time of 20 s. 

Markov state model construction 

The simulations were made into a simulation list using HTMD29, the water was filtered out, and 

unsuccessful simulations with length less than 40 ns were omitted. This resulted in 20 µs of cumulative 

simulation time (500 × 40 ns). The binding dynamics was studied by the same metric used in the adaptive 

sampling: the distance between the ligand’s reactive carbon atom and the C atom of D106 (DhaA 

numeration). The data was clustered using MiniBatchKmeans algorithm to 1000 clusters. A lag time of 25 

ns was used in the models to construct 4 Markov states, and the Chapman-Kolmogorov test was performed 

to assess the quality of the constructed states. The resulting Markov models allowed us to estimate the 

transition mean times between the most-unbound and most-bound states, kinetic rates of binding and 
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unbinding, the equilibrium constants, energies and the population fractions of the bound state (fbound). A 

bootstrapping calculation was performed with 80% of the data and repeated 100 times to estimate the errors 

in the calculated kinetic and population parameters. 

Pre-reactive complexes 

The pre-reactive complexes were analyzed in order to find the potentially reactive configurations to undergo 

the SN2 reaction. The cpptraj30 module of AmberTools 1619 was used to calculate distances and angles 

between the nucleophile and substrate atoms, and an in-house python script evaluated them according to 

Hur et al.31: the distance between one of the nucleophile’s carboxyl oxygen atoms and the halogen-bound 

carbon atom had to be ≤ 3.41 Å, and simultaneously the angle formed by that oxygen, carbon and the halide 

atoms must be ≥ 157 . We also required at least a weak hydrogen bond between the reactive chlorine atom 

and the halide-stabilizing residues, defined by the distance between the halide and the indole hydrogen of 

W107, or one of the side chain NH hydrogens of N41, to be ≤ 3.0 Å.  

To calculate further the chemical step, we took into account the kinetic scheme in the above Supplementary 

Scheme 1, and we dissected it into two parts, described in the Supplementary Scheme 2: 

 

 

Supplementary Scheme 2 

 

Based on this scheme, we can derive Supplementary Equations S10–S12: 

ΔG‡
2 = ΔGNAC + ΔG‡

SN2 

Supplementary Equation S10 

ΔGNAC = -R.T.lnKNAC 

Supplementary Equation S11 

Where the equilibrium constant for the NAC formation is guiven by: 

 

𝐾𝑁𝐴𝐶 =
[𝑁𝐴𝐶]

[𝐵𝑜𝑢𝑛𝑑] − [𝑁𝐴𝐶]
 

Supplementary Equation S12 

 

According to Supplementary Equation S12, we can estimate KNAC based on the number of snapshots with 

identified NAC, [NAC], the probability –or fraction– of snapshots in the bound state, Pbound, and the total 

number of snapshots (2 × 105), as: KNAC = [NAC]/(Pbound × 2 × 105 – [NAC]).  

 

QM/MM adiabatic mapping 

To evaluate and compare the energetics of the SN2 reaction of the TMR and 1E ligands with DhaAHT and 

LinBH272F (Figures 3C–3D in the main text) and calculate the respective energy barrier, G‡, we studied 
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the potential energy surface (PES) along the reaction coordinate using a quantum mechanics/molecular 

mechanics (QM/MM) hybrid approach32,33. For that, all the snapshots of the pre-reactive complex, 

identified as described above, were subjected to QM/MM calculations34, as implemented in AMBER. The 

topology of each structure was prepared by tLEaP module using the ff14SB force field for the proteins and 

the PREPI parameters for ligand. The complexes were minimized in vacuum (igb=6). Five rounds of 

optimization, each one consisting of 500 cycles of steepest descent followed by 500 conjugate gradient 

cycles, were performed as: (i) one step with all heavy atoms restrained with 500 kcalmol-1∙Å-2 harmonic 

force constant, and (ii) four steps with decreasing restraints on the protein backbone atoms with 500, 125, 

25 and 1 kcalmol-1∙Å-2 force constant. Adiabatic mapping along the reaction coordinate was performed by 

the sander module of AMBER 1619. The QM part of the system contained the ligand molecule, the side-

chains of the halide stabilizing residues (N41 and W107) and the catalytic aspartate (D106), and had charge 

-1 (for the TMR ligand) or 0 (for 1E). The semi-empirical PM6 Hamiltonian was used to treat the QM part 

of the system35 and the ff14SB force field to treat the MM part. The QM/MM boundary was treated through 

explicit link atoms and the cutoff for the QM/MM charge interactions was set to 999 Å. The backbone was 

constrained with a force constant of 1.0 kcalmol-1∙Å-2. The reaction coordinate was defined as the distance 

between the nearest OD atom of D106 and the C-atom of the ligand under attack. The tracking along the 

reaction coordinate was performed in decrements of 0.05 Å, each involving 1,000 minimization steps of 

the limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm36. The total potential 

energy of the system was extracted from the AMBER output files for each step. The energy barrier G‡ 

was calculated as the difference between the lowest energy of the ground state and the energy of the 

transition state, and corresponds to G‡
SN2. Combining Supplementary Equations S8 and S9 we derive 

Supplementary Equation S13: 

 

ΔG‡
2 = ΔGNAC + ΔG‡

SN2 = -RT.lnKNAC + ΔG‡
SN2 

Supplementary Equation S13 

which allows us to estimate G‡
2, using the previously determined KNAC (from the previous section) and 

the newly determined G‡
SN2, and to compare it with the experimentally determined G‡

2. 

 

CaverDock simulations 

The p1 tunnels previously identified with CAVER on the modeled structures of DhaAHT, DhaAH272F, 

LinBH272F and DmmAH315F were used for consecutive docking of the fluorescent ligands TMR, 1B, 1D 

and 1E, using the standalone version of CaverDock37,38. The pdb files of the tunnels were discretized in 

discs spaced by 0.3 Å and subsequently extended by 5 Å towards the outside. The ligands were docked 

from the outside inwards, by constraining the position of the reacting carbon atom of the ligands to the 

consecutive discs. The trajectories and binding energy profiles were calculated and analyzed for all the 

ligands and protein systems. 
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Results 

Molecular access tunnels 

 

Supplementary Figure S8. Access tunnels found in the models of DhaAHT, DhaAH272F, LinBH272F 

and DmmAH315F. The main tunnel (p1, blue) and slot tunnel (p2, green), calculated using CAVER 3.02 
14 with a ligand of 0.8 Å radius, using the origin at the carboxyl oxygen atoms of the catalytic aspartate 

(D106 in DhaA numeration, shown as sticks); the respective bottleneck radii are indicated. 
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Density Functional Theory modelling of ligands 

The fluorescent ligands TMR and 1E were simulated here as the ligands that will bind to the active site of 

the HLDs under study. Ab initio calculations were performed to minimize and calculate the partial charges 

of those ligands, and were carried out in vacuum with the Hartree-Fock method and the 6-31G(d) basis set, 

as previously18. However, for the TMR those settings resulted in the closure of the carboxylic acid with the 

aromatic system to form a lactone ring (Supplementary Figure S9A). This was surprising but not 

unprecedented, since the tautomeric equilibrium of similar structures has been reported before39. To confirm 

this result, we performed higher level Density Functional Theory (DFT) calculations with the B3LYP 

theory, the 6-311+G(d,p) basis set, and implicit solvent. This combination can be more suitable to treat 

ionized species, since it incorporates multiple polarization and diffuse functions. The structure with the 

open ring was obtained (Supplementary Figure S9B), as initially expected. The explanation for this 

behavior can be that, while in vacuum the preferred structure is the one with a closed lactone ring without 

charge separation, in water the TMR exists preferentially in the conformation with free carboxylate due to 

the stabilization of the charges provided by the solvent. 

 

 

 

 

Supplementary Figure S9. Structures obtained from the modelling studies of the TMR ligand. A) 

TMR with the closed lactone ring, resulting from the initial quantum mechanical calculations in vacuum; 

and B) with the free carboxylic acid, which was confirmed with the higher level DFT calculations with 

implicit solvent.  

 

Adaptive sampling and ligand binding 

The adaptive sampling simulations were performed based on a metric defined by the distance of the reacting 

groups: the carbon atom in the ligand and the carboxylic carbon of the nucleophile residue, D106. The 

resulting simulations (with a total cumulative time of 20 µs) were analyzed by the Markov state model 

(MSM) method. For all the systems, several long time-scale transitions have achieved convergence of their 

relaxation timescales after reasonable lag times (< 25 ns), as can be observed by the implied time scale plots 

(ITS; Supplementary Figure S10). The steep rise of the ITS curves observed in those plots for high lag 

time values is not uncommon or surprising. The reason is that, when increasing the lag time to values near 

A 

 

 

 

 

B 
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the length the individual trajectories (40 ns, in this case), we will find very few transition counts in the 

transition matrix due to the lack of sampling. Therefore, the statistics become inaccurate and thus we obtain 

mostly noise in the plot. This means that this region of the plot is not very relevant, and the ITSs obtained 

here are well converged. The ITS plots also show a separation between 2 to 4 slow implied timescales and 

the fast ones.  Here we chose to group all the microstates into 4 macrostates. The Chapman-Kolmogorov 

test showed that our systems are Markovian for the chosen lag time of 25 ns (Supplementary Figure S11). 

In all cases, the binding process could be best described by 4 Markov states: a fully bound state having the 

lowest distances between the reacting carbon atom of the ligand and the nucleophile carbonyl group; 2 

intermediate states where the ligand’s linker chain is located in the tunnel or near the tunnel mouth; and 

finally, a fully unbound state with the ligand located on the protein’s surface or in the bulk solvent 

(Supplementary Figure S12). The spatial distribution of the MSM states was quite similar for all the 

systems, with the same high-density regions of the ligand at the protein surface. The main differences 

corresponded to the fully bound states, for which the aromatic part of ligand 1E was more constrained and 

partially inserted in the tunnel, while the conjugated system of TMR was fully outside (Supplementary 

Figure S13). Besides the number of slow implied time scales (Supplementary Figure S7), a reason for 

selecting 4 macrostates and not fewer was to have a good conformational resolution for further analysis. 

Since we will use the most bound state to equilibrium populations and energies, we need at least one state 

where the reactive end of the probe is well inserted in the catalytic site and not too far from the nucleophile. 

We found that this condition could not be satisfied by specifying less than 4 macrostates in our model, 

otherwise the state with closest distances would have the probe already too disperse over the active site and 

the tunnel. 

 

The kinetic parameters were calculated from the 4-state MSM, and the binding was described by the 

transition from the most unbound state to the fully bound state (Supplementary Figure S12). The results 

showed that the calculated binding rates (k1) follow the same order as the experimental k1 (Supplementary 

Tables S3 and S7). The discrepancy is discussed in the main text. Interestingly, the estimated dissociation 

constants (Kd) showed much higher affinity for DhaAHT with TMR  

(5.7 ± 1.9  10-4 M) than with 1E (5.9 ± 2.5  10-3 M), which corresponds well with the experimental 

binding rates (Supplementary Tables S3 and S7). 
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Supplementary Figure S10. Implied time scales plots versus the lag times, for the binding of the 

ligands with the enzymes, for all the studied systems. The plots show the convergence of the implied 

time scales (a parameter in the transition matrix in the Markov theory) of the slowest processes for lag times 

of 25 ns or higher. The implied time-scales plot is used to estimate whether the simulations display 

Markovian behavior (the convergence of the transitions), the suitable lag time for the calculations, and 

estimate the minimum number of well-differentiated transitions21. 
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Supplementary Figure S11. Chapman-Kolmogorov tests for the 4 Markov states obtained from the 

binding simulations, for all the simulated systems. The perfect superimposition of the “estimate” with 

“predict” transition probabilities shows that the models are Markovian for the selected lag times. The 

Chapman-Kolmogorov test is used to assess the accuracy of the generated MSM. Basically, it predicts the 

transitions probability based on the model (predict, dashed lines) and compares it with direct estimates from 

the simulation data (estimate, full lines). A well-predictive model will have the two lines overlapping in the 

plot21, which is our case. 
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Supplementary Figure S12. Individual Markov states describing the binding of the fluorescent ligand 

TMR to DhaAHT. The enzyme is represented by the white cartoons, the catalytic D106 as ball-and-sticks, 

and the TMR as the superimposed lines of different colors: blue – fully unbound state; green – intermediate 

state with the ligand at the tunnel mouth and other shallow cavities; orange – intermediate state with linker 

partially inserted in the access tunnel; red – fully bound state with the linker reaching the active site. 
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Supplementary Figure S13. Representative structures of the bound states of the fluorescent ligands 

TMR and 1E to DhaAHT and LinBH272F. The enzymes are represented by the white cartoons, the 

catalytic D106 (DhaAHT) or D108 (LinBH272F) as ball-and-sticks, and the ligands as the superimposed 

magenta lines. 
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Supplementary Table S7. Kinetic rates obtained from the adaptive MD simulations of binding of the 

ligands with the HLDs, the calculated free energy of activation for the SN2 reaction, and respective 

experimental values. 

Parametera DhaAHT + TMR LinBH272F + TMR DhaAHT + 1E LinBH272F + 1E 

  Theoreticalb   

1 (ns) 8.8 ± 1.3  102 3.6 ± 1.1  102 2.57 ± 0.85  103 2.20 ± 0.44  103 

-1 (ns) 6.0 ± 1.5  103 1.07 ± 0.15  103 1.44 ± 0.29  103 2.88 ± 0.24  102 

k1 (M-1·s-1) 2.99 ± 0.45  108 7.6 ± 2.5  107 1.09 ± 0.23  108 1.22 ± 0.21   108 

k-1 (s-1) 1.71 ± 0.38  105 9.7 ± 1.8  105 7.3 ± 1.2  105 3.56 ± 0.28  106 

KD (M) 5.7 ± 1.9  10-4 2.8 ± 1.4  10-2 5.9 ± 2.5  10-3 3.95 ± 0.91  10-2 

G0
eq (kcal·mol-1) -4.49 ± 0.20 -2.20 ± 0.27 -3.10 ± 0.22 -1.94 ± 0.13 

Pbound 0.260 ± 0.043 0.068 ± 0.026 0.054 ± 0.012 0.047 ± 0.008 

[NAC] (per 20 µs) 13 99 107 183 

KNAC 2.53  10-4 7.37  10-3 1.00  10-2 1.96  10-2 

∆G‡
SN2 (kcal·mol-1) 15.5 ± 1.3 12.1 ± 1.9 15.3 ± 1.7 13.8 ± 1.8 

∆G‡
2 (kcal·mol-1) 20.6 15.2 18.1 16.2 

  Experimentalc   

k1 (M-1·s-1) 6.62 ± 0.10  105 21.7 ± 1.7 2.50 ± 0.50  104 5.0 ± 1.0  104 

k-1 (s-1) 8.50 ± 0.50  10-4 5.0 ± 1.7  10-5 8.3 ± 3.3  10-3 6.7 ± 5.0  10-3 

KD (M) 1.28 ± 0.08  10-9 2.34 ± 0.8  10-6 0.3 ± 0.1  10-6 0.13 ± 0.10  10-6 

k2 (s-1) 66 ± 50 3.50 ± 0.33  102 4.17 ± 0.68  103 6.7 ± 1.7  103 

∆G0
eq (kcal·mol-1) -4.0 0.5 -0.7 -1.2 

∆G‡
2 (kcal·mol-1) 23.5 22.5 21.1 20.8 

a1, mean transition association time; -1, mean transition dissociation time; k1, association rate, often also called kon; 

k-1, dissociation rate, often called koff; KD, equilibrium dissociation constant; G0
eq, free energy difference between 

bound and unbound states; Pbound, probability of the bound state, equivalent to the respective fraction of population in 

equilibrium obtained from the MSM analysis; [NAC], the total number of snapshots in pre-reactive conformation, also 

known as near-attack conformation, per 20 µs of simulation; KNAC, equilibrium constant for reaching a NAC from the 

bound state; ∆G‡
SN2, free energy of activation for the SN2 chemical reaction; k2, kinetic rate of step 2, which converts 

the bound state into the covalent complex; ∆G‡
2, free energy of activation of step 2. bThe errors correspond to the 

standard deviations, either obtained from a bootstrap analysis of 100 sub-samples extracted from the original MD 

ensembles (for parameters obtained from MSM analysis), or from the number of pre-reactive complexes analyzed (for 

G‡ values). cThese values were obtained from Supplementary Tables S3-S6 and converted to the same standard units 

used for the theoretical parameters; the errors correspond to the standard errors derived from the nonlinear regression. 

 

Chemical step 

The adaptive MD simulations were analyzed to detect the formation of pre-reactive complexes that may 

lead to the SN2 reaction. To identify them, geometric conditions were applied as previously defined 40. 

These regarded the distance between the reacting atoms (the nearest carboxyl oxygen atom and the ligand’s 

carbon atom adjacent to the chlorine), the O-C-Cl angle, and the formation of a hydrogen bond between the 
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Cl-atom and the residues W107 or N41. In total, a number of pre-reactive complexes (also called “near-

attack conformations”, NAC) were found for the studied systems (Supplementary Table S7). The energy 

barrier for the SN2 reaction between the fluorescent ligands and the D106 nucleophile (Figures 3C–D in 

the main text) was calculated by QM/MM adiabatic mapping (Figure 4C in the main text), and few outlier 

results were discarded in both systems.  

 

CaverDock simulations 

To test a much simpler and faster computational approach, we also used CaverDock37,38 binding of all the 

fluorescent ligands to the proteins studied here to predict the thermodynamics of binding of all the ligands 

(TMR, 1B, 1D, and 1E) to the different studied proteins studied here (DhaAH272F, DhaAHT, LinBH272F, 

and DmmAH315F). CaverDock is a recent method based on molecular docking, developed in our group, 

which has proven useful for quickly assessing thermodynamic and kinetic information on the (un)binding 

of ligands through molecular tunnels38,41,42. Its features can make it valuable for different practical purposes 

involving proteins containing deep or buried binding pockets, such as: 1) virtual screening of new drugs, 

2) predicting kinetic barriers for binding/unbinding of substrates or products, or 3) assess the impact of 

protein mutagenesis on (un)binding kinetics. In principle, one can use CaverDock to estimate (un)binding 

energy barriers (Ebarrier), which are related to the respective kinetic constants (k1 or k-1), and the energy 

differences between the bound state and unbound state (Ebs), which is related to the binding affinity (KD). 

The results obtained for the studied systems (Supplementary Table S8 and Figure S14) reveal 

clear differences in the energy profiles which are directly related to the tunnel geometry: the proteins with 

narrower tunnels (DhaAH272F and LinBH272F) have clear energy barriers, located at the respective tunnel 

bottlenecks (where the tunnel has its lowest radius), while for the proteins with wider tunnels (DhaAHT 

and DmmAH315F) the barrier is almost inexistent or less pronounced. Moreover, the energy of the fully 

bound state is always more negative than at the beginning of the trajectory, indicating the thermodynamic 

propensity of all these ligands for binding into the active sites of all these proteins. However, when we 

compare the energy barriers and the energies of the bound states for the different ligands and proteins, we 

cannot find a correlation with the experimental bind rates (k1) that might help us predict, in such a quick 

and inexpensive manner, which ligands could be more suitable for each protein. We can conclude that this 

task is beyond the current limitations of CaverDock. This is most likely due to the fact that currently 

CaverDock does not take into account the protein flexibility and dynamic ensembles, which is necessarily 

important when accommodating large ligands such as the ligands investigated here. We are presently 

working on the next version that will incorporate protein flexibility in smart ways that will improve the 

accuracy and still avoid lengthy simulation times. 
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Supplementary Table S8. Energy parameters predicted by CaverDock for the binding of TMR, 1B, 1D 

and 1E to DhaAH272F, DhaAHT, LinBH272F, and DmmAH315F along the p1 tunnel.a  

 DhaAH272F + TMR DhaAH272F + 1B  DhaAH272F + 1D DhaAH272F + 1E 

Ebound 

Ebarrier  

Ebs 

-5.6 

 3.4 

 0.0 

-5.4 

 1.4 

-0.3 

-5.3 

 1.6 

 0.5 

-5.6 

 1.7 

-0.2 

 DhaAHT+ TMR DhaaHT + 1B DhaAHT+ 1D DhaAHT+ 1E 

Ebound 

Ebarrier  

Ebs 

-6.9 

 0.7 

-1.9 

-7.9 

 1.5 

-2.1 

-7.5 

 3.5 

-0.1 

-7.3 

 0.5 

-2.4 

 LinBH272F + TMR  LinBH272F + 1B LinBH272F + 1D LinBH272F + 1E 

Ebound 

Ebarrier  

Ebs 

-6.0 

 2.3 

-1.0 

-5.3 

 0.7 

-0.7 

-5.7 

 0.8 

-1.1 

-5.4 

 1.0 

-0.6 

 DmmAH315F + TMR DmmAH315F + 1B DmmAH315F + 1D DmmAH315F + 1E 

Ebound 

Ebarrier  

Ebs 

-7.7 

 0.5 

-2.6 

-8.0 

 2.4 

-0.8 

-8.2 

 2.0 

-1.1 

-7.5 

 1.6 

-1.0 
a Binding energy parameters (in kcalmol-1): Ebound, energy of the bound state, which is the lowest energy in the active 

site; Ebarrier, activation energy of binding, is the difference between the energy maximum (at the tunnel bottleneck) 

and the minimum before the barrier (closer to the surface); Ebs, energy difference between the bound state (in the 

active site) and the unbound state (at the tunnel mouth). 

 

Supplementary Figure S14.  Energy profiles predicted by CaverDock for the binding of TMR, 1B, 

1D and 1E to DhaAH272F, DhaAHT, LinBH272F, and DmmAH315F along the p1 tunnel. The binding 

energy of the ligands (respective axis on the left) are represented by the solid lines and the tunnel radius 

along its length (respective axis on the right) is represented by the dotted blue line. The ligand was pulled 

by the reacting carbon atom from the surface (0 Å of the x-axis) to the active site; the tunnel was extended 
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by 5 Å towards the solvent, so first 5 Å of the trajectory correspond to the ligand located in the 

solvent/tunnel mouth. 
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