1	Supplementary Materials
2	Journal name: Microbiology Spectrum
3	Phage cocktail targeting STEC O157:H7 has comparable efficacy and superior recovery
4	compared to enrofloxacin in an enteric murine model
5	
6	Yuxin Wang ¹ , Dinesh Subedi ² , Jin Li ¹ , Jiaoling Wu ¹ , Jianluan Ren ¹ , Feng Xue ¹ ,
7	Jianjun Dai ^{1,3} , Jeremy J. Barr ² , Fang Tang ¹ *
8	
9	1. MOE Joint International Research Laboratory of Animal Health and Food Safety;
10	Key Laboratory of Animal Bacteriology, Ministry of Agriculture; College of Veterinary
11	Medicine, Nanjing Agricultural University, Nanjing, 210095, China
12	2. School of Biological Sciences, Monash University, 3800 Clayton, Victoria, Australia
13	3. School of Life Science and Technology, China Pharmaceutical University, Nanjing,
14	China
15	
16	Running Title: Comparison of phage and antibiotic treatment
17	
18	*Corresponding author: Fang Tang
19	College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang,
20	Nanjing, 210095, Jiangsu province, P. R. China
21	Phone: +86(0) 25-84396517
22	Fax: +86(0) 25-84396517
23	E-mail: tfalice@126.com
24	
25	

26 MATERIALS AND METHODS

Morphology observation. Phage solutions were suspended in doubly deionized H₂O,
transferred onto a copper grid, and subjected to negative staining with Phospho-tungstic
acid (PTA, 2%, w/v). Phage morphology was observed using an H 7650 transmission
electron microscope (TEM; Hitachi, Japan).

pH stability. One hundred microliter of phage cocktail was mixed with 900 µL of SM buffer in different pH values (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14), then incubated in a water bathe at 37°C. Samples were taken out after 0.5 h and 1 h, and the potency was measured by double-layer agar method.

Thermal stability. One milliliter of phage cocktail was incubated in a water bath at 50°C, 60°C, and 70°C, respectively. Samples were taken out every 10 min to measure the titers by double-layer agar method.

Optimal multiplicity of infection (MOI). The host bacteria STEC 0157:H7 EDL933 were cultured to the logarithmic phase and mixed with phage at different multiplicity of infection: 0.01, 0.1, 1, 10, and 100. After incubated at 37°C for 5h, the phage titer of supernatant was determined by double-layer agar method. The group with the highest titer is the MOI of the phage.

One-step growth curve. Host bacteria was cultured to the logarithmic phase (10^8 CFU/mL) and mixed with phage cocktail (10^7 PFU/mL) in equal volumes, incubated at 37° C for 15 min, centrifuged at 10,000rpm for 10 min. The pellet was resuspended in 5 mL of LB broth and incubated in a shaker at 37° C. For the first 15 min, 100 µL of sample was taken out every 5 min, and then every 15 min until 120 min. Samples were centrifuged at 10,000 rpm for 1 min, and the supernatants were diluted into an appropriate gradient to test the titer by double-layer agar method.

		Target	Annealing	Product
Primers	Primer sequences (5'-3')	Target	temperature	size
		gene	(°C)	(bp)
O157-F	AAGATTGCGCTGAAGCCTTTG	rfbE	55	497
O157-R	CATTGGCATCGTGTGGACAG			
H7-F	GCGCTGTCGAGTTCTATCGAGC	fliC	55	625
H7-R	CAACTGTGACTTTATCGCCATTCC			

Table S1 Primers for detection of STEC O157:H7 (1, 2).

Drimons	Drimon converses $(5^{1}, 2^{1})$	Torract group	Product size
Primers	Primer sequences (5 - 5)	Target group	(bp)
Bac-F	GTTTAATTCGATGATACGCGAG		100
Bac-R	TTAASCCGACACCTCACGG	Bacteroidetes	122
Firm-F	GGAGYATGTGGTTTAATTCGAAGCA	Firmicutas	126
Firm-R	AGCTGACGACAACCATGCAC	1 timeties	120
Act-F	TGTAGCGGTGGAATGCGC	Activobactoria	277
Act-R	AATTAAGCCACATGCTCCGCT	Асиподасіена	211
Sac-F	AAGAGAACTGTGCCTTCGG	"Candidatus	187
Sac-R	GCGTAAGGGAAATACTGACC	Saccharibacteria"	107
Defer-F	CTATTTCCAGTTGCTAACGG	Deferribactores	150
Defer-R	GAGHTGCTTCCCTCTGATTATG	Dejernbucieres	150
Ver-F	TCAKGTCAGTATGGCCCTTAT	Varrusomiorobia	07
Ver-R	CAGTTTTYAGGATTTCCTCCGCC	verrucomicrobia	91
Ten-F	ATGTGTAGCGGTAAAATGCGTAA	Tanariautas	s 200
Ten-R	CMTACTTGCGTACGTACTACT	Tenericules	200
Beta-F	AACGCGAAAAACCTTACCTACC	Rotanrotoobactoria	174
Beta-R	TGCCCTTTCGTAGCAACTAGTG	Бешргогеобистени	1/4
Epsilon-F	TAGGCTTGACATTGATAGAATC		189
Epsilon-R	CTTACGAAGGCAGTCTCCTTA	Epsilonproteobacteria	
Gamma-F	GCTAACGCATTAAGTRYCCCG	Delta- and	189
Gainina-r	GUIAACUCATIAAUINICCCU	Gammaproteobacteria	109
Gamma-R	GCCATGCRGCACCTGTCT		
Uni-F	AAACTCAAAKGAATTGACGG	Universal	136
Uni-R	CTCACRRCACGAGCTGAC		

Table S2 16S rRNA gene-targeted group-specific primers used in this study (3).

55 Note: Nucleotide symbols: R = A or G; Y = C or T; N = any nucleotide; W = A or T;

M = A or C; K = T or G; S = C or G; and H = A/C/T.

Fig.S1 Optimal MOI, pH and temperature resistance of phages. Optimal MOI of the
phage PNJ1902(A), PSD2001(B), PSD2002(C); pH stability of the phage PNJ1902(D),
PSD2001(E), PSD2002(F); Temperature tolerance of phage PNJ1902(G),
PSD2001(H), PSD2002(I).

Fig. S2 Concentration of released endotoxin. The concentration of endotoxin released
by STEC exposed to enrofloxacin, and phage cocktail *in vitro* was tested. The data is
represented by mean ± SD.

Fig. S3 Chiu's analysis of mouse gut at 8h and 17d. Chiu's Pathology score was used to quantify the pathological changes of duodenum and colon of mice. Statistical analyses were performed by one-way analysis of variance (ANOVA). Significant difference between STEC+ enrofloxacin and STEC+ phage cocktail is indicated in the figures by asterisks (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001).

- 80
- 81
- 82

Fig.S4 Shiga toxin and endotoxin released in mice serum. Serum of mice in different groups, including STEC+ enrofloxacin, STEC+ phage cocktail, STEC and blank control were collected, and the concentration of Shiga toxin (A) and endotoxin (B) were detected. Statistical analyses were performed by one-way analysis of variance (ANOVA). Significant difference between STEC+ enrofloxacin and STEC+ phage cocktail is indicated in the figures by asterisks (*, P < 0.05; **, P < 0.01).

90

91 **References**

92 1. García-Sánchez, A., Sánchez, S., Rubio, R., Pereira, G., Alonso, J. M., Mendoza, J.,

- 93 Rey, J. 2007. Presence of Shiga toxin-producing *E. coli* O157:H7 in a survey of wild
- 94
 artiodactyls.
 Vet
 Microbiol
 121,
 (3-4):
 373-377.

 95
 https://doi.org/10.1016/j.vetmic.2006.12.012
- 96 2. Sánchez, S., Martínez, R., García, A., Blanco, J., Echeita, A., Mendoza, J., Rey, J.,
- 97 Alonso, J. M. 2010. Shiga toxin-producing *Escherichia coli* O157:H7 from extensive
- 98 cattle of the fighting bulls breed. Res Vet Sci 88(2): 208-210.
 99 https://doi.org/10.1016/j.rvsc.2009.07.014
- 100 3. Yang YW, Chen MK, Yang BY, Huang XJ, Zhang XR, He LQ, Zhang J, Hua ZC.
- 101 2015. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR

- 102 analysis of predominant bacteria in mouse feces. Appl Environ Microbiol 81:6749 –
- 103 6756. https://doi.org/10.1128/AEM.01906-15.

105