Supplementary information

Mechanism of replication origin melting nucleated by CMG helicase assembly

In the format provided by the authors and unedited

SI Guide

Mechanism of replication origin melting nucleated by CMG helicase assembly

Jacob S. Lewis¹, Marta H. Gross^{2,5}, Joana Sousa^{1,4,5}, Sarah S. Henrikus¹, Julia F. Greiwe¹, Andrea Nans⁴, John F. X. Diffley² and Alessandro Costa^{1,5}

¹ Macromolecular Machines Laboratory, The Francis Crick Institute, London, U.K.

² Chromosome Replication Laboratory, The Francis Crick Institute, London, U.K.

³ Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K.

⁴ Current affiliation: UCB Pharma, Slough, U.K.

⁵ These authors contributed equally.

Table of contents

Supplementary Information

Supplementary References

Supplementary Figure 1

Supplementary Table 1

Supplementary Table 2

Supplementary Table 3

Supplementary Video 1

Supplementary Video 2

Supplementary Video 3

Supplementary Video 4

Supplementary Video 5

Supplementary Discussion

From the end of mitosis and through G1 phase, catalytically inactive MCM double hexamers (DHs) are loaded onto duplex DNA^{7,8}. Upon entry into S phase, the preinitiation complex is formed, when a set of firing factors are recruited to promote the binding of GINS and Cdc45 to MCM⁹⁻¹¹, in a process that requires Pol epsilon³³. Preinitiation complex formation depends on phosphorylation by the DDK^{11,13–15} and CDK kinases^{11,12,16}. Upon ADP release and ATP binding by MCM¹, we find in this study, a double CMG Pol epsilon (dCMGE) complex is formed. This leads to the reconfiguration of the DH interface, with the formation of a splayed dimer that pivots around the Mcm6 N-terminal domain. In this configuration, 1.5 turns of DNA double helix are exposed between the two rings, while nucleation of DNA melting is triggered symmetrically inside each MCM central channel. Within the helicase ring, DNA melting is promoted upon ATP-triggered untwisting of 0.7 turns of the double helix¹, in particular through the action of Mcm2 that pushes on the lagging strand while also pulling on the leading strand. As the minor grove is widened and DNA untwisted, Watson/Crick base pairs are broken, and three orphan bases are stabilised by an Mcm6specific insertion of the N-terminal pore loop (Mcm6 wedge). At the same time, the DNA entrapped within the two helicase complexes remains in its original twisted configuration. Thus, the ATP-triggered structural change within the MCM motor does not promote the accumulation of torsional strain focused on the DNA found between the two helicases. This is possible because, unlike within the ATPase tier, no protein-DNA contact is maintained within the N-terminal tier upon DH-to-dCMGE conversion. As a result, the dimerization interface formed by the two N-terminal tiers within the DH changes register upon DH-to-dCMGE transition, through a 1-subunit rotation. It is this register shift in MCM that prevents any topological strain to accumulate within the

two MCM hexamers, while likely diffusing outside of the dCMGE complex. Our observation predicts that duplex DNA untwisting inside the MCM channel could occur in the context of one single CMGE complex. Biochemical work from the Bell and Gelles laboratories supports this notion⁶². In fact, an MCM variant that can be loaded onto DNA but not form a DH can support CMG formation and duplex DNA untwisting to wild type levels. The same variant however fails to support replication fork establishment, indicating that two symmetry related MCM hexamers are required to promote origin firing^{62,63}. During this process, one strand is ejected from each CMG and becomes the translocation strand of the opposed CMG, in a process that causes the two helicases that cross paths¹. Although this event is not understood at the molecular level, our discovery of the dCMGE intermediate that nucleates origin DNA melting invites a model for origin firing. In downstream events towards replication fork establishment, we speculate, unwinding of the intervening duplex DNA might require N-terminal interactions with duplex DNA to be maintained after dCMGE formation. Through the establishment of such N-terminal topological link, any new relative rotation of two separated dCMGE complexes would result in unwinding of the intervening duplex DNA. The lagging-strand engaging N-terminal Mcm6 wedge insertion, established upon dCMGE formation, could form this topological link. In a later step, replication forks are established upon dCMGE engagement by Mcm10, which triggers ATP hydrolysis by the CMG and lagging strand ejection, allowing the bypass of the two activated replicative helicases¹. How Mcm10 functions during origin firing is not understood at the molecular level. Nucleoprotein transitions leading to origin activation are depicted in Extended Data Fig. 8.

Supplementary References

62. Champasa, K., Blank, C., Friedman, L. J., Gelles, J. & Bell, S. P. A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding. *Elife* 8, e45538 (2019).

63. Langston, L. D. & O'Donnell, M. E. An explanation for origin unwinding in eukaryotes. *Elife* 8, e46515 (2019).

Source Data

Supplementary Figure 1: Source images for all data obtained by electrophoretic separation in the Figures indicated.

Name	Usage	Sequence	
gbJL004	Template for RFC for	ATGGGCAGCAGCTGGTCTCACCCCCAATTTGAGA	
	construction of pJL003	AAGGCGGTGGCAGCGGCGGCGGTAGCGGAGGTGG	
		CAGCTGGTCACACCCACAATTCGAGAAAGAAAAC	
		CTGTACTTCCAATCCATGGGTTAC	
oJL009	Forward primer for generation	ATAATTTTGTTTAACTTTAAGAAGGAGATATACC	
	of pJL003	AATGGGCAGCAGCTGGTCT	
oJL010	Reverse primer for generation	TCCCATCTGCTAGGACATCATCAATGTCATAGTA	
	of pJL003	ACCCATGGATTGGAAGTACAGG	
oJL020	Forward primer for generation	CGATAGAACTCGGGCCGCCCTGGAGAATCGCGGT	
	of nucleosome flanked ARS1	GCCG	
DNACSR1	Reverse primer for generation	CCTGCACCCCAGGGACTTGAAGTAATAAGGAC	
	of nucleosome flanked ARS1		
oJL019	Forward primer for generation	ATATATCC*GGCCTGTATTTTACAGATTTTATGT	
	of 168bp M.HpaII ARS1	TTAGATCTTTTATGC	
oJL040	Reverse primer for generation	AGGGCGCC*GGAACTGGGAAAATAGCAAATTTCG	
	of 168bp M.HpaII ARS1	TCAAAAATGC	
oSSH047	Forward primer for generation	GAATTGACGCGTATTGGGATTCAGCTCCGGATGG	
	of ARS1 copy 1	TCCATTTTACAGATTTTATGTTT	
oSSH048	Reverse primer for generation	ACCGCTCGTCACAGTTGAACGTTATTACTGAGTA	
	of ARS1 copy 1	GTATTTATTTAAGTAT	
oSSH049	Forward primer for generation	GTTCAACTGTGACGAGCGGTAGCAAAAGGCCAGG	
	of ARS1 copy 2	AACCGT	
oSSH050	Reverse primer for generation	CCGCCTGTTGGATATCTGATGTTATTACTGAGTA	
	of ARS1 copy 2	GTATTT	
oSSH051	Forward primer for generation	ATCAGATATCCAACAGGCGGAGCAAAAGGCCAGG	
	of ARS1 copy 3	AACCGT	
oSSH052	Reverse primer for generation	TTCTGTAAGGATCCGTATTAGTTATTACTGAGTA	
	of ARS1 copy 3	GTATTT	
oSSH053	Forward primer for generation	TAATACGGATCCTTACAGAAAGCAAAAGGCCAGG	
	of ARS1 copy 4	AACCGT	
oSSH054	Reverse primer for generation	TTTCCAAGCTTATCCCCTGAGTTATTACTGAGTA	
	of ARS1 copy 4	GTATTT	
oSSH055	Forward primer for generation	TCAGGGGATAAGCTTGGAAAAGCAAAAGGCCAGG	
	of ARS1 copy 5	AACCGT	
oSSH056	Reverse primer for generation	GGCCTTGAATTCACATGTTCGTTATTACTGAGTA	
	of ARS1 copy 5	GTATTT	
oSSH057	Forward primer for generation	GAACATGTGAATTCAAGGCCAGCAAAAGGCCAGG	
	of ARS1 copy 6	AACCGT	

Supplementary Table 1: Oligonucleotides and gene blocks used in this study.

oSSH063	Reverse primer for generation of ARS1 copy 6	GCTCGGCGCGCCATTGGGAT <u>TCAGCTCCGGATGG</u> <u>TCC</u> GTTATTACTGAGTAGTATTTATT
oSSH038	Primer for amplification of	TCAGCTCC*GGATGGTCC
	M.HpaII array	
oMG25	Synthetic DNA fragment	ACGCGTCACTGGGGTGGTGACAAGAAGAACAGGA
	(geneart) used to generate	GTCTTCCCTCAATTAAAATATGTCAAATTCAATT
	pMG39 plasmid using MluI	GTTTGAAATGTGGCTCCATTTTGGGCCCATTTTT
	/XbaI restriction sites	TCAAGATTCTAATGAAGAAATTAGAATCTCATTC
		TGTACAAACTGCAAATCAAAAGGTCCCTTTAGAG
		TCAATGGAGAAAAAACTGTGTACCGAAATTATCA
		AAGGGTTACGCTCCAGGAAGCTCCCGGAACCGTT
		CCTCCAGGCCGTCTACCAAGACATAGAGAAGTCA
		TTTTGTTGGCGGATTTGGTAGATGTATCCAAGCC
		AGGTGAAGAGGTAGAAGTTACCGGCATCTACAAA
		AATAACTACGATGGTAACTTGAATGCAAAGAACG
		GATTCCCCGTTTTTGCAACAATTATCGAGGCAAA
		TTCTATAAAAAGAAGAGAGGGCAATACAGCTAAC
		GAAGGCGAAGAAGGGTTGGATGTTTTCAGTTGGA
		CTGAAGAAGAAGAACGTGAATTTAGAAAGATTTC
		TAGGGATCGTGGTATAATTGATAAAATTATATCA
		TCGATGGCACCGTCTATCTATGGTCATAGAGATA
		TTAAAACTGCAGTCGCGTGCTCATTATTTGGAGG
		TGTTCCAAAAAACGTCAATGGAAAACATTCTATT
		CGTGGTGATATCAATGTGTTATTATTAGGTGATC
		CAGGTACTGCCAAATCTCAAATCTTAAAATACGT
		CGAGAAAACAGCGCATAGAGCGGTCTTTGCAACT
		GGTCAGGGTGCTTCGGCTGTCGGTCTGACAGCAT
		CCGCTAGAGCAGATGCTATTACTGCAGAAGCGAC
		CTTAGAAGGGGGGGGCGCTAGTATTGGCTGATAAG
		GGTGTTTGTTTAATTGATGAATTCGATAAGATGA
		ACGATCAGGATCGTACATCTATTCATGAGGCTAT
		GGAACAGCAAAGTATTTCCATTTCCGCGGCCGGT
		ATTGTTACTACATTACAAGCGCGCTGCTCAATTA
		TTGCTGCGGCAAATCCTAATGGTGGTAGATATAA
		TTCAACCTTGCCTTTAGCTCAGAATGTTAGTTTG
		ACCGAGCCTATTCTGTCTAGA
oMC-27	Synthetic DNA fragment	
01010/27	(geneart) used to generate	

(geneart) used to generate

TCGAAAGAGCCAAGCCAGGTGACCGTTGC TACGGGTGTGGAAATTGTAGTACCTGATGTTACA

	pMC42 using DeiWI/Seph	
	pwiG45 using BSIW1/ Spni	
	restriction sites	CATTAGATGAGGAGGGTATTTCGAAGACTACTGA
		AGGTTTGAATAGTGGTGTTACTGGTTTACGCTCT
		CTTGGTGTTCGTGATTTGACATACAAGATTAGCT
		TTCTGGCATGC
oMG28	Synthetic DNA fragment	ССТАССФССАССТСАТТСТТССАССТСАТАСТС
0101020	(gapart) used to gaparate	
	(generate) used to generate	
	pMG44 using Bs1w1/ Spn1	
	restriction sites	GAGGAGGAGGAGCCAGGTGTGAAGCCAAGTTCAA
		CATTAGATACTAGAGGTATTTCGAAGACTACTGA
		AGGTTTGAATAGTGGTGTTACTGGTTTACGCTCT
		CTTGGTGTTCGTGATTTGACATACAAGATTAGCT
		TTCTGGCATGC
oMG17	Primer to verify Mcm2 point	AAGCTCTTCGCCTTCTCG
	mutants by sequencing	
	(GeneWiz)	
oMG18	Primer to verify Mcm2 point	GGTAGATGTATCCAAGCCAG
	mutants by sequencing	
	(GeneWiz)	
oMG21	Primer to to verify Mcm5 point	GCAAACGAGTCGAATATTGGTG
	mutants by sequencing	
	(GeneWiz)	
oMG22	Primer to to verify Mcm5 point	GTGACGAAGTTCGATGACAG
0101022	mutants by sequencing	
	(GonoWiz)	
oMC22	(Utile WIZ) Brimer to to varify Mamé point	
0101025	Finner to to verify Menio point	CGAGCAICIGAAGCAAGAIAC
	mutants by sequencing	
	(GeneWiz)	
oMG24	Primer to to verify Mcm6 point	GTGACAAGAACATCTGAGGTC
	mutants by sequencing	
	(GeneWiz)	

* denotes 5-Fluoro-2'-deoxycytidine

Plasmid	Designation/characteristics	Selection	Reference
pAM3	Cdc6 purification	Amp	Frigola et al., 2013
pJL003	GINS purification (used in	Kan	This study
	EM assays)		
pFJD5	GINS purification (used for	Kan	Gambus et al., 2009
	unwinding assay and DNA		
	replication assays)		
pGC441	Sld2 purification	Amp	Posse et al., 2021
pMD132	Mcm10 purification	Kan	Douglas et al., 2018
pJL004	M.HpaII purification	Amp	This study
pTM011	H2A/H2B	Amp	Saravanan et al., 2012
pTM004	H3/H4	Spec	This study
pTM005	Nucleosome flanked ARS1	Amp	Miller et al., 2019
	origin		
pSSH005	6x ARS1 array	Amp	This study
pBS/ARS1WTA	3.2-kb plasmid containing	Amp	Marahrens and Stillman,
	ARS1(used for 616 bp DNA		1992
	preparation for unwinding		
	assay)		
pJY22	10.6 kb plasmid DNA with	Amp	Yeeles et al., 2017
	ARS1 (used for DNA		
	replication assay)		
pJF3	pRS304/Mcm4/Mcm5	Amp	Frigola et al., 2013
		Trp1	
pJF4	pRS305/Mcm6/Mcm7	Amp	Frigola et al., 2013
		Leu2	
pAM38	pRS306/Mcm2_CBP-TEV-	Amp	Coster et al., 2014
	Mcm3	Ura3	
pMG39	pMA vector (GeneArt)	Amp	This study/ GeneArt
	containing oMG25 between		
	MluI /XbaI restriction sites		
	(used to generate pMG69		
	plasmid)		
pMG41	pMA vector (GeneArt)	Amp	This study/ GeneArt
r	containing oMG26 between	' P	
	BstBI/ NsiI restriction sites		
	Ester routedon sites		

Supplementary Table 2: Recombinant DNA reagents used in this study.

	(used to generate pMG52 plasmid)		
pMG43	pMA vector (GeneArt) containing oMG27 between BsiWI/ SphI restriction sites (used to generate pMG53 plasmid)	Amp	This study/ GeneArt
pMG44	pMA vector (GeneArt) containing oMG28 between BsiWI/ SphI restriction sites (used to generate pMG54 plasmid)	Amp	This study/ GeneArt
pMG69	pRS306/Mcm2 6A, CBP- TEV Mcm3 (used to generate yeast strain for Mcm2 6A mutant purification)	Amp Ura3	This study
pMG53	pRS305/Mcm6 2E, Mcm7 (used to generate yeast strain for Mcm6 2E mutant purification)	Amp Leu2	This study
pMG54	pRS305/Mcm6 5E, Mcm7 (used to generate yeast strain for Mcm6 5E mutant purification)	Amp Leu2	This study

Strain	Genotype	Designation	Reference
ySD- ORC	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX his3::HIS3pRS303/ORC3, ORC4	ORC purification	Frigola et al., 2013
yAM33	trp1::1RP1pRS304/ORC5, ORC6 ura3::URA3pRS306/CBP-ORC1, ORC2 MAT a ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	Mcm2–7/Cdt1	Coster et al., 2014
	can1-100 bar1::Hyg pep4::KanMX his3::HIS3pRS303/CDT1,GAL4 trp1::TRP1pRS304/MCM4,MCM5 leu2::LEU2pRS305/MCM6 MCM7 ura3::URA3pRS306/MCM2,CBP-MCM3	purification	
ySDK8	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu23,112 can1-100, bar1::Hyg Pep4::KanMX trp1::TRP1pRS304/CDC7, CBP-DBF4	DDK purification	On et al., 2014
yAE88	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX his3::HIS3pRS303/CBP-TEV-CLB5(D1-100), GAL4 ura3::URA3pRS306/CKS1, CDC28	CDK purification	Hill et al., 2020
yJY13	MAT a ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX his3::HIS3pRS303/Cdc45iflag2, GAL4	Cdc45 purification	Yeeles et al., 2015
yJY26	MAT a ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX	Dpb11 purification	Yeeles et al., 2015

Supplementary Table 3: Saccharomyces cerevisiae strains used in this study.

	his3::HIS3pRS303/Dpb11-3xflag (Nat-NT2), GAL4		
yAJ2	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX ura3::URA3pRS306/Dpb2, Dpb3 trp1::TRP1pRS304/Pol2, Dpb4-Tev-CBP	Pol epsilon purification	Yeeles et al., 2015
yAE99	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX ura3::URA3-Gal1-10 Dpb2 + Dpb3 Pol2::Pol2-FLAG-NAT trp1::TRP1-Gal1-10 Pol2 exo- + Dpb4-CBP	Pol epsilon exo- purification	Goswami et al., 2018
yTD6	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100, bar1::Hyg pep4::KanMX, his3::HIS3pRS303/SLD3-TCP, GAL4, leu2::LEU2pRS305/SLD7	Sld3–7 purification	Yeeles et al., 2015
yAE95	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100, bar1::Hyg pep4::KanMX, trp1::TRP1pRS304/POL1, POL12, ura3::URA3pRS306/CBP-TEV-PR11, PR12	Pol alpha purification	Hill et al., 2020
yAE42	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX his3::HIS3pRS303/CBP-TOP1+Gal4	TopoI purification	Yeeles et al., 2017
yAE31	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX his3::HIS3pRS303/CBP-TEV-RFA1, GAL4, ura3::URA3pRS306/RFA2, RFA3	RPA purification	Yeeles et al., 2015

yJF21	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	Background	Frigola et al., 2013
	can1-100	strain	
	bar1::Hyg		
	pep4::KanMX		
	his3::HIS3pRS303/Cdt1,Gal4		
	trp1::TRP1pRS304Mcm4, Mcm5		
	leu2::LEU2pRS305/Mcm6, Mcm7		
yAM21	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	Background	Coster et al., 2014
	can1-100	strain	
	bar1::Hyg		
	pep4::KanMX		
	his3::HIS3pRS303/Cdt1,Gal4		
	ura3::URA3pRS306/Mcm2, CBP-TEV Mcm3		
	leu2::LEU2pRS305/Mcm6, Mcm7		
yAM20	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	Background	Coster et al., 2014
	can1-100	strain	
	bar1::Hyg		
	pep4::KanMX		
	trp1::TRP1pRS304Mcm4, Mcm5		
	ura3::URA3pRS306/Mcm2, CBP-TEV Mcm3		
	his3::HIS3pRS303/Cdt1,Gal4		
yAE160	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	Mcm6 2E	This study
	can1-100	mutant	
	bar1::Hyg	purification	
	pep4::KanMX		
	trp1::TRP1pRS304Mcm4, Mcm5		
	ura3::URA3pRS306/Mcm2, CBP-TEV Mcm3		
	his3::HIS3pRS303/Cdt1,Gal4		
	leu2::LEU2pRS305/Mcm6 2E, Mcm7		
yAE161	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	Mcm6 5E	This study
	can1-100	mutant	
	bar1::Hyg	purification	
	pep4::KanMX		
	trp1::TRP1pRS304Mcm4, Mcm5		
	ura3::URA3pRS306/Mcm2, CBP-TEV Mcm3		
	his3::HIS3pRS303/Cdt1,Gal4		
	leu2::LEU2pRS305/Mcm6 5E, Mcm7		

MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	Mcm2 6A	This study
can1-100	mutant (Mcm2	
bar1::Hyg	V580A/	
pep4::KanMX	K582A/	
his3::HIS3pRS303/Cdt1,Gal4	P584A/	
trp1::TRP1pRS304/Mcm4, Mcm5	K587A/	
leu2::LEU2pRS305/Mcm6, Mcm7	W589A/	
ura3::URA3pRS306/Mcm2 6A, CBP-TEV Mcm3	K633A)	
	purification	
	MATa dae2-1 ura3-1 hts3-11,15 trp1-1 leu2-3,112 can1-100 bar1::Hyg pep4::KanMX his3::HIS3pRS303/Cdt1,Gal4 trp1::TRP1pRS304/Mcm4, Mcm5 leu2::LEU2pRS305/Mcm6, Mcm7 ura3::URA3pRS306/Mcm2 6A, CBP-TEV Mcm3	MA1a ade2-1 uras-1 hiss-11,15 trp1-1 leu2-3,112 Mcm2 6A can1-100 mutant (Mcm2 bar1::Hyg V580A/ pep4::KanMX K582A/ his3::HIS3pRS303/Cdt1,Gal4 P584A/ trp1::TRP1pRS304/Mcm4, Mcm5 K587A/ leu2::LEU2pRS305/Mcm6, Mcm7 W589A/ ura3::URA3pRS306/Mcm2 6A, CBP-TEV Mcm3 K633A) purification

Supplementary Video 1: Cryo-EM density of the yeast CMGE dimer caught in the act of nucleating origin DNA melting.

Supplementary Video 2: Animation of DH to dCMGE conversion. The molecular morph shows a register shift in the subunit contacts at the MCM dimerization interface. dCMGE formation involves the disruption of an inter-ring Mcm7–Mcm5 contact that reveals a GINS-engagement site on Mcm5. dCMGE formation also involves the formation of a splayed MCM dimer that is kept together by a new Mcm6 dimer interface and by duplex DNA (shown in green). This DNA becomes exposed in between the two helicase rings when dCMGE is formed. Whether the DH to dCMGE transition is symmetric or conformational changes occur sequentially within the two rings remains an open question.

Supplementary Video 3: DH to dCMGE transition involves a change in nucleotide occupancy, which in turn promotes a change in DNA engagement.

Supplementary Video 4: DH to dCMGE transition involves a change in Mcm2 ATPase binding to DNA. While in DH only residue K587 of the h2i pore loop contacts DNA, six pore loop residues engage untwisted DNA in the dCMGE, including four new h2i and one new PS1BH pore loop contacts.

Supplementary Video 5: Mechanism coupling DNA melting and DH separation. DH to dCMGE transition involves the reconfiguration of the Mcm6 wedge insertion. This element moves from the MCM dimerization interface in DH to the inner lumen of the MCM ring in the dCMGE. In doing so, the Mcm6 wedge insertion stabilizes three lagging strand orphan bases that become exposed upon DNA untwisting. Mcm6 residues T423 and R424 move from the outer surface of the MCM ring in the DH to the inner lumen of dCMGE and engage in orphan base stabilization. The structural change in the DNA is first shown in the context of a single MCM hexamer and then across the entire double hexamer.